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Abstract

In order to alleviate the notorious mode collapse phe-

nomenon in generative adversarial networks (GANs), we

propose a novel training method of GANs in which certain

fake samples are considered as real ones during the training

process. This strategy can reduce the gradient value that

generator receives in the region where gradient exploding

happens. We show the process of an unbalanced generation

and a vicious circle issue resulted from gradient exploding

in practical training, which explains the instability of GANs.

We also theoretically prove that gradient exploding can be

alleviated by penalizing the difference between discrimina-

tor outputs and fake-as-real consideration for very close re-

al and fake samples. Accordingly, Fake-As-Real GAN (FAR-

GAN) is proposed with a more stable training process and

a more faithful generated distribution. Experiments on dif-

ferent datasets verify our theoretical analysis.

1. Introduction

In the past few years, Generative Adversarial Networks

(GANs) [10] have been one of the most popular topics in

generative models and achieved great success in generating

diverse and high-quality images [5, 16, 8]. GANs can be

expressed as a zero-sum game between discriminator and

generator. When a final theoretical equilibrium is achieved,

discriminator can never distinguish between real and fake

generated samples. However, we show that a theoretical

equilibrium actually can be seldom realized in practice with

only discrete finite samples in datasets during the training

process.

Although GANs have achieved remarkable progress, nu-

merous researchers have tried to improve the performance

of GANs from various aspects [2, 23, 11, 21], because of

the inherent problem in GAN training, such as instability

and mode collapse. [3] showed that a theoretical gener-

alization guarantee does not be provided with the original

∗Corresponding author

GAN objective and analyzed the generalization capacity of

neural network distance. The author argued that for a low

capacity discriminator, it can not provide generator enough

information to fit the target distribution owing to lack of a-

bility to detect mode collapse. [31] argued that poor gen-

eration capacity in GANs comes from the discriminators

trained on finite training samples resulting in overfitting to

real data samples and gradient exploding when generated

datapoints approach real ones. As a result, [31] proposed a

zero-centered gradient penalty on linear interpolations be-

tween real and fake samples to improve generalization ca-

pability and prevent mode collapse resulted from gradient

exploding. Recent work [32] further studied generalization

from a new perspective of privacy protection.

In this paper, we focus on mode collapse resulted from

gradient exploding studied in [31] and achieve a better gen-

eralization with a much more stable training process. Our

contributions are as follows:

1. We explain the generation process of an unbalanced

distribution in GAN training, which becomes more and

more serious as training progresses owing to the exis-

tence of the vicious circle issue resulted from gradient

exploding.

2. We prove that the gradient exploding issue can be ef-

fectively alleviated by difference penalization for dis-

criminator between very close real and fake samples

and fake-as-real consideration where gradient explod-

ing happens.

3. We propose a novel GAN training method by con-

sidering certain fake samples as real ones (FARGAN)

according to discriminator outputs in a training mini-

batch to effectively prevent the unbalanced generation.

Experiments on synthetic and real world datasets ver-

ify that our method can stabilize training process and

achieve a more faithful generated distribution.

In the sequel, we use the terminologies of generated sam-

ples (datapoints) and fake samples (datapoints) indiscrimi-

nately. Tab. 1 lists some key notations used in the rest of

the paper.
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Table 1. NOTATIONS

Symbol Meaning

pr the target dsitribution

pg the model distribution

D the discriminator with sigmoid function in the last layer

D0 the discriminator with sigmoid function in the last layer removed

Dr = {x1, · · · , xn} the set of n real samples

Dg = {y1, · · · , ym} the set of m generated samples

DFAR = {ỹ1, · · · , ỹN0
} the set of N0 generated samples considered as real

2. Related work

Instability. GANs have been considered difficult to train

and often play an unstable role in training process [30].

Various methods have been proposed to improve the sta-

bility of training. A lot of works stabilized training with

well-designed structures [27, 15, 35, 6] and utilizing bet-

ter objectives [23, 36, 2, 19]. Gradient penalty to enforce

Lipschitz continuity is also a popular direction to improve

the stability including [11, 25, 28, 26]. From the theoret-

ical aspect, [22] showed that GAN optimization based on

gradient descent is locally stable and [20] proved local con-

vergence for simplified zero-centered gradient penalties un-

der suitable assumptions. For a better convergence, a two

time-scale update rule (TTUR) [13] and exponential mov-

ing averaging (EMA) [34] have also been studied.

Mode collapse. Mode collapse is another persistent es-

sential problem for the training of GANs, which means lack

of diversity in the generated samples. The generator may

sometimes fool the discriminator by producing a very small

set of high-probability samples from the data distribution.

Recent work [3, 4] studied the generalization capacity of

GANs and showed that the model distributions learned by

GANs do miss a significant number of modes. A large num-

ber of ideas have been proposed to prevent mode collapse.

Multiple generators are applied in [3, 9, 14] to achieve a

more faithful distribution. Mixed samples are considered as

the inputs of discriminator in [17, 18] to convey informa-

tion on diversity. Recent work [12] studied mode collapse

from probabilistic treatment and [33, 7] from the entropy of

distribution.

3. Background

In the original GAN [10], the discriminator D maximizes

the following objective:

L = Ex∼pr
[log(D(x))] + Ey∼pg

[log(1−D(y))], (1)

and to prevent gradient collapse, the generator G in Non-

Saturating GAN (NSGAN) [10] maximizes

LG = Ey∼pg
[log(D(y))], (2)

where D is usually represented by a neural network.

[10] showed that the optimal discriminator D in Eqn.1 is

D∗(v) = pr(v)
pr(v)+pg(v)

for any v ∈ supp(pr) ∪ supp(pg).

As training progresses, pg will be pushed closer to pr. If

G and D are given enough capacity, a global equilibrium is

reached when pr = pg , in which case the best strategy for D

on supp(pr) ∪ supp(pg) is just to output 1
2 and the optimal

value for Eqn.1 is 2 log( 12 ).
With finite training examples in training dataset Dr in

practice, we empirically use 1
n

∑n
i=1 log(D(xi)) to esti-

mate Ex∼pr
[log(D(x))] and 1

m

∑m
i=1[1 − log(D(yi))] to

estimate Ey∼pg
[log(1 − D(y))], where xi, yi is from Dr

and generated dataset Dg , respectively.

Mode collapse in generator is attributed to gradient ex-

ploding in discriminator, according to [31]. When a fake

datapoint y0 is pushed to a real datapoint x0 and if |D(x0)−
D(y0)| ≥ ǫ is satisfied, the absolute value of directional

derivative of D in the direction µ = x0 − y0 will approach

infinity:

|(∇µD)x0
| = lim

y0

µ
→x0

|D(x0)−D(y0)|

||x0 − y0||

≥ lim
y0

µ
→x0

ǫ

||x0 − y0||
= ∞, (3)

in which case the gradient norm of discriminator at y0,

||∇y0
D(y0)||, is equivalent to |(∇µD)x0

| and gradient ex-

plodes. Since ∇y0
D(y0) outweighs gradients towards other

modes in a training minibatch, gradient exploding at data-

point y0 will move multiple fake datapoints towards x0 re-

sulting in mode collapse.

4. Unbalanced Generation

Theoretically, discriminator outputs a constant 1
2 when

a global equilibrium is reached. However in practice, dis-

criminator can often easily distinguish between real and

fake samples [10, 2]. Because the target distribution pr is

unknown for discriminator, discriminator will always con-

sider training samples in Dr as real while generated sam-

ples in Dg as fake. Even when the generated distribution
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Figure 1. Results on finite samples from a Gaussian distribution of GANs trained with different gradient penalties and our method. Blue

datapoints represent real samples and red datapoints represent generated samples. (a)(e) NSGAN with no GP, iter. 100k and 200k. (b)(f)

NSGAN-0GP-sample, iter. 100k and 200k. (c)(g) NSGAN-0GP-interpolation, iter. 100k and 200k. (d)(h) NSGAN-0GP-sample with our

method, iter. 100k and 200k.

pg is equivalent to the target distribution pr, Dr and Dg is

disjoint with probability 1 when they are sampled from t-

wo continuous distributions respectively (Proposition 1 in

[31]). In this case, actually Dg is pushed towards samples

in Dr. We will explain specifically the generation process

of an unbalanced distribution that deviates from pr.

Definition 1 For x0 ∈ Dr, y0 ∈ Dg , {x0, y0} is a δ close

pair if y0 ∈ N δ(x0) = {y0 : d(x0, y0) ≤ δ, 0 < δ ≪
d(xi, xj), ∀xi, xj ∈ Dr}. Additionally, x0 is called an

overfitting source in a close pair {x0, y0}.

During the process of Dg approaching Dr, multiple

overfitting sources will appear. The following proposition

shows that the optimal empirical discriminator does not give

equal outputs between the corresponding real and fake sam-

ples for all close pairs.

Proposition 1 If overfitting sources exist, an empirical dis-

criminator satisfying D(x0) − D(y0) ≥ ǫ on a close pair

{x0, y0} can be easily constructed as a MLP with only

O(2 dim(x)) parameters.

See Appendix A for the detailed proof. The discrimina-

tors used in practice usually contains hundreds of millions

parameters, which are much more powerful than the dis-

criminator we constructed above. Although [31] construct-

ed a discriminator to distinguish all samples between Dr

and Dg , they use much more parameters which are compa-

rable to that used in practice and we needn’t distinguish all

samples but only a close pair {x0, y0}.

From Eqn.2, the gradient norm generator receives from

discriminator at y0 for a close pair {x0, y0} can be comput-

ed as

||∇y0
LG(y0)||=

1

D(y0)
lim

y0

µ
→x0

|D(x0)−D(y0)|

||x0 − y0||
. (4)

When D(x0) − D(y0) ≥ ǫ is satisfied and {x0, y0} hap-

pens to be a close pair, the gradient of generator at y0 ex-

plodes and outweighs the gradients towards other modes

excessively. Fake samples will be moved in the direction

µ = x0 − y0 and especially other fake samples in a mini-

batch will not be moved towards the corresponding modes,

making an unbalanced generation visible. See the gener-

ated results on a Gaussian dataset of the original GAN in

Fig. 1a, 1e. The generated distribution neither covers the

target Gaussian distribution nor fits all the real samples in

Dr.

5. Gradient Alleviation

In this section, we search for ways of alleviating the gra-

dient exploding issue to achieve a more faithful generat-

ed distribution. For the simplicity of analysis, we extract

sigmoid function σ from the last layer of D, i.e. D(·) =
σ(D0(·)). The gradient norm of generator at y0 for a close

pair {x0, y0} can be rewritten as

||∇y0
LG(y0)||=σ(−D0(y0)) lim

y0

µ
→x0

|D0(x0)−D0(y0)|

||x0 − y0||
. (5)

1193



Consider the scenario in which x0, in a set of n real sam-

ples, is an overfitting source for {y1, y2, · · · , ym0
}, in a set

of m generated samples, i.e., {x0, yi}, i = 1, · · · ,m0 are

close pairs. We are specially interested in the outputs of

the optimal discriminator at x0 and {y1, y2, · · · , ym0
}. For

simplicity, we make the assumption that the outputs of dis-

criminator at these interested points are not affected by oth-

er samples in Dr and Dg . We also assume discriminator has

enough capacity to achieve the optimum in this local region.

5.1. Difference Penalization

We first consider penalizing the L2 norm of the output

differences on close pairs, resulting in the following empir-

ical discriminator objective:

LDP =
1

n

[
log σ(D0(x0)) +

n−1∑

i=1

log σ(D0(xi))

]

+
1

m

[
m0∑

i=1

log(1− σ(D0(yi)))

+

m∑

i=m0+1

log(1− σ(D0(yi)))

]

−
k

m0

m0∑

i=1

(D0(x0)−D0(yi))
2

=C1 +
1

n
f(D0(x0), D0(y1), · · · , D0(ym0

)), (6)

where k is the weight of the L2 norms and C1 is an incon-

sequential term. Denoting D0(x0) as ξ0 and D0(yi) as ξi,

i = 1, · · · ,m0, the interested term f(ξ0, ξ1, · · · , ξm0
) in

Eqn.6 is

f=log σ(ξ0)+
n

m

m0∑

i=1

log(1−σ(ξi))−
nk

m0

m0∑

i=1

(ξ0−ξi)
2. (7)

Proposition 2 Assume that {ξ∗0 , · · · , ξ
∗

m0
} achieves the

maximum of f(ξ0, ξ1, · · · , ξm0
). Then with k increas-

ing, σ(−ξ∗i )(ξ
∗

0 − ξ∗i ) decreases, and, with m0 increasing,

σ(−ξ∗i )(ξ
∗

0 − ξ∗i ) increases, ∀i = 1, · · · ,m0.

See Appendix B for the detailed proof. Hence, the gra-

dient norm of generator in this local region decreases with

the weight k of difference penalization increasing, while in-

creases with the number of close pairs m0 increasing from

Eqn.5.

Gradient penalty. Actually in practice, it is hard to

find close pairs to make the corresponding difference pe-

nalization. If we directly penalize the L2 norm of D0(xi)−
D0(yi), the gradient norm at yi may get even larger when

{xi, yi} is not a close pair. Considering D0(yi) > D0(xi),
which could happen when the number of close pairs at xi is

larger than that at yi, direct penalization will make D0(yi)

lower and further the gradient norm at yi larger from Eqn.5.

Thus in practice we could enforce a zero-centered gradient

penalty of the form ||(∇D0)v||
2 to stabilize the discrimi-

nator output for close pairs, where v can be real or fake

samples. Although far from perfection, Fig. 1b, 1f gener-

ate more faithful results compared with Fig. 1a, 1e with no

gradient penalty added.

To prevent gradient exploding, [31] proposed another

zero-centered gradient penalty of the form ||(∇D0)v||
2,

where v is a linear interpolation between real and fake sam-

ples. However, we consider it’s not a very efficient method

to fill the gap here. To begin with, the result of interpola-

tion may not lie in supp(pr) ∪ supp(pg). Furthermore, for

arbitrary pair of real and fake samples, the probability that

linear interpolation between them lies where close pairs ex-

ist is close to 0 especially for high-dimensional situations.

Vicious circle. Gradient exploding near overfitting

source x0 results in multiple fake samples moved towards

x0. Then more close pairs results in a more serious gradient

exploding issue, forming a vicious circle. It partly explains

the instability of GAN training process that especially dur-

ing the later stage of training, similar generated samples are

seen. Compared with Fig. 1a, 1b, 1c at iter.100k, Fig. 1e,

1f, 1g at iter.200k have a more unbalanced generation and

more similar samples are generated as training progresses.

5.2. FakeasReal Consideration

Based on discussions above, we add a fake-as-real con-

sideration on m0 fake samples {y1, y2, · · · , ym0
}, resulting

in the following empirical discriminator objective:

LFAR = LDP + λ

m0∑

i=1

log σ(D0(yi))

= C2 +
1

n
h(ξ0, ξ1, · · · , ξm0

), (8)

where λ is the weight of considering fake as real and

C2 is an inconsequential term. The interested term

h(ξ0, ξ1, · · · , ξm0
) in Eqn.8 is

h = f + nλ

m0∑

i=1

log σ(ξi). (9)

Proposition 3 Assume that {ξ∗0 , · · · , ξ
∗

m0
} achieves the

maximum of h(ξ0, ξ1, · · · , ξm0
). Then with λ increas-

ing, σ(−ξ∗i )(ξ
∗

0 − ξ∗i ) decreases, and, when λ → ∞,

σ(−ξ∗i )(ξ
∗

0 − ξ∗i ) → 0, ∀i = 1, · · · ,m0.

See Appendix C for the detailed proof. The gradient ex-

ploding issue in this local region can also be alleviated by

considering fake as real. Theoretically, when the weight of

fake-as-real term tends to infinity, the gradient norm of gen-

erator here becomes 0, completely solving the concerned
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issue while making discriminator lose the capability of dis-

tinguishing among samples in this local region. In practice,

it is enough to alleviate the gradient here to make it com-

parable to other gradients in a minibatch, hence we needn’t

weigh fake-as-real term excessively.

Alleviation for vicious circle. Recall the vicious circle

caused by gradient exploding. When more close pairs ap-

pear at an overfitting source, the fake-as-real term also turn-

s larger from Eqn.9, providing an alleviation for a further

gradient exploding issue. See the results with fake-as-real

consideration applied in Fig. 1d, 1h. A faithful distribution

is generated even for a long time training.

5.3. Implementation

In this section, we give the specific implementation of

Fake-As-Real GAN (FARGAN) based on gradient penalty

in practical training.

For the original N real samples and M fake samples in a

minibatch during the discriminator training process, we fix

the overall number N of real samples including original N1

real samples and N0 fake samples considered as real ones,

where N = N0 +N1. Note that we hope the fake samples

considered as real should be in the regions where multiple

close pairs exist, because fake samples should no longer be

moved towards these regions and the gradient exploding is-

sue is relatively serious here owning to the vicious circle.

For that discriminator tends to have a lower output for the

region where more close pairs exist1, we pick out the need-

ed N0 fake samples ỹi denoted as set DFAR as real from a

larger generated set containing f ∗N0 fake samples accord-

ing to the corresponding discriminator output:

DFAR = {ỹ1, · · · , ỹN0
} = {yi, i ∈ index of top N0 in

{−D0(yM+1),−D0(yM+2),· · ·,−D0(yM+f∗N0
)}}. (10)

When more close pairs exist, the probability of fake samples

being selected in this region is higher for a lower discrim-

inator output, in which case practical implementation still

provides an alleviation for the vicious circle issue. We also

add a zero-centered gradient penalty on real samples [20]

based on the discussions in Section 5.1, resulting in the fol-

lowing empirical discriminator objective in our FARGAN:

LFAR=
1

N
[

N1∑

i=1

log(σ(D0(xi))) +

N0∑

i=1

log(σ(D0(ỹi))]

+
1

M

M∑

i=1

log(1−σ(D0(yi))+
k

N

N∑

i=1

||(∇D0)ci||
2,

(11)

where xi ∈ Dr,yi ∈ Dg ,ỹi ∈ DFAR and {c1, · · · , cN} =
{x1, · · · , xN1

, ỹ1, · · · , ỹN0
}. To prevent gradient vanishing

1See the proof for Proposition 2 that with m0 increasing, ξ∗
i

decreases.

Algorithm 1 Minibatch stochastic gradient descent training

of FARGAN

for number of training iterations do

while discriminator updating do

• Sample minibatch of N1 real examples

{x1, · · · , xN1
} from training dataset Dr.

• Sample minibatch of M + f ∗ N0 fake examples

{y1, · · · , yM+f∗N0
} from generated dataset Dg .

• Determine ỹi with a lower discriminator

output:{yi, i ∈ index of top N0 in {−D0(yM+1),
· · · ,−D0(yM+f∗N0

)}}.

• Update the discriminator by ascending its stochas-

tic gradient: ∇θdLFAR.

end while

• Sample minibatch of M fake examples

{y1, · · · , yM} from generated dataset Dg .

• Update the generator by ascending its stochastic gra-

dient: ∇θg
1
M

∑M
i=1 log(σ(D0(yi))).

end for

for G especially early in learning, we use the non-saturating

form in the original GAN for G update. The training proce-

dure is formally presented in Algorithm 1.

6. Experiments

In this section, we present our experimental results on

synthetic data and real-world datasets including CIFAR-10

[1], CIFAR-100 [1] and a more challenging dataset Ima-

geNet [29]. When we talk the fake-as-real method, a zero-

centered gradient penalty on real samples is also added as a

default in our experiments. We use Pytorch [24] for devel-

opment.

6.1. Synthetic data

To test the effectiveness of FARGAN on preventing

an unbalanced generation, we designed a dataset with fi-

nite training samples coming from a Gaussian distribu-

tion. Based on a simple MLP network, we trained Non-

Saturating GAN (NSGAN) with our method and different

gradient penalties including zero-centered gradient penal-

ty on real samples (NSGAN-0GP-sample) and on inter-

polation between real and fake samples (NSGAN-0GP-

interpolation). We set the weight k of gradient penalty to

be 10, the size of minibatch N = M = 64 and f = 8,

N0 = 16 for FARGAN. Learning rate is set to be 0.003
for both G and D. The result is shown in Fig. 1. It can be

observed that NSGAN, NSGAN-0GP-sample and NSGAN-

0GP-interpolation all generate unbalanced distributions as

training progresses, while our method can generate much

better results with good generalization.

We also test FARGAN on a mixture of 8 Gaussians

dataset where random samples in different modes are far
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from each other. The evolution of FARGAN is depicted

in Fig.2. Although FARGAN only covers 3 modes at the

beginning, it can cover other modes gradually for the pow-

erful capability of gradient exploding alleviation. Hence,

FARGAN has the ability to find the uncovered modes to

achieve a faithful distribution even when samples in high

dimensional space are far from each other. More synthetic

experiments can be found in Appendix E.
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Figure 2. Evolution of our method on a mixture of 8 Gaussians

dataset. (a) iter. 0. (b) iter. 100k. (c) iter. 335k. (d) iter. 500k.

6.2. CIFAR10 and CIFAR100

In this section, we compare the fake-as-real method with

that with only zero-centered gradient penalty (0GP) on re-

al samples added. All experiments are repeated 3 times

with random initialization to show the consistent results in

Tab. 2.

Parameter settings. We set the weight k of gradient

penalty to be 10, the size of minibatch N = M = 64 and

f = 8, N0 = 32 for fake-as-real method as a default. RM-

SProp optimizer with α = 0.99 and a learning rate of 10−4

is used.

Quantitative measures. Inception score [30] and FID

[13] are used as quantitative measures. For Inception score,

we follow the guideline from [30]. The FID score is eval-

uated on 10k generated images. Better generation can be

achieved with higher inception score and lower FID value.

Results with different architectures. We test FARGAN

with both a ResNet architecture the same as that in [20] and

a conventional architecture similar to a progressively grow-

ing GAN [15] while with no batch normalization. The re-

sults are shown in Fig. 3 and 4 respectively. FARGAN out-

performs NSGAN-0GP with both architectures on CIFAR-

10 and CIFAR-100 by a large margin. Note although the

(a)

(b)

Figure 3. Results with ResNet architecture on CIFAR dataset.

(a)

(b)

Figure 4. Results with conventional architecture on CIFAR dataset.

speed of FARGAN to cover real ones could be slightly s-

lowed down at the beginning of training with some fake

samples considered as real ones, it can consistently improve

the results of generation and achieve a more balanced dis-

1196



Table 2. Inception score and FID on CIAFR-10, CIFAR-100 at iter. 500k and ImageNet at iter. 600k. Experiments were repeated 3 times.

IS FID

0GP FAR 0GP FAR

CIFAR-10 (500k)

ResNet NSGAN 6.26± 0.09 6.81± 0.03 24.22± 0.72 17.82± 0.33
ResNet WGAN 6.15± 0.06 6.83± 0.04 24.72± 0.41 18.12± 0.23

ResNet HingeGAN 6.19± 0.08 6.88± 0.07 24.55± 0.31 16.99± 0.18
ResNet LSGAN 5.90± 0.05 6.63± 0.02 26.41± 0.12 19.97± 0.38

Conventional NSGAN 6.94± 0.03 7.63± 0.05 16.66± 0.14 12.80± 0.31
CIFAR-100 (500k)

ResNet NSGAN 6.27± 0.04 7.03± 0.06 28.46± 0.28 21.95± 0.35
Conventional NSGAN 6.92± 0.08 7.84± 0.04 22.28± 0.45 17.69± 0.24

ImageNet (600k)

ResNet NSGAN 10.66± 0.11 11.44± 0.05 44.57± 0.34 39.69± 0.57

(a)

(b)

Figure 5. Losses of discriminator (not including regularization ter-

m) and generator on CIFAR-10.

tribution finally.

The losses of discriminator and generator during the

training process with ResNet architecture on CIFAR-10 are

shown in Fig.5. FARGAN has a much more stable train-

ing process with smaller fluctuations and no obvious de-

viation seen for the losses. Note when serious mode col-

lapse happens, discriminator has a lower loss while gener-

ator has a higher loss compared with the theoretical value

(2 log 2 ≈ 1.386 for discriminator and log 2 ≈ 0.693 for

generator)2. The gradual deviation of losses for discrimi-

2Discriminator outputs a high value for uncovered modes while a low

value for over-covered modes.

(a)

(b)

Figure 6. Results of different GAN variants on CIFAR-10.

nator and generator in NSGAN-0GP shows a serious mode

collapse. Hence, FARGAN can stabilize training process

and effectively prevent mode collapse. The losses of dis-

criminator and generator on CIFAR-100 and generated im-

age samples can be found in Appendix E.

Results of different GAN-variants. Besides NSGAN,

we also test fake-as-real method for WGAN [2], HingeGAN

[36] and LSGAN [19] to show the effectiveness on a more

faithful generation for different GAN-variants. The results

are shown in Fig. 6. Fake-as-real method can also improve

the performance of different GAN-variants by alleviating

the gradient exploding issue which consistently happens for

finite training samples.
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(a)

(b)

Figure 7. Results of FARGAN with different f and N0.

Results with different f and N0 in FARGAN. We

make an ablation study on the selection of parameters f and

N0 in FARGAN. With ResNet architecture on CIFAR-10,

we first fix N0 = 32 and change the value of f . Then we fix

f = 8 and change the value of N0. The results are shown in

Fig. 7. Note that the training speed could be slightly slowed

down with f and N0 increasing while a better generation

could be achieved. An obvious improvement is achieved

with f increasing until f is big enough, e.g. f = 8. An

improvement is also seen with N0 increasing appropriately

while a collapse happens when N0 is too big e.g. N0 = 48,

for the too weak capability of discriminator. Hence, in prac-

tice we set f = 8 and N0 = 32 as a default.

Note that when f = 1, we select fake samples randomly

as real ones, and, when N0 = 0, no fake samples are con-

sidered as real ones. We observe that an obvious improve-

ment is not achieved for FARGAN with f = 1 compared

with N0 = 0. However, FARGAN with f = 8 improves

the performance by a large margin. Hence, the key point is

considering fake samples in the gradient exploding regions

instead of selected randomly as real ones according to our

theoretical analysis and experiments.

6.3. ImageNet

For the challenging ImageNet task which contains 1000
classes, we train GANs with ResNet architecture to learn

generative models. We use images at resolution 64 × 64
and no labels are used in our models. We use the Adam op-

timizer with α = 0, β = 0.9. Other settings are the same as

(a)

(b)

Figure 8. Results on ImageNet.

that in CIFAR experiments. The results in Fig.8 show that

FARGAN still outperforms NSGAN-0GP on ImageNet and

produces samples of state of the art quality without using

any labels or particular architectures like progressive grow-

ing trick [15]. Random selected samples and losses of dis-

criminator and generator during the training process can be

found in Appendix E.

7. Conclusion

In this paper, we explain the reason that an unbalanced

distribution is often generated in GANs. We show that the

existence of vicious circle resulted from gradient explod-

ing, makes unbalanced generation more and more serious

as training progresses. We analyze methods of gradient

exploding alleviation including difference penalization be-

tween discriminator outputs on close real and fake pairs

and trick of considering fake as real. Based on the theo-

retical analysis, we propose FARGAN by considering fake

as real according to the discriminator outputs in a training

minibatch. Experiments on diverse datasets verify that our

method can stabilize the training process and improve the

performance by a large margin.
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