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Abstract

Today’s scene graph generation (SGG) task is still

far from practical, mainly due to the severe training

bias, e.g., collapsing diverse human walk on/ sit

on/lay on beach into human on beach. Given

such SGG, the down-stream tasks such as VQA can hardly

infer better scene structures than merely a bag of objects.

However, debiasing in SGG is not trivial because tradi-

tional debiasing methods cannot distinguish between the

good and bad bias, e.g., good context prior (e.g., person

read book rather than eat) and bad long-tailed bias

(e.g., near dominating behind/in front of). In this

paper, we present a novel SGG framework based on causal

inference but not the conventional likelihood. We first build

a causal graph for SGG, and perform traditional biased

training with the graph. Then, we propose to draw the

counterfactual causality from the trained graph to infer

the effect from the bad bias, which should be removed. In

particular, we use Total Direct Effect as the proposed fi-

nal predicate score for unbiased SGG. Note that our frame-

work is agnostic to any SGG model and thus can be widely

applied in the community who seeks unbiased predictions.

By using the proposed Scene Graph Diagnosis toolkit1 on

the SGG benchmark Visual Genome and several prevailing

models, we observed significant improvements over the pre-

vious state-of-the-art methods.

1. Introduction

Scene graph generation (SGG) [62] — a visual detec-

tion task of objects and their relationships in an image —

seems to have never fulfilled its promise: a comprehensive

visual scene representation that supports graph reasoning

for high-level tasks such as visual captioning [67, 65] and

VQA [54, 15]. Once equipped with SGG, these high-level

tasks have to abandon the ambiguous visual relationships

1Our code is publicly available on GitHub: https://github.

com/KaihuaTang/Scene-Graph-Benchmark.pytorch
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Figure 1. An example of scene graph generation (SGG). (a)

An input image with bounding boxes. (b) The distribution of

sample fraction for the most frequent 20 predicates in Visual

Genome [23]. (c) SGG from re-implemented MOTIFS [69]. (d)

SGG by the proposed unbiased prediction from the same model.

— yet on which are our core efforts made [69, 53, 6], then

pretend that there is a graph — nothing but a sparse object

layout with binary links, and finally shroud it into graph

neural networks [63] for merely more contextual object rep-

resentations [65, 17, 54]. Although this is partly due to the

research gap in graph reasoning [2, 49, 16], the crux lies in

the biased relationship prediction.

Figure 1 visualizes the SGG results from a state-of-the-

art model [69]. We can see a frustrating scene: among al-

most perfectly detected objects, most of their visual rela-

tionships are trivial and less informative. For example in

Figure 1(c), except the trivial 2D spatial layouts, we know

little about the image from near, on, and has. Such

heavily biased generation comes from the biased training

data, more specifically, as shown in Figure 1(b), the highly-

skewed long-tailed relationship annotations. For example,

if a model is trained for predicting on 1,000 times more than

standing on, then, during test, the former is more likely

to prevail over the latter. Therefore, to perform a sensible

graph reasoning, we need to distinguish more fine-grained

relationships from the ostensibly probable but trivial ones,

such as replacing near with behind/in front of,

and on with parking on/driving on in Figure 1(d).
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Figure 2. (a) The biased generation that directly predicts labels

from likelihood. (b) An intuitive example of the proposed total di-

rect effect, which calculates the difference between the real scene

and the counterfactual one. Note that the “wipe-out” is only for

the illustrative purpose but not considered as visual processing.

However, we should not blame the biased training be-

cause both our visual world per se and the way we describe

it are biased: there are indeed more person carry bag

than dog carry bag (i.e., the long-tail theory); it is eas-

ier for us to label person beside table rather than

eating on (i.e., bounded rationality [50]); and we pre-

fer to say person on bike rather than person ride

on bike (i.e., language or reporting bias [35]). In fact,

most of the biased annotations can help the model learn

good contextual prior [32, 69] to filter out the unnecessary

search candidates such as apple park on table and

apple wear hat. A promising but embarrassing find-

ing [69] is that: by only using the statistical prior of de-

tected object class in the Visual Genome benchmark [23],

we can already achieved 30.1% on Recall@100 for Scene

Graph Detection — rendering all the much more complex

SGG models almost useless — that is only 1.1-1.5% lower

than the state-of-the-art [5, 53, 72]. Not surprisingly, as

we will show in Section 5, conventional debiasing methods

who do not respect the “good bias” during training, e.g., re-

sampling [11] and re-weighting [30], fail to generalize to

unseen relationships, i.e., zero-shot SGG [32].

For both machines and humans, decision making is a col-

laboration of content (endogenous reasons) and context (ex-

ogenous reasons) [56]. Take SGG as an example, in most

SGG models [69, 5, 72], the content is the visual features

of the subject and object, and the context is the visual fea-

tures of the subject-object union regions and the pairwise

object classes. We humans — born and raised in the biased

nature — are ambidextrous in embracing the good while

avoiding the bad context, and making unbiased decisions

together with the content. The underlying mechanism is

causality-based: the decision is made by pursuing the main

causal effect caused by the content but not the side-effect by

context. However, on the other hand, machines are usually

likelihood-based: the prediction is analogous to look-up the

(a) Unbiased Generation Based on Total Direct Effect
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Figure 3. (a) The example of total direct effect calculation and

corresponding operations on the causal graph, where X̄ represents

wiped-out X . (b) Recall@100 of Predicate Classification for se-

lected predicates ranking by sampling fraction. The biased gen-

eration refers to re-implemented MOTIFS [69] and the proposed

unbiased generation is the result from the same model using TDE.

content and its context in a huge likelihood table, interpo-

lated by population training. We believe that the key is to

teach machines how to distinguish between the “main ef-

fect” and “side-effect”.

In this paper, we propose to empower machines the abil-

ity of counterfactual causality [41] to pursue the “main ef-

fect” in unbiased prediction:

If I had not seen the content, would I still make the same

prediction?

The counterfactual lies between the fact that “I see” and the

imagination “I had not”, and the comparison between the

factual and counterfactual will naturally remove the effect

from the context bias, because the context is the only thing

unchanged between the two alternatives.

To better illustrate the profound yet subtle difference be-

tween likelihood and counterfactual causality, we present

a dog standing on surfboard example in Fig-

ure 2(a). Due to the biased training, the model will eventu-

ally predict the on. Note that even though the rest choices

are not all exactly correct, thanks to the bias, they still help

to filter out a large amount of unreasonable ones. To take a

closer look at what relationship it is in the context bias, we

are essentially comparing the original scene with a coun-

terfactual scene (Figure 2(b)): only the visual features of

the dog and surfboard are wiped out, while keeping the

rest — the scene and the object classes — untouched, as if

the visual features had ever existed. By doing this, we can

focus on the main visual effects of the relationship without

losing the context.
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We propose a novel unbiased SGG method based on

the Total Direct Effect (TDE) analysis framework in causal

inference [57, 39, 58]. Figure 3(a) shows the underlying

causal graphs [40, 41] of the two alternate scenes: factual

and counterfactual. Although a formal introduction of them

is given in Section 3-4, now you can simply understand the

nodes as data features and the directed links as (parametric)

data flows. For example, X → Y , Z → Y , and I → Y
indicate that the relationship Y is a combined effect caused

by content: the pair of object visual features X , context:

their object classes Z, and scene: the image I; the faded

links denote that the wiped-out X̄ is no longer caused by

I or affects Z. These graphs offer an algorithmic formu-

lation to calculate TDE, which exactly realizes the coun-

terfactual thinking in Figure 2. As shown in Figure 3(b),

the proposed TDE significantly improves most of the pred-

icates, and impressively, the distribution of the improved

performances is no longer long-tailed, indicating the fact

that our improvement is indeed from the proposed method,

but NOT from the better exploitation of the context bias. A

closer analysis in Figure 6 further shows that the worse pre-

dictions like on — though very few — are due to turning

to more fine-grained results such as stand on and park

on. We highlight that TDE is a model-agnostic prediction

strategy and thus applicable for a variety of models and fu-

sion tricks [71, 69, 53].

Last but not least, we propose a new standard of SGG

diagnosis toolkit (cf. Section 5.2) for more comprehensive

SGG evaluations. Besides traditional evaluation tasks, it

consists of the bias-sensitive metric: mean Recall [53, 6]

and a new Sentence-to-Graph Retrieval for a more com-

prehensive graph-level metric. By using this toolkit on

SGG benchmark Visual Genome [23] and several prevail-

ing baselines, we verify the severe bias in existing models

and demonstrate the effectiveness of the proposed unbiased

prediction over other debiasing strategies.

2. Related Work

Scene Graph Generation. SGG [62, 69] has received in-

creasing attention in computer vision community, due to the

potential revolution that would be brought to down-stream

visual reasoning tasks [49, 65, 22, 17]. Most of the existing

methods [62, 60, 7, 26, 68, 53, 64, 10, 43, 59] struggle for

better feature extraction networks. Zellers et al. [69] firstly

brought the bias problem of SGG into attention and the fol-

lowers [53, 6] proposed the unbiased metric (mean Recall),

yet, their approaches are still restricted to the feature extrac-

tion networks, leaving the biased SGG problem unsolved.

The most related work [28] just prunes those dominant and

easy-to-predict relationships in the training set.

Unbiased Training. The bias problem has long been inves-

tigated in machine learning [55]. Existing debiasing meth-

ods can be roughly categorized into three types: 1) data
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Figure 4. (a) The framework used in our biased training. (b) The

causal graph of the SGG framework. (c) An illustration of the

proposed TDE inference.

augmentation or re-sampling [9, 25, 27, 11, 3], 2) unbiased

learning through elaborately designed training curriculums

or learning losses [70, 30], 3) disentangling biased represen-

tations from the unbiased [35, 4]. The proposed TDE anal-

ysis can be regarded as the third category, but the main dif-

ference is that TDE doesn’t require to train additional layers

like [35, 4] to model the bias, it directly separates the bias

from existing models through the counterfactual surgeries

on causal graphs.

Mediation Analysis. It is also known as effect analy-

sis [57, 41], which is widely adopted in medical, polit-

ical or psychological research [45, 19, 8, 33, 21] as the

tool of studying the effect of certain treatments or poli-

cies. However, it has been neglected in the community

of computer vision for years. There are very few recent

works [36, 24, 37, 42, 52, 13, 66] trying to endow the model

with the capability of causal reasoning. More detailed back-

ground knowledge can be found in [40, 41, 57].

3. Biased Training Models in Causal Graph

As illustrated in Figure 4, we summarize the SGG frame-

work in the form of Causal Graph (a.k.a., structural causal

model) [41, 38, 40]. It is a directed acyclic graph G =
{N , E}, indicating how a set of variables N interact with

each other through the causal links E . It provides a sketch

of the causal relations behind the data and how variables

obtain their values, e.g., (I,X, Z) → Y . Before we con-

duct counterfactual analysis that deliberately manipulates

the values of nodes and prunes the causal graph, we first

revisit the conventional biased SGG model training in the

graphical view.

The causal graph in Figure 4(b) is applicable to a vari-

ety of SGG methods, since it is highly general, imposing

no constraints on the detailed implementations. We case-
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study three representative model formulations: the classic

VTransE [71], the state-of-the-art MOTIFS [69] and VC-

Tree [53], using the language of nodes and links.

Node I (Input Image&Backbone). A Faster R-CNN [44]

is pre-trained and frozen in this node, It outputs a set of

bounding boxes B = {bi|i = 1...n} and the feature map

M from image I .

Link I → X (Object Feature Extractor). It firstly ex-

tracts RoIAlign features [12] R = {ri} and tentative object

labels L = {li} by the object classifier on Faster R-CNN.

Then, like MOTIFS [69] or VCTree [53], we can use the

following module to encode visual contexts for each object:

Input : {(ri, bi, li)} =⇒ Output : {xi}, (1)

where MOTIFS implements it as bidirectional LSTMs (Bi-

LSTMs) and VCTree [53] adopts bidirectional TreeLSTMs

(Bi-TreeLSTMs) [51], early works like VTransE [71] sim-

ply use fully connected layers.

Node X (Object Feature). The pairwise object feature X
takes value from {(xi, xj)|i 6= j; i, j = 1...n}. We slightly

abuse the notation hereinafter, denoting the combination of

representations from i and j as subscript e: xe = (xi, xj).
Link X → Z (Object Classification). The fine-tuned la-

bel of each object is decoded from the corresponding xi by:

Input : {xi} =⇒ Output : {zi}, (2)

where MOTIFS [69] and VCTree [53] utilizes LSTM and

TreeLSTM as decoders to capture the co-occurrence among

object labels, respectively. The input of each LSTM/ TreeL-

STM cell is the concatenation of feature and the previous

label [xi; zi−1]. VTransE [71] uses the conventional fully

connected layer as the classifier.

Node Z (Object Class). It contains a pair of one-hot vec-

tors for object labels ze = (zi, zj).
Link X → Y (Object Feature Input for SGG). For rela-

tionship classification, pairwise feature X are merged into

a joint representation by the module:

Input : {xe} =⇒ Output : {x′
e}, (3)

where another Bi-LSTMs and Bi-TreeLSTMs layers are ap-

plied in MOTIFS [69] and VCTree [53], respectively, before

concatenating the pair of object features. VTransE [71] uses

fully connected layers and element-wise subtraction for fea-

ture merging.

Link Z → Y (Object Class Input for SGG). The lan-

guage prior is calculated in this link through a joint embed-

ding layer z′e = Wz[zi⊗zj ], where ⊗ generates the one-hot

unique vector RN×N for the pair of N -way object labels.

Link I → Y (Visual Context Input for SGG). This

link extracts the contextual union region features v′e =
Convs(RoIAlign(M, bi ∪ bj)) where bi ∪ bj indicates the

union box of two RoIs.

𝑢𝑧𝑥 𝑌𝑥
(a) The Original Case of 𝒀𝒙(𝒖)

𝑢ҧ𝑧ҧ𝑥 𝑌 ҧ𝑥
(b) The Intervention Case of 𝒀ഥ𝒙(𝒖)𝑢𝑧ҧ𝑥 𝑌 ҧ𝑥,𝑧

𝑧𝑥
(c) The Counterfactual Case of 𝒀ഥ𝒙,𝒛(𝒖)

Figure 5. The original causal graph of SGG together with two in-

terventional and counterfactual alternates.

Node Y (Predicate Classification). The final predicate

logits Y that takes inputs from the three branches is then

generated by using a fusion function. In Section 5, we

test two general fusion functions: 1) SUM: ye = Wxx
′
e +

Wvv
′
e + z′e, 2) GATE: ye = Wrx

′
e ·σ(Wxx

′
e +Wvv

′
e+ z′e),

where · is element-wise product, σ(·) is a sigmoid function.

Training Loss. All models are trained by using the con-

ventional cross-entropy losses of object labels and predicate

labels. To avoid any single link spontaneously dominating

the generation of logits ye, especially Z → Y , we further

add auxiliary cross-entropy losses that individually predict

ye from each branch.

4. Unbiased Prediction by Causal Effects

Once the above training has been done, the causal de-

pendencies among the variables are learned, in terms of the

model parameters. The conventional biased prediction can

only see the output of the entire graph given an image I = u
without any idea about how a specific pair of objects affect

their predicate. However, causal inference [41] encourages

us to think out of the black box. From the graphical point

of view, we are no longer required to run the entire graph as

a whole. We can directly manipulate the values of several

nodes and see what would be going on. For example, we can

cut off the link I → X and assign a dummy value to X , then

investigate what the predicate would be. The above opera-

tion is termed intervention in causal inference [40]. Next,

we will make unbiased predictions by intervention and its

induced counterfactuals.

4.1. Notations

Intervention. It can be denoted as do(·). It wipes out

all the in-coming links of a variable and demands the vari-

able to take a certain value, e.g. do(X = x̄) in Figure 5(b),

meaning X is no longer affected by its causal parents.

Counterfactual. It means “counter to the facts” [46], and

takes one step further that assigns the “clash of worlds”

combination of values to variables. Take Figure 5(c) as an
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example, if the intervention do(X = x̄) is conducted on X ,

the variable Z still takes the original z as if x had existed.

Causal Effect. Throughout this section, we will use the

pairwise object feature X as our control variable where the

intervention is conducted, aiming to assess its effects, due

to the fact that there wouldn’t be any valid relationship if

the pair of objects do not exist. The observed X is denoted

as x while the intervened unseen value is x̄, which is set

to either the mean feature of the training set or zero vector.

The object label z on Figure 5(c) is calculated from Eq. (2),

taking x as input. We denote the output logits Y after the

intervention X = x̄ as follows (Figure 5(b)):

Yx̄(u) = Y (do(X = x̄)|u), (4)

where u is the input image in SGG. Following the above no-

tation, the original and counterfactual Y , i.e., Figure 5(a,c),

can be re-written as Yx(u) and Yx̄,z(u), respectively.

4.2. Total Direct Effect

As we discussed in Section 1, instead of the static likeli-

hood that tends to be biased, the unbiased prediction lies in

the difference between the observed outcome Yx(u) and its

counterfactual alternate Yx̄,z(u). The later one is a context-

specific bias that we want to remove from prediction. In-

tuitively, the unbiased prediction that we seek is the visual

stimuli from blank to the observed real objects with spe-

cific attributes, states, and behaviors, but not merely from

the surroundings and language priors. Those specific visual

cues of objects are the key to the more fine-grained and in-

formative unbiased predictions, because even if the overall

prediction is biased towards the relationship like dog on

surfboard, the “straight legs” would cause more effect

on standing on rather than sitting on. In causal

inference [57, 58], the above prediction process can be cal-

culated as Total Direct Effect (TDE):

TDE = Yx(u)− Yx̄,z(u), (5)

where the first term is from the original graph and the sec-

ond one is from the counterfactual, as illustrated in Figure 5.

Note that there is another type of effect [57], Total Effect

(TE), which is easy to be mixed up with TDE. Instead of

deriving counterfactual bias Yx̄,z(u), TE lets all the descen-

dant nodes of X change with intervention do(X = x̄) as

shown in Figure 5(b). TE is therefore formulated as:

TE = Yx(u)− Yx̄(u). (6)

The main difference lies in the fact that Yx̄(u) is not condi-

tioned on the original object labels (those caused by x), so

TE only removes the general bias in the whole dataset (sim-

ilar to the b in y = k · x + b), rather than the specific bias

caused by the mediator we care about. The subtle difference

between TE and TDE is further defined as Natural Indirect

Effect (NIE) [57] or Pure Indirect Effect (PIE) [58]. More

experimental analyses among these three types of effect are

given in Section 5.

Overall SGG. At last, the proposed unbiased prediction

y†e is obtained by replacing the conventional one-time pre-

diction with TDE, which essentially “thinks” twice: one

for observational Yxe
(u) = ye, the other for imaginary

Yx̄,ze(u) = ye(x̄, ze). The unbiased logits of Y is there-

fore defined as follows:

y†e = ye − ye(x̄, ze). (7)

It is also worth mentioning that the proposed TDE doesn’t

introduce any additional parameters and is widely applica-

ble to a variety of models.

5. Experiments

5.1. Settings and Models

Dataset. For SGG, we used Visual Genome (VG) [23]

dataset to train and evaluate our models, which is composed

of 108k images across 75k object categories and 37k pred-

icate categories. However, as 92% of the predicates have

no more than 10 instances, we followed the widely adopted

VG split [62, 69, 53, 5] containing the most frequent 150

object categories and 50 predicate categories. The original

split only has training set (70%) and test set (30%). We

followed [69] to sample a 5k validation set from training

set for parameter tuning. For Sentence-to-Graph Retrieval

(cf. Section 5.2), we selected the overlapped 41,859 im-

ages between VG and MS-COCO Caption dataset [31] and

divided them into train/test-1k/test-5k (35,859/1,000/5,000)

sets. The later two only contain images from VG test set in

case of exposing to grount-truth SGs. Each image has at

least 5 captions serving as human queries, the same as how

we use searching engines.

Model Zoo. We evaluated three models: VTransE [71],

MOTIFS [69], VTree [53], and two fusion functions: SUM

and GATE. They were re-implemented using the same

codebase as we proposed. All models shared the same

hyper-parameters and the pre-trained detector backbone.

5.2. Scene Graph Generation Diagnosis

Our proposed SGG diagnosis has the following three

evaluations:

1. Relationship Retrieval (RR). It can be further divided

into three sub-tasks: (1) Predicate Classification (PredCls):

taking ground truth bounding boxes and labels as inputs,

(2) Scene Graph Classification (SGCls): using ground truth

bounding boxes without labels, (3) Scene Graph Detec-

tion (SGDet): detecting SGs from scratch. The conven-

tional metric of RR is Recall@K (R@K), which was aban-

doned in this paper due to the reporting bias [35]. As illus-

trated in Figure 3(b), previous methods like [69] with good

performance on R@K unfairly cater to “head” predicates,
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Predicate Classification Scene Graph Classification Scene Graph Detection

Model Fusion Method mR@20 mR@50 mR100 mR@20 mR50 mR100 mR@20 mR50 mR100

IMP+ [62, 6] - - - 9.8 10.5 - 5.8 6.0 - 3.8 4.8

FREQ [69, 53] - - 8.3 13.0 16.0 5.1 7.2 8.5 4.5 6.1 7.1

MOTIFS [69, 53] - - 10.8 14.0 15.3 6.3 7.7 8.2 4.2 5.7 6.6

KERN [6] - - - 17.7 19.2 - 9.4 10.0 - 6.4 7.3

VCTree [53] - - 14.0 17.9 19.4 8.2 10.1 10.8 5.2 6.9 8.0

MOTIFS†

SUM

Baseline 11.5 14.6 15.8 6.5 8.0 8.5 4.1 5.5 6.8

Focal 10.9 13.9 15.0 6.3 7.7 8.3 3.9 5.3 6.6

Reweight 16.0 20.0 21.9 8.4 10.1 10.9 6.5 8.4 9.8

Resample 14.7 18.5 20.0 9.1 11.0 11.8 5.9 8.2 9.7

X2Y 13.0 16.4 17.6 6.9 8.6 9.2 5.1 6.9 8.1

X2Y-Tr 11.6 14.9 16.0 6.5 8.4 9.1 5.0 6.9 8.1

TE 18.2 25.3 29.0 8.1 12.0 14.0 5.7 8.0 9.6

NIE 0.6 1.1 1.4 6.1 9.0 10.6 3.8 5.1 6.0

TDE 18.5 25.5 29.1 9.8 13.1 14.9 5.8 8.2 9.8

GATE
Baseline 12.2 15.5 16.8 7.2 9.0 9.5 5.2 7.2 8.5

TDE 18.5 24.9 28.3 11.1 13.9 15.2 6.6 8.5 9.9

VTransE†

SUM
Baseline 11.6 14.7 15.8 6.7 8.2 8.7 3.7 5.0 6.0

TDE 17.3 24.6 28.0 9.3 12.9 14.8 6.3 8.6 10.5

GATE
Baseline 13.6 17.1 18.6 6.6 8.2 8.7 5.1 6.8 8.0

TDE 18.9 25.3 28.4 9.8 13.1 14.7 6.0 8.5 10.2

VCTree†
SUM

Baseline 11.7 14.9 16.1 6.2 7.5 7.9 4.2 5.7 6.9

TDE 18.4 25.4 28.7 8.9 12.2 14.0 6.9 9.3 11.1

GATE
Baseline 12.4 15.4 16.6 6.3 7.5 8.0 4.9 6.6 7.7

TDE 17.2 23.3 26.6 8.9 11.8 13.4 6.3 8.6 10.3

Table 1. The SGG performances of Relationship Retrieval on mean Recall@K [53, 6]. The SGG models re-implemented under our

codebase are denoted by the superscript †.

e.g., on, while neglect the “tail” ones, e.g., predicates like

parked on, laying on have embarrassingly 0.0 Re-

call@100. To speak for the valuable “tail” rather than the

trivial “head”, we adopted a recent replacement, mean Re-

call@K (mR@K), proposed by Tang et al. [53] and Chen et

al. [6]. mR@K retrieves each predicate separately and then

averages R@K for all predicates.

2. Zero-Shot Relationship Retrieval (ZSRR). It was in-

troduced by Lu et al. [32] as Zero-Shot Recall@K and was

firstly evaluated on VG dataset in this paper, which only re-

ports the R@K of those subject-predicate-object triplets that

have never been observed in the training set. ZSRR also has

three sub-tasks as RR.

3. Sentence-to-Graph Retrieval (S2GR). It uses the im-

age caption sentence as the query to retrieve images repre-

sented as SGs. Both RR and ZSRR are triplet-level evalu-

ations, ignoring the graph-level coherence. Therefore, we

design S2GR, using human descriptions to retrieve detected

SGs. We didn’t use proxy vision-language tasks like cap-

tioning [65, 67] and VQA [54, 15] as the diagnosis, be-

cause their implementations have too many components un-

related to SGG and their datasets are challenged by their

own biases [1, 14, 34]. In S2GR, the detected SGs (using

SGDet) are regarded as the only representations of images,

cut off all the dependencies on black-box visual features,

so any bias on SGG would sensitively violate the coherence

of SGs, resulting in worse retrieval results. For example,

if walking on was detected as the biased alternative on,

images would be mixed up with those have sitting on

or laying on. Note that S2GR is fundamentally different

Zero-Shot Relationship Retrieval PredCls SGCls SGDet

Model Fusion Method R@50/100 R@50/100 R@50/100

MOTIFS†

SUM

Baseline 10.9 / 14.5 2.2 / 3.0 0.1 / 0.2

Focal 10.9 / 14.4 2.2 / 3.1 0.1 / 0.3

Reweight 0.7 / 0.9 0.1 /0.1 0.0 / 0.0

Resample 11.1 / 14.3 2.3 / 3.1 0.1 / 0.3

X2Y 11.8 / 17.6 2.3 / 3.7 1.6 / 2.7

X2Y-Tr 13.7 / 17.6 3.1 / 4.2 1.8 / 2.8

TE 14.2 / 18.1 1.4 / 2.0 1.4 / 1.8

NIE 2.4 / 3.2 0.2 / 0.4 0.3 / 0.6

TDE 14.4 / 18.2 3.4 / 4.5 2.3 / 2.9

GATE
Baseline 7.4 / 10.6 0.9 / 1.3 0.2 / 0.4

TDE 7.7 / 11.0 1.9 / 2.6 1.9 / 2.5

VTransE†

SUM
Baseline 11.3 / 14.7 2.5 / 3.3 0.8 / 1.5

TDE 13.3 / 17.6 2.9 / 3.8 2.0 / 2.7

GATE
Baseline 4.2 / 5.9 1.9 / 2.6 1.9 / 2.6

TDE 5.3 / 7.9 2.1 / 3.0 1.9 / 2.7

VCTree†
SUM

Baseline 10.8 / 14.3 1.9 / 2.6 0.2 / 0.7

TDE 14.3 / 17.6 3.2 / 4.0 2.6 / 3.2

GATE
Baseline 4.4 / 6.8 2.5 / 3.3 1.8 / 2.7

TDE 5.9 / 8.1 3.0 / 3.7 2.2 / 2.8

Table 2. The results of Zero-Shot Relationship Retrieval.

from the previous image retrieval with scene graph [18, 48],

because the latter still consider the images as visual fea-

tures but not SGs. Recall@20/100 (R@20/100) and median

ranking indexes of retrieved results (Med) on the gallery

size of 1,000 and 5,000 were evaluated. Note that S2GR

should have diverse implementations as long as its spirit:

graph-level symbolic retrieval, is fulfilled. We provide our

implementation in the next sub-section.

5.3. Implementation Details

Object Detector. Following the previous works [62, 69,

53], we pre-trained a Faster R-CNN [44] and froze it to be

the underlying detector of our SGG models. We equipped

the Faster R-CNN with a ResNeXt-101-FPN [29, 61] back-
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Sentence-to-Graph Retrieval

Gallery Size 1000 5000

Model Fusion Method R@20 R@100 Med R@20 R@100 Med

MOTIFS†

SUM

Baseline 11.6 39.9 155 3.1 12.1 708

Focal 10.9 39.0 163 2.9 11.1 737

Reweight 9.7 36.8 159 3.0 11.4 725

Resample 13.1 43.6 124 2.5 13.4 593

X2Y 14.3 44.8 125 3.5 14.6 556

X2Y-Tr 14.5 45.6 114 3.9 16.8 525

TE 15.9 49.9 100 4.4 16.9 469

NIE 6.7 29.2 202 1.6 8.6 1050

TDE 17.0 53.6 91 5.2 18.9 425

GATE
Baseline 13.7 45.6 143 4.4 16.2 618

TDE 20.8 59.2 72 5.2 21.3 325

VTransE†

SUM
Baseline 12.3 42.3 129 3.6 15.0 596

TDE 14.7 48.4 106 3.6 16.3 483

GATE
Baseline 12.9 41.8 136 3.8 14.3 634

TDE 18.5 50.4 110 4.5 19.1 486

VCTree†
SUM

Baseline 9.9 37.4 150 3.1 11.5 745

TDE 19.0 57.0 82 5.0 20.0 385

GATE
Baseline 13.4 44.1 121 3.7 13.6 583

TDE 19.1 55.5 87 5.1 20.3 395

Table 3. The results of Sentence-to-Graph Retrieval.

bone and scaled the longer side of input images to be 1k

pixels. The detector was trained on the training set of VG

using SGD as optimizer. We set the batch size to 8 and the

initial learning rate to 8× 10−3, which was decayed by the

factor of 10 on the 30kth and 40kth iterations. The final de-

tector achieved 28.14 mAP on VG test set (using 0.5 IoU

threshold). 4 2080ti GPUs were used for the pre-training.

Scene Graph Generation. On top of the frozen detector,

we trained SGG models using SGD as optimizer. Batch size

and initial learning rate were set to be 12 and 12 × 10−2

for PredCls and SGCls; 8 and 8 × 10−2 for SGDet. The

learning rate would be decayed by 10 two times after the

validation performance plateaus. For SGDet, 80 RoIs were

sampled for each image and Per-Class NMS [47, 69] with

0.5 IoU was applied in object prediction. We sampled up to

1,024 subject-object pairs containing 75% background pairs

during training. Different from previous works [69, 53, 5],

we didn’t assume that non-overlapping subject-object pairs

are invalid in SGDet, making SGG more general.

Sentence-to-Graph Retrieval. We handled S2GR as a

graph-to-graph matching problem. The query captions of

each image were stuck together and parsed to a text-SG us-

ing [48]. We set all the subject/object and predicates that ap-

pear less than 5 times to “UNKNOWN” tokens, obtaining a

dictionary of size 4,459 subject/object entities and 645 pred-

icates, respectively. The original image SG generated from

SGDet contains a fixed number of RoIs and forces all valid

subject-object pairs to predict foreground relationships, to

serve the K number in mR@K, which is inappropriate for

S2GR. Therefore, we used a threshold of 0.1 to filter RoIs

by the label probabilities and removed all background pred-

icates from the graph. Recall that the vocabulary size of the

entity and predicate for image SGs are 150 and 50 as we

mentioned before. To match the two heterogeneous graphs:

image SG and text SG, in a unified space, we used BAN [20]

to encode the two graph types into fixed-dimension vectors

to facilitate the retrieval. More details can be found in sup-

plementary material.
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Figure 6. The pie chart summarizes all the relationships, that are

correctly detected by the baseline model but considered “incor-

rect” by TDE. The right side of the pie chart shows the corre-

sponding labels given by the TDE. Combining with our qualitative

examples, we believe that the drop of Recall@K is caused by two

reasons: 1) the annotators preference towards simple annotations

caused by bounded rationality [50], 2) TDE tends to predict more

action-like relationships rather than vague prepositions.

5.4. Ablation Studies

Except for the models and fusion functions that we’ve

discussed before, we also investigated three conventional

debiasing methods, two intuitive causal graph surgeries, and

other two types of causal effects: 1) Focal: focal loss [30]

automatically penalizes well-learned samples and focuses

on the hard ones. We followed the hyper-parameters (γ =
2.0, α = 0.25) optimized in [30]. 2) Reweight: weighted

cross-entropy is widely used in the industry for biased data.

The inversed sample fractions were assigned to each predi-

cate category as weights. 3) Resample [3]: rare categories

were up-sampled by the inversed sample fraction during

training. 4) X2Y: since we argued that the unbiased effect

was under the effect of object features X , it directly gen-

erated SG by the outputs of X → Y branch after biased

training. 5) X2Y-Tr: it even cut off other branches, using

X → Y for both training and testing. 6) TE: as we in-

troduced in Section 4, TE is the debiasing method that not

conditioned on the contexts. 7) NIE: it is the marginal dif-

ference between TDE and TE, i.e., NIE = TE-TDE, which

can be considered as the pure effect caused by introducing

the bias Z → Y . NOTE: although zero vector can also be

used as the wiped-out input x̄, we chose the mean feature of

training set for minor improvements.

5.5. Quantitative Studies

RR & ZSRR. The results are listed in Table 1& 2. Despite

the fact that conventional debiasing methods: Reweight

and Resample, directly hack the mR@K metric, they only

gained limited advantages in RR but not in ZSRR. In con-

trast to the high mR@K of Reweight in RR SGDet, it got

embarrassingly 0.0/0.0 in ZSRR SGDet, indicating that

such debiased training methods ruin the useful context prior.

Focal loss [30] barely worked for both RR and ZSRR.
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Figure 7. Results of scene graphs generated from MOTIF†-SUM baseline (yellow) and corresponding TDE (green). Top: relationship

retrieval results. Mid: zero shot relationship retrieval results. Red boxes indicate the zero shot triplets. Bottom: results of S2GR. Red boxes

mean the correctly retrieved SGs. Part of the trivial detected objects are removed from the graphs, due to space limitation.

Causal graph surgeries, X2Y and X2Y-Tr, both improved

RR and ZSRR from the baseline, yet their increases were

limited. TE had a very similar performance to TDE, but as

we discussed, it removed the general bias rather than the

subject-object specific bias. NIE is the marginal improve-

ments from TE to TDE, which was even worse than base-

line. Although R@K is not a qualified metric for RR as we

discussed, we still reported the R@50/100 performance of

MOTIFS†-SUM in Figure 6. We can observe a performance

drop from baseline to TDE, but a further analysis shows

that those considered as correct in baseline and “incor-

rect” in TDE were mainly the “head” predicates, and they

are classified by TDE into more fine-grained “tail” classes.

Among all three models and two fusion functions, even the

worst TDE performance outperforms previous state-of-the-

art methods [53, 6] by a large margin on RR mR@K.

S2GR. In S2GR, Focal and Reweight are even worse than

the baseline. Among all the three conventional debiasing

methods, Resample was the most stable one based on our

experiments. X2Y and X2Y-Tr have minor advantages over

baseline. TE takes the 2nd place and was only a little bit

worse than TDE. NIE is the worst as we expected because

it is only based on the pure context bias. It is worth high-

lighting that all the three models and two fusion functions

had significant improvements after we applied TDE.

5.6. Qualitative Studies

We visualized several SGCls examples that generated

from MOTIFS†-SUM baseline and TDE in the top and mid

rows of Figure 7, scene graphs generated by TDE are much

more discriminative compared to the baseline model which

prefers trivial predicates like on. The right half of the

mid row shows that the baseline model would even gen-

erate holding due to the long-tail bias when the girl is

not touching the kite, implying that the biased predictions

are easy to be “blind”, while TDE successfully predicted

looking at. The bottom of Figure 7 is an example

of S2GR, where the SGs detected by baseline model lost

the detailed actions of people, considering both person

walking on street and person standing on

street as person on street, which caused worse

retrieval results. All the examples show a clear trend that

TDE is much more sensitive to those semantically informa-

tive relationships instead of the trivially biased ones.

6. Conclusions

We presented a general framework for unbiased SGG

from biased training, and this is the first work addressing

the serious bias issue in SGG. With the power of coun-

terfactual causality, we can remove the harmful bias from

the good context bias, which cannot be easily identified

by traditional debiasing methods such as data augmenta-

tion [9, 11] and unbiased learning [30]. We achieved the

unbiasedness by calculating the Total Direct Effect (TDE)

with the help of a causal graph, which is a roadmap for train-

ing any SGG model. By using the proposed Scene Graph

Diagnosis toolkit, our unbiased SGG results are consider-

ably better than their biased counterparts.
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