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Abstract

In order to alleviate the notorious mode collapse phe-

nomenon in generative adversarial networks (GANs), we

propose a novel training method of GANs in which certain

fake samples are considered as real ones during the training

process. This strategy can reduce the gradient value that

generator receives in the region where gradient exploding

happens. We show the process of an unbalanced generation

and a vicious circle issue resulted from gradient exploding

in practical training, which explains the instability of GANs.

We also theoretically prove that gradient exploding can be

alleviated by penalizing the difference between discrimina-

tor outputs and fake-as-real consideration for very close re-

al and fake samples. Accordingly, Fake-As-Real GAN (FAR-

GAN) is proposed with a more stable training process and

a more faithful generated distribution. Experiments on dif-

ferent datasets verify our theoretical analysis.

1. Introduction

In the past few years, Generative Adversarial Networks

(GANs) [10] have been one of the most popular topics in

generative models and achieved great success in generating

diverse and high-quality images [5, 16, 8]. GANs can be

expressed as a zero-sum game between discriminator and

generator. When a final theoretical equilibrium is achieved,

discriminator can never distinguish between real and fake

generated samples. However, we show that a theoretical

equilibrium actually can be seldom realized in practice with

only discrete finite samples in datasets during the training

process.

Although GANs have achieved remarkable progress, nu-

merous researchers have tried to improve the performance

of GANs from various aspects [2, 23, 11, 21], because of

the inherent problem in GAN training, such as instability

and mode collapse. [3] showed that a theoretical gener-

alization guarantee does not be provided with the original
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GAN objective and analyzed the generalization capacity of

neural network distance. The author argued that for a low

capacity discriminator, it can not provide generator enough

information to fit the target distribution owing to lack of a-

bility to detect mode collapse. [31] argued that poor gen-

eration capacity in GANs comes from the discriminators

trained on finite training samples resulting in overfitting to

real data samples and gradient exploding when generated

datapoints approach real ones. As a result, [31] proposed a

zero-centered gradient penalty on linear interpolations be-

tween real and fake samples to improve generalization ca-

pability and prevent mode collapse resulted from gradient

exploding. Recent work [32] further studied generalization

from a new perspective of privacy protection.

In this paper, we focus on mode collapse resulted from

gradient exploding studied in [31] and achieve a better gen-

eralization with a much more stable training process. Our

contributions are as follows:

1. We explain the generation process of an unbalanced

distribution in GAN training, which becomes more and

more serious as training progresses owing to the exis-

tence of the vicious circle issue resulted from gradient

exploding.

2. We prove that the gradient exploding issue can be ef-

fectively alleviated by difference penalization for dis-

criminator between very close real and fake samples

and fake-as-real consideration where gradient explod-

ing happens.

3. We propose a novel GAN training method by con-

sidering certain fake samples as real ones (FARGAN)

according to discriminator outputs in a training mini-

batch to effectively prevent the unbalanced generation.

Experiments on synthetic and real world datasets ver-

ify that our method can stabilize training process and

achieve a more faithful generated distribution.

In the sequel, we use the terminologies of generated sam-

ples (datapoints) and fake samples (datapoints) indiscrimi-

nately. Tab. 1 lists some key notations used in the rest of

the paper.
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Table 1. NOTATIONS

Symbol Meaning

pr the target dsitribution

pg the model distribution

D the discriminator with sigmoid function in the last layer

D0 the discriminator with sigmoid function in the last layer removed

Dr = {x1, · · · , xn} the set of n real samples

Dg = {y1, · · · , ym} the set of m generated samples

DFAR = {ỹ1, · · · , ỹN0
} the set of N0 generated samples considered as real

2. Related work

Instability. GANs have been considered difficult to train

and often play an unstable role in training process [30].

Various methods have been proposed to improve the sta-

bility of training. A lot of works stabilized training with

well-designed structures [27, 15, 35, 6] and utilizing bet-

ter objectives [23, 36, 2, 19]. Gradient penalty to enforce

Lipschitz continuity is also a popular direction to improve

the stability including [11, 25, 28, 26]. From the theoret-

ical aspect, [22] showed that GAN optimization based on

gradient descent is locally stable and [20] proved local con-

vergence for simplified zero-centered gradient penalties un-

der suitable assumptions. For a better convergence, a two

time-scale update rule (TTUR) [13] and exponential mov-

ing averaging (EMA) [34] have also been studied.

Mode collapse. Mode collapse is another persistent es-

sential problem for the training of GANs, which means lack

of diversity in the generated samples. The generator may

sometimes fool the discriminator by producing a very small

set of high-probability samples from the data distribution.

Recent work [3, 4] studied the generalization capacity of

GANs and showed that the model distributions learned by

GANs do miss a significant number of modes. A large num-

ber of ideas have been proposed to prevent mode collapse.

Multiple generators are applied in [3, 9, 14] to achieve a

more faithful distribution. Mixed samples are considered as

the inputs of discriminator in [17, 18] to convey informa-

tion on diversity. Recent work [12] studied mode collapse

from probabilistic treatment and [33, 7] from the entropy of

distribution.

3. Background

In the original GAN [10], the discriminator D maximizes

the following objective:

L = Ex∼pr
[log(D(x))] + Ey∼pg

[log(1−D(y))], (1)

and to prevent gradient collapse, the generator G in Non-

Saturating GAN (NSGAN) [10] maximizes

LG = Ey∼pg
[log(D(y))], (2)

where D is usually represented by a neural network.

[10] showed that the optimal discriminator D in Eqn.1 is

D∗(v) = pr(v)
pr(v)+pg(v)

for any v ∈ supp(pr) ∪ supp(pg).

As training progresses, pg will be pushed closer to pr. If

G and D are given enough capacity, a global equilibrium is

reached when pr = pg , in which case the best strategy for D

on supp(pr) ∪ supp(pg) is just to output 1
2 and the optimal

value for Eqn.1 is 2 log( 12 ).
With finite training examples in training dataset Dr in

practice, we empirically use 1
n

∑n
i=1 log(D(xi)) to esti-

mate Ex∼pr
[log(D(x))] and 1

m

∑m
i=1[1 − log(D(yi))] to

estimate Ey∼pg
[log(1 − D(y))], where xi, yi is from Dr

and generated dataset Dg , respectively.

Mode collapse in generator is attributed to gradient ex-

ploding in discriminator, according to [31]. When a fake

datapoint y0 is pushed to a real datapoint x0 and if |D(x0)−
D(y0)| ≥ ǫ is satisfied, the absolute value of directional

derivative of D in the direction µ = x0 − y0 will approach

infinity:

|(∇µD)x0
| = lim

y0

µ
→x0

|D(x0)−D(y0)|

||x0 − y0||

≥ lim
y0

µ
→x0

ǫ

||x0 − y0||
= ∞, (3)

in which case the gradient norm of discriminator at y0,

||∇y0
D(y0)||, is equivalent to |(∇µD)x0

| and gradient ex-

plodes. Since ∇y0
D(y0) outweighs gradients towards other

modes in a training minibatch, gradient exploding at data-

point y0 will move multiple fake datapoints towards x0 re-

sulting in mode collapse.

4. Unbalanced Generation

Theoretically, discriminator outputs a constant 1
2 when

a global equilibrium is reached. However in practice, dis-

criminator can often easily distinguish between real and

fake samples [10, 2]. Because the target distribution pr is

unknown for discriminator, discriminator will always con-

sider training samples in Dr as real while generated sam-

ples in Dg as fake. Even when the generated distribution

1192



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Results on finite samples from a Gaussian distribution of GANs trained with different gradient penalties and our method. Blue

datapoints represent real samples and red datapoints represent generated samples. (a)(e) NSGAN with no GP, iter. 100k and 200k. (b)(f)

NSGAN-0GP-sample, iter. 100k and 200k. (c)(g) NSGAN-0GP-interpolation, iter. 100k and 200k. (d)(h) NSGAN-0GP-sample with our

method, iter. 100k and 200k.

pg is equivalent to the target distribution pr, Dr and Dg is

disjoint with probability 1 when they are sampled from t-

wo continuous distributions respectively (Proposition 1 in

[31]). In this case, actually Dg is pushed towards samples

in Dr. We will explain specifically the generation process

of an unbalanced distribution that deviates from pr.

Definition 1 For x0 ∈ Dr, y0 ∈ Dg , {x0, y0} is a δ close

pair if y0 ∈ N δ(x0) = {y0 : d(x0, y0) ≤ δ, 0 < δ ≪
d(xi, xj), ∀xi, xj ∈ Dr}. Additionally, x0 is called an

overfitting source in a close pair {x0, y0}.

During the process of Dg approaching Dr, multiple

overfitting sources will appear. The following proposition

shows that the optimal empirical discriminator does not give

equal outputs between the corresponding real and fake sam-

ples for all close pairs.

Proposition 1 If overfitting sources exist, an empirical dis-

criminator satisfying D(x0) − D(y0) ≥ ǫ on a close pair

{x0, y0} can be easily constructed as a MLP with only

O(2 dim(x)) parameters.

See Appendix A for the detailed proof. The discrimina-

tors used in practice usually contains hundreds of millions

parameters, which are much more powerful than the dis-

criminator we constructed above. Although [31] construct-

ed a discriminator to distinguish all samples between Dr

and Dg , they use much more parameters which are compa-

rable to that used in practice and we needn’t distinguish all

samples but only a close pair {x0, y0}.

From Eqn.2, the gradient norm generator receives from

discriminator at y0 for a close pair {x0, y0} can be comput-

ed as

||∇y0
LG(y0)||=

1

D(y0)
lim

y0

µ
→x0

|D(x0)−D(y0)|

||x0 − y0||
. (4)

When D(x0) − D(y0) ≥ ǫ is satisfied and {x0, y0} hap-

pens to be a close pair, the gradient of generator at y0 ex-

plodes and outweighs the gradients towards other modes

excessively. Fake samples will be moved in the direction

µ = x0 − y0 and especially other fake samples in a mini-

batch will not be moved towards the corresponding modes,

making an unbalanced generation visible. See the gener-

ated results on a Gaussian dataset of the original GAN in

Fig. 1a, 1e. The generated distribution neither covers the

target Gaussian distribution nor fits all the real samples in

Dr.

5. Gradient Alleviation

In this section, we search for ways of alleviating the gra-

dient exploding issue to achieve a more faithful generat-

ed distribution. For the simplicity of analysis, we extract

sigmoid function σ from the last layer of D, i.e. D(·) =
σ(D0(·)). The gradient norm of generator at y0 for a close

pair {x0, y0} can be rewritten as

||∇y0
LG(y0)||=σ(−D0(y0)) lim

y0

µ
→x0

|D0(x0)−D0(y0)|

||x0 − y0||
. (5)
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