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Abstract

The ability to incrementally learn new classes is crucial

to the development of real-world artificial intelligence sys-

tems. In this paper, we focus on a challenging but practi-

cal few-shot class-incremental learning (FSCIL) problem.

FSCIL requires CNN models to incrementally learn new

classes from very few labelled samples, without forgetting

the previously learned ones. To address this problem, we

represent the knowledge using a neural gas (NG) network,

which can learn and preserve the topology of the feature

manifold formed by different classes. On this basis, we

propose the TOpology-Preserving knowledge InCrementer

(TOPIC) framework. TOPIC mitigates the forgetting of

the old classes by stabilizing NG’s topology and improves

the representation learning for few-shot new classes by

growing and adapting NG to new training samples. Com-

prehensive experimental results demonstrate that our pro-

posed method significantly outperforms other state-of-the-

art class-incremental learning methods on CIFAR100, mini-

ImageNet, and CUB200 datasets.

1. Introduction

Convolutional Neural Networks (CNNs) have been suc-

cessfully applied to a broad range of computer vision tasks

[17, 11, 34, 4, 22, 25, 45, 19]. For practical use, we train

CNN models on large scale image datasets [5] and then de-

ploy them on smart agents. As the smart agents are often ex-

posed in a new and dynamic environment, there is an urgent

need to continuously adapt the models to recognize new

classes emerging. For example, the smart album function

on smartphones is designed to automatically classify user

photos into both the pre-defined and user-defined classes.

The model underpinning the smart album is pre-trained on

the training set of the pre-defined classes, and is required to
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Figure 1. Comparisons of two ways to characterize a heteroge-

nous manifold. (a) Randomly sampled representatives, which are

adopted by conventional CIL studies for knowledge distillation.

(b) The representatives learned by neural gas, which well pre-

serves the topology of the manifold.

adapt to the new user-defined classes by learning from new

photos. From the users’ perspective, they are only willing

to annotate very few image examples for the new class, as

the labeling process consumes manpower. Therefore, it is

crucial for CNNs to be capable of incrementally learning

new classes from very few training examples. We term this

ability as few-shot class-incremental learning (FSCIL).

A naı̈ve approach for FSCIL is to finetune the base model

on the new class training set. However, a simple finetuning

with limited number of training samples would cause two

severe problems: one is “forgetting old”, where the model’s

performance deteriorates drastically on old classes due to

catastrophic forgetting [7]; the other is “overfitting new”,

where the model is prone to overfit to new classes, which

loses generalization ability on large set of test samples.

Recently, there have been many research efforts attempt-

ing to solve the catastrophic forgetting problem [15, 49, 20,

24, 18, 32, 2, 13, 41, 37, 1]. They usually conduct incremen-

tal learning under the multi-task or the multi-class scenar-

ios. The former incrementally learns a sequence of disjoint

tasks, which requires the task identity in advance. This is

seldom satisfied in real applications where the task identity

is typically unavailable. The latter learns a unified classifier

to recognize all the encountered classes within a single task.
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This scenario is more practical without the need of knowing

task information. In this paper, we study the FSCIL prob-

lem under the multi-class scenario, where we treat FSCIL

as a particular case of the class-incremental learning (CIL)

[32, 2, 10, 13, 48]. Compared with CIL that learns new

classes with unlimited, usually large-scale training samples,

FSCIL is more challenging, since the number of new train-

ing samples is very limited.

To mitigate forgetting, most CIL works [32, 2, 35,

13, 48] use the knowledge distillation [12] technique that

maintains the network’s output logits corresponding to old

classes. They usually store a set of old class exemplars and

apply the distillation loss to the network’s output. Despite

their effectiveness, there are several problems when training

with the distillation loss. One is the class-imbalance prob-

lem [13, 48], where the output logits are biased towards

those classes with a significant larger number of training

samples. The other is the performance trade-off between

old and new classes. This problem is more prominent for

FSCIL, because learning from very few training samples

requires a larger learning rate and stronger gradients from

new classes’ classification loss, making it difficult to main-

tain the output for old classes at the same time.

In this paper, we address FSCIL from a new, cognitive-

inspired perspective of knowledge representation. Recent

discoveries in cognitive science reveal the importance of

topology preservation for maintaining the memory of the

old knowledge [29, 21]. The change of the memory’s topol-

ogy will cause severe degradation of human recognition

performance on historical visual stimuli [29], indicating

catastrophic forgetting. Inspired by this, we propose a new

FSCIL framework, named TOpology-Preserving knowledge

InCrementer (TOPIC), as shown in Figure 1. TOPIC uses

a neural gas (NG) network [42, 8, 31] to model the topol-

ogy of feature space. When learning the new classes, NG

grows to adapt to the change of feature space. On this ba-

sis, we formulate FSCIL as an optimization problem with

two objectives. On the one hand, to avoid catastrophic for-

getting, TOPIC preserves the old knowledge by stabilizing

the topology of NG, which is implemented with an anchor

loss (AL) term. On the other hand, to prevent overfitting

to few-shot new classes, TOPIC adapt the feature space by

pushing the new class training sample towards a correct new

NG node with the same label and pulling the new nodes of

different labels away from each other. The min-max loss

(MML) term is developed to achieve this purpose.

For extensive assessment, we build the FSCIL baselines

by adapting the state-of-the-art CIL methods [32, 2, 13]

to this new problem and compare our method with them.

We conduct comprehensive experiments on the popular

CIFAR100 [16], miniImageNet [43], and CUB200 [44]

datasets. Experimental results demonstrate the effective-

ness of the proposed FSCIL framework.

To summarize, our main contributions include:

• We recognize the importance of few-shot class-

incremental learning (FSCIL) and define a prob-

lem setting to better organize the FSCIL research

study. Compared with the popularly studied class-

incremental learning (CIL), FSCIL is more challeng-

ing but more practical.

• We propose an FSCIL framework TOPIC that uses

a neural gas (NG) network to learn feature space

topologies for knowledge representation. TOPIC sta-

bilizes the topology of NG for mitigating forgetting

and adapts NG to enhancing the discriminative power

of the learned features for few-shot new classes.

• We provide an extensive assessment of the FSCIL

methods, which we adapt the state-of-the-art CIL

methods to FSCIL and make comprehensive compar-

isons with them.

2. Related Work

2.1. Class­Incremental Learning

Class-incremental learning (CIL) learns a unified classi-

fier incrementally to recognize all encountered new classes

met so far. To mitigate the forgetting of the old classes,

CIL studies typically adopt the knowledge distillation tech-

nique, where external memory is often used for storing old

class exemplars to compute the distillation loss. For exam-

ple, iCaRL [32] maintains an “episodic memory” of the ex-

emplars and incrementally learns the nearest-neighbor clas-

sifier for the new classes. EEIL [2] adds the distillation loss

term to the cross-entropy loss for end-to-end training. Lat-

est CIL works NCM [13] and BiC [48] reveal the class-

imbalance problem that causes the network’s prediction bi-

ased towards new classes. They adopt cosine distance met-

ric to eliminate the bias in the output layer [13], or learns a

bias-correction model to post-process the output logits [48].

In contrast to these CIL works, we focus on the more

difficult FSCIL problem, where the number of new class

training samples is limited. Rather than constraining the

network’s output, we try to constrain CNN’s feature space

represented by a neural gas network.

2.2. Multi­task Incremental Learning

A series of research works adopts the multi-task incre-

mental learning scenario. These works can be categorized

into three types: (1) rehearsal approaches [24, 3, 37, 50, 46],

(2) architectural approaches [27, 26, 1, 36, 47], and (3)

regularization approaches [15, 49, 23, 18]. Rehearsal ap-

proaches replay the old tasks information to the task solver

when learning the new task. One way is to store the old

tasks’ exemplars using external memory and constrain their
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losses during learning the new task [24, 3]. Another way

is to use the generative models to memorize the old tasks’

data distribution [37, 46, 50]. For example, DGR [37] learns

a generative adversarial network to produce observed sam-

ples for the task solver. The recognition performance is

affected by the quality of the generated samples. Archi-

tectural approaches alleviate forgetting by manipulating the

network’s architecture, such as network pruning, dynamic

expansion, and parameter masking. For example, Pack-

Net [27] prunes the network to create free parameters for the

new task. HAT [36] learns the attention masks for old tasks

and use them to constrain the parameters when learning the

new task. Regularization approaches impose regularization

on the network’s parameters, losses or output logits. For

example, EWC [15] and its variants [49, 23] penalize the

changing of the parameters important to old tasks. These

methods are typically based on certain assumptions of the

parameters’ posterior distribution (e.g. Gaussian), which

may struggle in more complex scenarios.

As the multi-task incremental learning methods are

aimed at learning disjoint tasks, it is infeasible to apply

these methods under the single-task multi-class scenario

adopted by FSCIL. As a result, we have to exclude them

for comparison.

2.3. Dynamic Few­Shot Learning

Few-shot learning (FSL) aims to adapt the model to rec-

ognize unseen novel classes using very few training sam-

ples, while the model’s recognition performance on the

base classes is not considered. To achieve FSL, research

studies usually adopt the metric learning and meta-learning

strategies [43, 38, 40, 6, 39]. Recently, some FSL research

works attempt to learn a model capable of recognizing both

the base and novel classes [9, 33]. Typically, they first

pretrain the model on the base training set to learn fea-

ture embedding as well as the weights of the classifier for

base classes. Then they perform meta-learning for few-shot

novel classes, by sampling “fake” few-shot classification

tasks from the base dataset to learn a classifier for novel

classes. Finally, the learned heads are combined for recog-

nizing the joint test (query) set of the base and novel classes.

Though some of these works [33] regard such setting as

a kind of incremental learning, they rely on the old training

set (i.e., the base class dataset) for sampling meta-learning

tasks. This is entirely different from the FSCIL setting,

where the base/old class training set is unavailable at the

new incremental stage. As a consequence, these few-shot

learning works can not be directly applied to FSCIL.

3. Few-Shot Class-Incremental Learning

We define the few-shot class-incremental-learning (FS-

CIL) setting as follows. Suppose we have a stream

of labelled training sets D(1), D(2), · · · , where D(t) =

{(x
(t)
j , y

(t)
j )}

|D(t)|
j=1 . L(t) is the set of classes of the t-th train-

ing set, where ∀i, j, L(i)∩L(j) = ∅. D(1) is the large-scale

training set of base classes, and D(t), t > 1 is the few-shot

training set of new classes. The model Θ is incrementally

trained on D(1), D(2), · · · with a unified classification layer,

while only D(t) is available at the t-th training session. Af-

ter training on D(t), Θ is tested to recognize all encoun-

tered classes in L(1), · · · , L(t). For D(t), t > 1, we denote

the setting with C classes and K training samples per class

as the C-way K-shot FSCIL. The main challenges are two-

fold: (1) avoiding catastrophic forgetting of old classes; (2)

preventing overfitting to few-shot new classes.

3.1. Preliminary

A CNN consists of multiple nonlinear (i.e., conv, pool-

ing) layers and a classification head (i.e., output layer.) The

nonlinear layers with the parameter set θ work as the feature

extractor f(·; θ), which defines the feature space F ⊆ R
n.

The classification head with the parameter set φ produces

the output vector followed by a softmax function to predict

the probability p over all classes. The entire set of parame-

ters is denoted as Θ = {θ, φ}. The output vector given input

x is o(x; Θ) = φT f(x; θ). Initially, we train Θ(1) on D(1)

with the cross-entropy loss. Then we incrementally fine-

tune the model on D(2), D(3), · · · , and get Θ(2),Θ(3), · · · .

At the t-th session (t > 1), the output layer is expanded for

new classes by adding |L(t)| output neurons.

For FSCIL, we first introduce a baseline solution to al-

leviate forgetting based on knowledge distillation; then we

elaborate our proposed TOPIC framework that employs a

neural gas network for knowledge representation and the

anchor loss and min-max loss terms for optimization.

3.2. Baseline: Knowledge Distillation Approach

Most CIL works [32, 2, 13, 48] adopt the knowledge dis-

tillation technique for mitigating forgetting. Omitting the

superscript (t), the loss function is defined as:

ℓ(D,P ; Θ) = ℓCE(D,P ; Θ) + γℓDL(D,P ; Θ), (1)

where ℓDL and ℓCE are the distillation and cross-entropy

loss terms, and P is the set of old class exemplars drawn

from D(1), · · · , D(t−1). The implementation of ℓDL may

vary in different works. Generally, it takes the form:

ℓDL(D,P ; Θ) =
∑

(x,y)∈D∪P

n
∑

k=1

−τk(x; Θ̂) log(τk(x; Θ)),

τk(x; Θ) =
eok(x;Θ)/T

∑n
j=1 e

oj(x;Θ)/T
, (2)

where n =
∑t−1

i=1 |L
(i)| is the number of the old classes,

Θ̂ is the initial values of Θ before finetuning, and T is the

distillation temperature (e.g., T = 2 in [2, 13]).
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The distillation approach faces several critical issues

when applied to FSCIL. One is the bias problem caused

by imbalanced old/new class training data, where the out-

put layer is biased towards new classes [13, 48]. To address

this issue, [13] uses cosine distance measure to eliminate

the bias and [48] learns a bias correction model to post-

process the outputs. Despite their effectiveness in learn-

ing large-scale training data, they are less effective for FS-

CIL with very few training samples. Using cosine distance

may lose important patterns (e.g. appearance) contained in

the magnitude of the weight/feature vector, while the bias-

correction model requires a large number of training sam-

ples, which conflicts with the few-shot setting. Another is-

sue is the dilemma to balance the contribution between ℓCE

and ℓDL, which may lead to unsatisfactory performance

trade-off. Learning few-shot new classes requires a larger

learning rate to minimize ℓCE , while it can cause instability

of the output logits and makes it difficult to minimize ℓDL.

Based on the above considerations, we abandon the dis-

tillation loss in our framework. Instead, we manipulate

the knowledge contained CNN’s feature space that contains

richer information than the output logits.

3.3. Knowledge Representation as Neural Gas

The knowledge distillation methods typically store a set

of exemplars randomly drawn from the old training set and

compute the distillation loss using these exemplars. How-

ever, there is no guarantee that the randomly-sampled ex-

emplars can well represent heterogenous, non-uniform data

of different classes in the FSCIL scenarios. Instead, we rep-

resent the knowledge by preserving the feature space topol-

ogy, which is achieved by a neural gas (NG) network [42].

NG maps the feature space F to a finite set of feature vec-

tors V = {vj}
N
j=1 and preserves the topology of F by com-

petitive Hebbian learning [28], as shown in Figure 2.

NG defines an undirected graph G = 〈V,E〉. Each ver-

tex vj ∈ V is assigned with a centroid vector mj ∈ R
n

describing the location of vj in feature space. The edge set

E stores the neighborhood relations of the vertices. If vi and

vj are topologically adjacent, eij = 1; otherwise, eij = 0.

Each edge eij is assigned with an “age” aij initialized to

0. Given an input f ∈ F , it matches the NG node j with

the minimum distance d(f ,mj) to f . The matching pro-

cess divides F into disjoint subregions, where the centroid

vector mj encodes the region Fj = {f ∈ F|d(f ,mj) ≤
d(f ,mi), ∀i}. We use the Euclidean distance as d(·, ·).

Noting that some variants of NG [8, 31] use different ap-

proaches to construct NG incrementally. To be consistent

with FSCIL, we directly modify the original version [42]

and learn a fixed set of nodes for the base classes. As

NG [42] is originally learnt from unlabelled data, to accom-

plish the supervised incremental learning, we redefine the

NG node j as a tuple vj = (mj ,Λj , zj , cj) ∈ V , where

Figure 2. NG preserves the topology of heterogenous feature

space manifold. Initially, NG is learnt for base classes (the blue

dots and lines.) Then NG incrementally grows for new classes by

inserting new nodes and edges (the orange dots and lines.) Dur-

ing the competitive Hebbian learning, vj’s centroid vector mj is

adapted to the input vector f which falls in Fj encoded by vj .

mj ∈ R
n is the centroid vector representing Fj , the di-

agonal matrix Λj ∈ R
n×n stores the variance of each di-

mension of mj , and zj and cj are the assigned images and

labels for computing the observation m̂j . With cj , we can

determine whether vj corresponds to old class or new class.

At the initial session (t = 1), the NG net with N (1)

nodes G(1) = 〈V (1), E(1)〉 is trained on the feature set

F (1) = {f(x; θ(1))|∀x ∈ D(1)} using competitive Heb-

bian learning. Concretely, given an input f ∈ F (1), its

distance with each NG node is computed and stored in

Df = {d(f ,mi)|i = 1, · · · , N (1)}. Df is then sorted

in ascending order to get the rank of the nodes Rf =
{ri|d(f ,mri) ≤ d(f ,mri+1

), i = 1, · · · , N (1)− 1}. Then,

for each node ri, its centroid mri is updated to m
∗
ri :

m
∗
ri = mri+η ·e−i/α(f−mri), i = 1, · · · , N (1)−1, (3)

where η is the learning rate, and e−i/α is a decay function

controlled by α. We use the superscript ∗ to denote the up-

dated one. For the nodes distant from f , they are less af-

fected by the update. Next, the edge of all connections of

r1 is updated as:

a∗r1j =

{

1, j = r2;

ar1j + 1, j 6= r2.
, e∗r1j =











1, j = r2;

0, a∗r1j > T ;

er1j , otherwise.

.

(4)

Apparently, r1 and r2 are the nearest and the second near-

est to f . Their edge er1r2 and the corresponding age ar1j is

set to 1 to create or maintain a connection between node r1
and r2. For other edges, if ar1j exceeds lifetime T , the con-

nection is removed by setting er1j = 0. After training on

F (1), for vj = (mj ,Λj , zj , cj), we pick the sample from

D(1) whose feature vector f is the nearest mj as the pseudo

image zj and label cj . The variance Λj is estimated using

the feature vectors whose winner is j.

At the incremental session (t > 1), for K-shot new

class training samples, we grow G(t) by inserting k < K
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(a) (b) (c) (d) (e) (f)

Figure 3. Explanation of NG stabilization and adaptation. (a) NG divides CNN’s feature space F into a set of topologically arranged

subregions Fj represented by a centroid vector vj . (b) When finetuning CNN with few training examples, F ’s topology is severely

distorted, indicating catastrophic forgetting. (c) To maintain the topology, the shift of NG nodes is penalized by the anchor-loss term. (d)

NG grows for new class y by inserting a new vertex ṽ7. A new class training sample f̃ is mismatched to v5, due to d(f̃ ,m5) < d(f̃ ,m7).
(e) The min-max loss term adapts F7 by pushing f̃ to ṽ7 and pulling ṽ7 away from the neighbors v4, v5 and v6. (f) The topology is updated

after the adaptation in (e), where ṽ7 has been moved to v7, and the connection between v4 and v7 is removed due to expired age.

(e.g. k = 1 for K = 5) new nodes {ṽN , · · · , ṽN+k} for

each new class, and update their centroids and edges using

Eq. (3) and (4). To avoid forgetting old class, we stabi-

lize the subgraph of NG learned at previous session (t− 1)
that preserves old knowledge. On the other hand, to prevent

overfitting to D(t), we enhance the discriminative power of

the learned features by adapting newly inserted NG nodes

and edges. The neural gas stabilization and adaptation are

described in the following sections.

3.4. Less­Forgetting Neural Gas Stabilization

Given NG G(t), we extract the subgraph G
(t)
o =

〈V
(t)
o , E

(t)
o 〉 ⊆ G(t) whose vertices v = (m,Λ, z, c) were

learned on old class training data at session (t − 1), where

c ∈ ∪t−1
i=1 L

(i). During finetuning, we stabilize G
(t)
o to avoid

forgetting the old knowledge. This is implemented by pe-

nalizing the shift of v in the feature space F (t) via constrain-

ing the observed value of the centroid m̂ to stay close to the

original one m. It is noteworthy that some dimensions of m

have high diversity with large variance. These dimensions

may encode common semantic attributes shared by both the

old and new classes. Strictly constraining them may pre-

vent positive transfer of the knowledge and bring unsatis-

factory trade-off. Therefore, we measure each dimension’s

importance for old class knowledge using the inverted di-

agonal Λ−1, and relax the stabilization of high-variance di-

mensions. We define the anchor loss (AL) term for less-

forgetting stabilization:

ℓAL(G
(t); θ(t)) =

∑

(m,Λ,z,c)∈V
(t)
o

(m̂−m)⊤Λ−1(m̂−m),

where m̂ = f(z; θ(t)). (5)

The effect of AL term is illustrated in Figure 3 (a-c). It

avoids severe distortion of the feature space topology.

3.5. Less­Overfitting Neural Gas Adaptation

Given the new class training set D(t) and NG G(t), for a

training sample (x, y) ∈ D(t), we extract its feature vector

f = f(x; θ(t)) and feed f to the NG. We hope f matches the

node vj whose label cj = y, and d(f ,mj) ≪ d(f ,mi), i 6=
j, so that x is more probable to be correctly classified. How-

ever, simply finetuning on the small training set D(t) could

cause severe overfitting, where the test sample with ground-

truth label y is very likely to activate the neighbor with a

different label. To address this problem, a min-max loss

(MML) term is introduced to constrain f and the centroid

vector mj of vj . The “min” term minimizes d(f ,mj). The

“max” term maximizes d(mi,mj) to be larger than a mar-

gin, where mi is the centroid vectors of vj’s neighbors with

a different label ci 6= y. MML is defined as:

ℓMML(D
(t), G(t); θ(t)) =

∑

∀(x,y),cj=y

d(f(x; θ(t)),mj)−

∑

ci 6=y,eij=1

min(0, d(mi,mj)− ξ). (6)

The hyper-parameter ξ is used to determine the minimum

distance. If d(mi,mj) > ξ, we regard the distance is larger

enough for well separation, and disable the term. Heuristi-

cally, we set ξ ≈ max{d(mi,mj)|∀i, j}. After finetuning,

we update the edge eij according to Eq. (4), as illustrated in

Figure 3 (e) and (f).

3.6. Optimization

At the incremental session t > 1, we finetune CNN Θ(t)

on D(t) with mini-batch SGD. Meanwhile, we update the

NG net G(t) at each SGD iteration, using the competitive

learning rules in Eq. (3) and (4). The gradients in Eq. (5)

and (6) are computed and back-propagated to CNN’s fea-

ture extractor f(·; θ(t)). The overall loss function at session
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t is defined as:

ℓ(D(t), G(t); Θ(t)) =
∑

(x,y)∈D(t)

− log p̂y(x)+

λ1ℓAL(G
(t); θ(t)) + λ2ℓMML(D

(t), G(t); θ(t)), (7)

where the first term in the right-hand side is the softmax

cross-entropy loss, ℓAL is the AL term defined in Eq. (5),

ℓMML is the MML term defined in Eq. (6), and λ1 and λ2

are the hyper-parameters to balance the strength.

4. Experiment

We conduct comprehensive experiments on three popu-

lar image classification datasets CIFAR100 [16], miniIma-

geNet [43] and CUB200 [44].

CIFAR100 dataset contains 60,000 RGB images of 100

classes, where each class has 500 training images and 100

test images. Each image has the size 32 × 32. This dataset

is very popular in CIL works [32, 2].

MiniImageNet dataset is the 100-class subset of the

ImageNet-1k [5] dataset used by few-shot learning [43, 6].

Each class contains 500 training images and 100 test im-

ages. The images are in RGB format of the size 84× 84.

CUB200 dataset is originally designed for fine-grained im-

age classification and introduced by [3, 30] for incremental

learning. It contains about 6,000 training images and 6,000

test images over 200 bird categories. The images are resized

to 256× 256 and then cropped to 224× 224 for training.

For CIFAR100 and miniImageNet datasets, we choose

60 and 40 classes as the base and new classes, respec-

tively, and adopt the 5-way 5-shot setting, which we have

9 training sessions (i.e., 1 base + 8 new) in total. While for

CUB200, differently, we adopt the 10-way 5-shot setting,

by choosing 100 classes as the base classes and splitting the

remaining 100 classes into 10 new class sessions. For all

datasets, each session’s training set is constructed by ran-

domly picking 5 training samples per class from the origi-

nal dataset, while the test set remains to be the original one,

which is large enough to evaluate the generalization perfor-

mance for preventing overfitting.

We use a shallower QuickNet [14] and the deeper

ResNet18 [11] models as the baseline CNNs. The Quick-

Net is a simple yet power CNN for classifying small im-

ages, which has three conv layers and two fc layers. We

evaluate it on both CIFAR100 and miniImageNet. While

for ResNet18, we evaluate it on all the three datasets. We

train the base model Θ(1) with a mini-batch size of 128 and

the initial learning rate of 0.1. We decrease the learning rate

to 0.01 and 0.001 after 30 and 40 epochs, respectively, and

stop training at epoch 50. Then, we finetune the model Θ(t)

on each subsequent training set D(t), t > 1 for 100 epochs,

with a learning rate of 0.1 (and 0.01 for CUB200). As D(t)

contains very few training samples, we use all of them to

construct the mini-batch for incremental learning. After

training on D(t), we test Θ(t) on the union of the test sets of

all encountered classes. For data augmentation, we perform

standard random cropping and flipping as in [11, 13] for all

methods. When finetuning ResNet18, as we only have very

few new class training samples , it would be problematic to

compute batchnorm. Thus, we use the batchnorm statistics

computed on D(1) and fix the batchnorm layers during fine-

tuning. We run the whole learning process 10 times with

different random seeds and report the average test accuracy

over all encountered classes.

We learn a NG net of 400 nodes for base classes, and in-

crementally grow it by inserting 1 node for each new class.

For the hyper-parameters, we set η = 0.02, α = 1 for faster

learning of NG in Eq. (3), the lifetime T = 200 in Eq. (4),

and λ1 = 0.5, λ2 = 0.005 for Eq. (7).

For comparative experiments, we run the representative

CIL methods in our FSCIL setting, including the classical

iCARL [32] and the state-of-the-art methods EEIL [2] and

NCM [13], and compare our method with them. While for

BiC [48], we found that training the bias-correction model

requires a large set of validation samples, which is imprac-

ticable for FSCIL. Therefore, we do not eval this work. We

set γ = 1 in Eq. (1) for these distillation-based methods

as well as the distillation term used in our ablation study

in Section 4.2. Other related works [20, 15, 49, 18, 24]

are designed for the MT setting, which we do not involve

in our experiments. We use the abbreviation “Ours-AL”,

“Ours-AL-MML” to indicate the applied loss terms during

incremental learning.

4.1. Comparative results

We report the comparative results of the methods using

the 5/10-way 5-shot FSCIL setting. As the 5-shot train-

ing samples are randomly picked, we run all methods for

10 times and report the average accuracies. Figure 4 com-

pares the test accuracies on CIFAR100 and miniImageNet

dataset, respectively. Table 1 reports the test accuracies on

CUB200 dataset.

We summarize the results as follows:

• On three datasets, and for both QuickNet and

ResNet18 models, our TOPIC outperforms other state-

of-the-art methods on each encountered session, and is

the closest to the upper bound “Joint-CNN” method.

As the incremental learning proceeds, the superiority

of TOPIC becomes more significant, demonstrating its

power for continuously learning longer sequence of

new class datasets.

• Simply finetuning with few training samples of new

classes (i.e., “Ft-CNN”, the blue line) deteriorates the

test accuracies drastically due to catastrophic forget-

ting. Finetuning with AL term (i.e., the green line) ef-
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Figure 4. Comparison of the test accuracies of QuickNet and ResNet18 on CIFAR100 and miniImageNet dataset. At each session, the

models are evaluated on a joint set of test samples of the classes encountered so far.

Table 1. Comparison results on CUB200 with ResNet18 using the 10-way 5-shot FSCIL setting. Noting that the comparative methods with

their original learning rate settings have much worse test accuracies on CUB200. We carefully tune their learning rates and boost their

original accuracies by 2%∼8.7%. In the table below, we report their accuracies after the improvement.

Method
sessions our relative

1 2 3 4 5 6 7 8 9 10 11 improvements

Ft-CNN 68.68 44.81 32.26 25.83 25.62 25.22 20.84 16.77 18.82 18.25 17.18 +9.10

Joint-CNN 68.68 62.43 57.23 52.80 49.50 46.10 42.80 40.10 38.70 37.10 35.60 upper bound

iCaRL* [32] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 +5.12

EEIL* [2] 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11 +4.17

NCM* [13] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 +6.41

Ours-AL 68.68 61.01 55.35 50.01 42.42 39.07 35.47 32.87 30.04 25.91 24.85 +1.43

Ours-AL-MML 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28

fectively alleviates forgetting, outperforming the naı̈ve

finetuning approach by up to 38.90%. Moreover, us-

ing both AL and MML terms further achieves up to

5.85% accuracy gain than using AL alone. It shows

that solving the challenging FSCIL problem requires

both alleviating the forgetting of the old classes and en-

hancing the representation learning of the new classes.

• On CIFAR100, TOPIC achieves the final accuracies of

24.17% and 29.37% with QuickNet and ResNet18, re-

spectively, while the second best ones (i.e., NCM∗ and

EEIL∗) achieve the accuracies of 19.50% and 15.85%,

respectively. TOPIC outperforms the two state-of-the-

art methods by up to 13.52%.

• On miniImageNet, TOPIC achieves the final accu-

racies of 18.36% and 24.42% with QuickNet and

ResNet18, respectively, while the corresponding accu-

racies achieved by the second best EEIL∗ are 13.59%

and 19.58%, respectively. TOPIC outperforms EEIL*

by up to 4.84%.

• On CUB200, at the end of the entire learning pro-

cess, TOPIC achieves the accuracy of 26.28% with

ResNet18, outperforming the second best EEIL∗

(22.11%) by up to 4.17%.

4.2. Ablation study

The contribution of the loss terms. We conduct ablation

studies to investigate the contribution of the loss terms to

the final performance gain. The experiments are performed

on miniImageNet with ResNet18. For AL, we compare the

original form in Eq. (5) and a simplified form without the

“re-weighting” matrix Λ. For MML, as it consists of the

“min” and “max” terms, we evaluate the performance gain

brought by each term separately. Besides, we also investi-

gate the impact brought by the distillation loss term, which

is denoted as “DL”. Table 2 reports the comparison results

of different loss term settings. We summarize the results as

follows:

• The “AL” term achieves better accuracy (up to 1.49%)

than the simplified form “AL w/o. Λ”, thanks to the

feature re-weighting technique.

• Both “AL-Min” and “AL-Max” improve the perfor-

mance of AL, and the combined form “AL-MML”

achieves the best accuracy, exceeding “AL” by up to

5.85%.

• Both “DL-MML” and “AL-MML” improve the per-

formance of the corresponding settings without MML

(i.e., “DL” and “AL”). It demonstrate the effective-

12189



Table 2. Comparison results of combining different loss terms on miniImageNet with ResNet18.

Method DL AL min term max term
sessions

1 2 3 4 5 6 7 8 9

baseline DL X 61.31 46.85 42.34 36.56 30.63 27.64 24.61 22.06 18.69

DL-MML X X X 61.31 48.14 42.83 38.35 32.76 30.02 27.70 25.43 20.55

baseline AL X 61.31 48.58 43.77 37.19 32.38 29.67 26.44 25.18 21.80

AL w/o. Λ X 61.31 48.55 42.73 36.73 32.59 28.40 25.23 23.69 21.36

AL-Min X X 61.31 50.60 45.14 41.03 35.69 33.64 30.11 27.79 24.18

AL-Max X X 61.31 48.49 43.03 38.53 34.24 31.79 28.96 26.09 23.80

AL-MML X X X 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42

AL-MML w. DL X X X X 61.31 50.00 44.23 39.85 36.02 32.95 29.78 27.17 23.49

ness of the MML term for improving the representa-

tion learning for few-shot new classes.

• Applying the distillation loss degrades the perfor-

mance. Though distillation is popularly used by CIL

methods, it may be not so effective for FSCIL, as it is

difficult to balance the old and new classes and trade-

off the performance when there are only few new class

training samples, as discussed in Section 3.2.

Table 3. Comparison of the final test accuracies achieved by “ex-

emplars” and NG nodes with different memory size. Experiments

are performed on CIFAR100 with ResNet18.

Memory 50 100 200 400 800 1600

Exemplars 19.21 22.32 26.94 28.25 28.69 28.89

NG nodes 22.37 25.72 28.56 29.37 29.54 29.35

Comparison between “exemplars” and NG nodes. In our

method, we represent the knowledge learned in CNN’s fea-

ture space using the NG net G. An alternative approach is

to randomly select a set of exemplars representative of the

old class training samples [32, 2] and penalize the changing

of their feature vectors during training. Table 3 compares

the final test accuracies achieved by the two approaches

under different memory sizes. From Table 3, we can ob-

serve that using NG with only a few number of nodes can

greatly outperform the exemplar approach in a consistent

manner. When smaller memory is used, the difference in

accuracy becomes larger, demonstrating the superiority of

our method for FSCIL.

The effect of the number of training samples. To investi-

gate the effect brought by different shot of training samples,

we further evaluate the methods under the 5-way 10-shot

and 5-way full-shot settings. For 5-way full-shot, we use

all training samples of the new class data, which is analo-

gous to the ordinary CIL setting. We grow NG by adding 20

nodes for each new session, which we have (400+20(t−1))
NG nodes at session (t−1). Figure 5 shows the comparative

results of different methods under the 10-shot and full-shot

settings. We can see that our method also outperforms other

state-of-the-art methods when training with more samples.

It demonstrate the effectiveness of the proposed framework

for general CIL problem.

Figure 5. Comparison results under the 5-way 10-shot and 5-way

full-shot settings, evaluated with ResNet18 on miniImageNet.

5. Conclusion

We focus on a unsolved, challenging, yet practical

incremental-learning scenario, namely the few-shot class-

incremental learning (FSCIL) setting, where models are re-

quired to learn new classes from few training samples. We

propose a framework, named TOPIC, to preserve the knowl-

edge contained in CNN’s feature space. TOPIC uses a neu-

ral gas (NG) network to maintain the topological structure

of the feature manifold formed by different classes. We

design mechanisms for TOPIC to mitigate the forgetting

of the old classes and improve the representation learning

for few-shot new classes. Extensive experiments show that

our method substantially outperforms other state-of-the-art

CIL methods on CIFAR100, miniImageNet, and CUB200

datasets, with a negligibly small memory overhead.
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