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Abstract

In this paper, we propose a state-of-the-art video denois-

ing algorithm based on a convolutional neural network ar-

chitecture. Until recently, video denoising with neural net-

works had been a largely under explored domain, and ex-

isting methods could not compete with the performance of

the best patch-based methods. The approach we introduce

in this paper, called FastDVDnet, shows similar or better

performance than other state-of-the-art competitors with

significantly lower computing times. In contrast to other

existing neural network denoisers, our algorithm exhibits

several desirable properties such as fast runtimes, and the

ability to handle a wide range of noise levels with a sin-

gle network model. The characteristics of its architecture

make it possible to avoid using a costly motion compensa-

tion stage while achieving excellent performance. The com-

bination between its denoising performance and lower com-

putational load makes this algorithm attractive for practical

denoising applications. We compare our method with differ-

ent state-of-art algorithms, both visually and with respect to

objective quality metrics.

1. Introduction

Despite the immense progress made in recent years in

photographic sensors, noise reduction remains an essential

step in video processing, especially when shooting condi-

tions are challenging (low light, small sensors, etc.).

Although image denoising has remained a very active

research field through the years, too little work has been

devoted to the restoration of digital videos. It should be

noted, however, that some crucial aspects differentiate these

two problems. On the one hand, a video contains much

more information than a still image, which could help in

the restoration process. On the other hand, video restoration

requires good temporal coherency, which makes the restora-

tion process much more demanding. Furthermore, since all

recent cameras produce videos in high definition—or even

larger—very fast and efficient algorithms are needed.

In this paper we introduce another network for deep

video denoising: FastDVDnet. This algorithm builds on

DVDnet [38], but at the same time introduces a number

of important changes with respect to its predecessor. Most

notably, instead of employing an explicit motion estima-

tion stage, the algorithm is able to implicitly handle mo-

tion thanks to the traits of its architecture. This results in

a state-of-the-art algorithm which outputs high quality de-

noised videos while featuring very fast running times—even

thousands of times faster than other relevant methods.

1.1. Image denoising

Contrary to video denoising, image denoising has en-

joyed consistent popularity in past years. A myriad of

new image denoising methods based on deep learning tech-

niques have drawn considerable attention due to their out-

standing performance. Schmidt and Roth proposed in [31]

the cascade of shrinkage fields method. The trainable non-

linear reaction diffusion model proposed by Chen and Pock

in [8] builds on the former. In [5], a multi-layer percep-

tron was successfully applied for image denoising. Methods

such as these achieve performances comparable to those of

well-known patch-based algorithms such as BM3D [10] or

non-local Bayes (NLB [21]). However, their limitations in-

clude performance restricted to specific forms of prior, or

the fact that a different set of weights must be trained for

each noise level.

Another widespread approach involves the use of

convolutional neural networks (CNN), e.g. RBDN [30],

MWCNN [24], DnCNN [43], and FFDNet [44]. Their per-

formance compares favorably to other state-of-the-art im-

age denoising algorithms, both quantitatively and visually.

These methods are composed of a succession of convolu-

tional layers with nonlinear activation functions in between

them. A salient feature that these CNN-based methods

present is the ability to denoise several levels of noise with

only one trained model. Proposed by Zhang et al. in [43],

DnCNN is an end-to-end trainable deep CNN for image de-

noising. One of its main features is that it implements resid-

11354



ual learning [16], i.e. it estimates the noise existent in the

input image rather than the denoised image. In a following

paper [44], Zhang et al. proposed FFDNet, which builds

upon the work done for DnCNN. More recently, the ap-

proaches proposed in [28, 23] combine neural architectures

with non-local techniques.

1.2. Video denoising

Video denoising is much less explored in the literature.

The majority of recent video denoising methods are patch-

based. We note in particular an extension of the popu-

lar BM3D to video denoising, V-BM4D [25], and Video

non-local Bayes (VNLB [2]). Neural network methods for

video denoising have been even rarer than patch-based ap-

proaches. The algorithm in [7] by Chen et al. is one of

the first to approach this problem with recurrent neural net-

works. However, their algorithm only works on grayscale

images and it does not achieve satisfactory results, probably

due to the difficulties associated with training recurring neu-

ral networks [26]. Vogels et al. proposed in [39] an archi-

tecture based on kernel-predicting neural networks able to

denoise Monte Carlo rendered sequences. The Video Non-

Local Network (VNLnet [11]) fuses a CNN with a self-

similarity search strategy. For each patch, the network finds

the most similar patches via its first non-trainable layer,

and this information is later used by the CNN to predict

the clean image. In [38], Tassano et al. proposed DVDnet,

which splits the denoising of a given frame in two separate

denoising stages. Like several other methods, it relies on the

estimation of motion of neighboring frames. Other very re-

cent blind denoising approaches include the work by Ehret

et al. [13] and ViDeNN [9]. The latter shares with DVD-

net the idea of performing denoising in two steps. How-

ever, contrary to DVDnet, ViDeNN does not employ mo-

tion estimation. Similarly to both DVDnet and ViDeNN,

the use of spatio-temporal CNN blocks in restoration tasks

has been also featured in [39, 6]. Nowadays, the state-of-

the-art is defined by DVDnet, VNLnet and VNLB. VNLB

and VNLnet show the best performances for small values

of noise, while DVDnet yields better results for larger val-

ues of noise. Both DVDnet and VNLnet feature signifi-

cantly faster inference times than VNLB. As we will see,

the performance of the method we introduce in this paper

compares to the performance of the state-of-the-art, while

featuring even faster runtimes.

2. FastDVDnet

For video denoising algorithms, temporal coherence and

flickering removal are crucial aspects in the perceived qual-

ity of the results [33, 32]. In order to achieve these, an algo-

rithm must make use of the temporal information existent in

neighboring frames when denoising a given frame of an im-

age sequence. In general, most previous approaches based

on deep learning have failed to employ this temporal infor-

mation effectively. Successful state-of-the-art algorithms

rely mainly on two factors to enforce temporal coherence

in the results, namely the extension of search regions from

spatial neighborhoods to volumetric neighborhoods, and the

use of motion estimation.

The use of volumetric (i.e. spatio-temporal) neighbor-

hoods implies that when denoising a given pixel (or patch),

the algorithm is going to look for similar pixels (patches)

not only in the reference frame, but also in adjacent frames

of the sequence. The benefits of this are two-fold. First, the

temporal neighbors provide additional information which

can be used to denoise the reference frame. Second, using

temporal neighbors helps to reduce flickering as the residual

error in each frame will be correlated.

Videos feature a strong temporal redundancy along mo-

tion trajectories. This fact should facilitate denoising videos

with respect to denoising images. Yet, this added informa-

tion in the temporal dimension also creates an extra degree

of complexity which could be difficult to tackle. In this

context, motion estimation and/or compensation has been

employed in a number of video denoising algorithms to

help to improve denoising performance and temporal con-

sistency [22, 38, 2, 25, 4].

We thus incorporated these two elements into our archi-

tecture. However, our algorithm does not include an ex-

plicit motion estimation/compensation stage. The capacity

of handling the motion of objects is inherently embedded

into the proposed architecture. Indeed, our architecture is

composed of a number of modified U-Net [29] blocks (see

Section 2.1 for more details about these blocks). Multi-

scale, U-Net-like architectures have been shown to have the

ability to learn misalignment [42, 12]. Our cascaded archi-

tecture increases this capacity of handling movement even

further. In contrast to [38], our architecture is trained end-

to-end without optical flow alignment, which avoids distor-

tions and artifacts due to erroneous flow. As a result, we are

able to eliminate a costly dedicated motion compensation

stage without sacrificing performance. This leads to an im-

portant reduction of runtimes: our algorithm runs three or-

ders of magnitude faster than VNLB, and an order of mag-

nitude faster than DVDnet and VNLnet.

Figure 1a displays a diagram of the architecture of

our method. When denoising a given frame at time

t, Ĩt, its 2T = 4 neighboring frames are also taken

as inputs. That is, the inputs of the algorithm will be
{

Ĩt−2, Ĩt−1, Ĩt, Ĩt+1, Ĩt+2

}

. The model is composed of

different spatio-temporal denoising blocks, assembled in a

cascaded two-step architecture. These denoising blocks are

all similar, and consist of a modified U-Net model which

takes three frames as inputs. The three blocks in the first

denoising step share the same weights, which leads to a re-

duction of memory requirements of the model and facili-
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(a)

(b)

Figure 1. Architecture used in FastDVDnet. (a) A high-level diagram of the architecture. Five consecutive frames are used to denoise the

middle frame. The frames are taken as triplets of consecutive frames and input to the Denoising Blocks 1. The instances of these blocks

have all the same weights. The triplet composed by the outputs of these blocks are used as inputs for Denoising Block 2. The output of the

latter is the estimate of the central input frame (Input frame t). Both Denoising Block 1 and Denoising Block 2 share the same architecture,

which is shown in (b). The denoising blocks of FastDVDnet are composed of a modified multi-scale U-Net.

tates the training of the network. Similar to [44, 14], a noise

map is also included as input, which allows the processing

of spatially varying noise [37]. In particular, the noise map

is a separate input which provides information to the net-

work about the distribution of the noise at the input. This

information is encoded as the expected per-pixel standard

deviation of this noise. For instance, when denoising Gaus-

sian noise, the noise map will be constant; when denoising

Poisson noise, the noise map will depend on the intensity of

the image. Indeed, the noise map can be used as a user-input

parameter to control the trade-off between noise removal

vs. detail preservation (see for example the online demo

in [37]). In other cases, such as JPEG denoising, the noise

map can be estimated by means of an additional CNN [15].

The use of a noise map has been shown to improve denois-

ing performance, particularly when treating spatially vari-

ant noise [3]. Contrary to other denoising algorithms, our

denoiser takes no other parameters as inputs apart from the

image sequence and the estimation of the input noise.

Observe that experiments presented in this paper focus

on the case of additive white Gaussian noise (AWGN). Nev-

ertheless, this algorithm can be extended to other types of

noise, e.g. spatially varying noise (e.g. Poissonian). Let I

be a noiseless image, while Ĩ is its noisy version corrupted

by a realization of zero-mean white Gaussian noise N of

standard deviation σ, then

Ĩ = I+N . (1)

2.1. Denoising blocks

Both denoising blocks displayed in Fig. 1a, Denoising

Block 1 and Denoising Block 2, consist of a modified U-

Net architecture. All the instances of Denoising Block 1
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share the same weights. U-Nets are essentially a multi-scale

encoder-decoder architecture, with skip-connections [16]

that forward the output of each one of the encoder layers

directly to the input of the corresponding decoder layers. A

more detailed diagram of these blocks is shown in Fig. 1b.

Our denoising blocks present some differences with respect

to the standard U-Net:

• The encoder has been adapted to take three frames and

a noise map as inputs

• The upsampling in the decoder is performed with a

PixelShuffle layer [34], which helps reducing gridding

artifacts. Please see the supplementary materials for

more information about this layer.

• The merging of the features of the encoder with those

of the decoder is done with a pixel-wise addition op-

eration instead of a channel-wise concatenation. This

results in a reduction of memory requirements

• Blocks implement residual learning—with a residual

connection between the central noisy input frame and

the output—, which has been observed to ease the

training process [37]

The design characteristics of the denoising blocks make a

good compromise between performance and fast running

times. These denoising blocks are composed of a total of

D = 16 convolutional layers. In most layers, the out-

puts of its convolutional layers are followed by point-wise

ReLU [20] activation functions ReLU(·) = max(·, 0), ex-

cept for the last layer. Batch normalization layers (BN [17])

are placed between the convolutional and ReLU layers.

3. Discussion

Explicit flow estimation is avoided in FastDVDnet.

However, in order to maintain performance, we needed to

introduce a number of techniques to handle motion and to

effectively employ temporal information. These techniques

are discussed further in this section. Please see the supple-

mentary materials for more details about ablation studies.

3.1. Twostep denoising

Similarly to DVDnet and ViDeNN, FastDVDnet features

a two-step cascaded architecture. The motivation behind

this is to effectively employ the information existent in the

temporal neighbors, and to enforce the temporal correlation

of the remaining noise in output frames. To prove that the

two-step denoising is a necessary feature, we conducted the

following experiment: we modified a Denoising Block of

FastDVDnet (see Fig. 1b) to take five frames as inputs in-

stead of three, which we will refer to as Den Block 5inputs.

In this way, the same amount of temporal neighboring

Figure 2. Architecture of the Den Block 5inputs denoiser.

frames are considered and the same information as in Fast-

DVDnet is processed by this new denoiser. A diagram of

the architecture of this model is shown in Fig. 2. We then

trained this new model and compared the results of denois-

ing of sequences against the results of FastDVDnet (see

Section 4 for more details about the training process).

It was observed that the cascaded architecture of Fast-

DVDnet presents a clear advantage on Den Block 5inputs,

with differences in PSNR of up to 0.9dB. Please refer to the

supplementary materials for more details. Additionally, re-

sults by Den Block 5inputs present a sharp increase on tem-

poral artifacts—flickering. Despite it being a multi-scale ar-

chitecture, Den Block 5inputs cannot handle the motion of

objects in the sequences as well as the two-step architec-

ture of FastDVDnet can. Overall, the two-step architecture

shows superior performance with respect to the one-step ar-

chitecture.

3.2. Multiscale architecture and endtoend train
ing

In order to investigate the importance of using multi-

scale denoising blocks in our architecture, we conducted the

following experiment: we modified the FastDVDnet archi-

tecture by replacing its Denoising Blocks by the denoising

blocks of DVDnet. This results in a two-step cascaded ar-

chitecture, with single-scale denoising blocks, trained end-

to-end, and with no compensation of motion in the scene.

In our tests, it was observed that the usage of multi-scale

denoising blocks improves denoising results considerably.

Please refer to the supplementary materials for more details.

We also experimented with training the multi-scale de-

noising blocks in each step of FastDVDnet separately—as

done in DVDnet. Although the results in this case certainly

improved with respect to the case of the single-scale de-

noising blocks described above, a noticeable flickering re-

mained in the outputs. Switching from this separate training

to an end-to-end training helped to reduce temporal artifacts

considerably.

3.3. Handling of motion

Apart from the reduction of runtimes, avoiding the use

of motion compensation by means of optical flow has an
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additional benefit. Video denoising algorithms that depend

explicitly on motion estimation techniques often present ar-

tifacts due to erroneous flow in challenging cases, such as

occlusions or strong noise. The different techniques dis-

cussed in this section—namely a multi-scale of the denois-

ing blocks, the cascaded two-step denoising architecture,

and end-to-end training—not only provide FastDVDnet the

ability to handle motion, but also help avoid artifacts re-

lated to erroneous flow estimation. Also, and similarly

to [43, 38, 37], the denoising blocks of FastDVDnet imple-

ment residual learning, which helps to improve the quality

of results a step further. Figure 3 shows an example on arti-

facts due to erroneous flow on three consecutive frames and

of how the multi-scale architecture of FastDVDnet is able

to avoid them.

4. Training details

The training dataset consists of input-output pairs

P
j
t =

{(

(Sj
t , M

j ), Ijt

)}mt

j=0

,

where S
j
t = (̃Ijt−2, Ĩ

j
t−1, Ĩ

j
t , Ĩ

j
t+1, Ĩ

j
t+2) is a collection of

2T + 1 = 5 spatial patches cropped at the same location

in contiguous frames, and I
j is the clean central patch of

the sequence. These are generated by adding AWGN of

σ ∈ [5, 50] to clean patches of a given sequence, and the

corresponding noise map M
j is built in this case constant

with all its elements equal to σ. Spatio-temporal patches are

randomly cropped from randomly sampled sequences of the

training dataset.

A total of mt = 384000 training samples are extracted

from the training set of the DAVIS database [18]. The spa-

tial size of the patches is 96 × 96, while the temporal size

is 2T + 1 = 5. The spatial size of the patches was chosen

such that the resulting patch size in the coarser scale of the

Denoising Blocks is 32× 32. The loss function is

L(θ) =
1

2mt

mt
∑

j=1

∥

∥

∥
Î
j
t − I

j
t

∥

∥

∥

2

, (2)

where Î
j
t = F((Sj

t , M
j ); θ) is the output of the network,

and θ is the set of all learnable parameters.

The architecture has been implemented in PyTorch [27],

a popular machine learning library. The ADAM algo-

rithm [19] is applied to minimize the loss function, with

all its hyper-parameters set to their default values. The

number of epochs is set to 80, and the mini-batch size is

96. The scheduling of the learning rate is also common to

both cases. It starts at 1e−3 for the first 50 epochs, then

changes to 1e−4 for the following 10 epochs, and finally

switches to 1e−6 for the remaining of the training. In other

words, a learning rate step decay is used in conjunction

with ADAM. The mix of learning rate decay and adaptive

rate methods has also been applied to other deep learning

projects [36, 41], usually with positive results. Data is aug-

mented by introducing rescaling by different scale factors

and random flips. During the first 60 epochs, the orthogo-

nalization of the convolutional kernels is applied as a means

of regularization. It has been observed that initializing the

training with orthogonalization may be beneficial to perfor-

mance [44, 37].

5. Results

Two different testsets were used for benchmarking our

method: the DAVIS-test testset, and Set8, which is com-

posed of 4 color sequences from the Derf’s Test Media col-

lection1 and 4 color sequences captured with a GoPro cam-

era. The DAVIS set contains 30 color sequences of resolu-

tion 854 × 480. The sequences of Set8 have been down-

scaled to a resolution of 960× 540. In all cases, sequences

were limited to a maximum of 85 frames. We used the

DeepFlow algorithm [40] to compute flow maps for DVD-

net and VNLB. VNLnet requires models trained for specific

noise levels. As no model is provided for σ = 30, no re-

sults are shown for this noise level in either of the tables.

We also compare our method to a commercial blind denois-

ing software, Neat Video (NV [1]). For NV, its automatic

noise profiling settings were used to manually denoise the

sequences of Set8. Note that values shown are the average

for all sequences in the testset, the PNSR of a sequence is

computed as the average of the PSNRs of each frame.

In general, both DVDnet and FastDVDnet output se-

quences which feature remarkable temporal coherence.

Flickering rendered by our methods is notably small, es-

pecially in flat areas, where patch-based algorithms often

leave behind low-frequency residual noise. An example

can be observed in Fig. 4 (which is best viewed in digital

format). Temporally decorrelated low-frequency noise in

flat areas appears as particularly bothersome for the viewer.

More video examples can be found in the supplementary

materials and on the website of the algorithm. The reader is

encouraged to watch these examples to compare the visual

quality of the results of our methods.

Patch-based methods are prone to surpassing DVDnet

and FastDVDnet in sequences with a large portion of repet-

itive structures as these methods exploit the non-local simi-

larity prior. On the other hand, our algorithms handle non-

repetitive textures very well, see e.g. the clarity of the de-

noised text and vegetation in Fig. 5.

Table 1 shows a comparison of PSNR and ST-RRED

on the Set8 and DAVIS dataset, respectively. The Spatio-

Temporal Reduced Reference Entropic Differences (ST-

RRED) is a high performing reduced-reference video qual-

1https://media.xiph.org/video/derf
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(a)

(b)

(c)

(d)

Figure 3. Motion artifacts due to occlusion. Three consecutive frames of the results of the ’hypersmooth’ sequence, σ = 50 (a) V-BM4D.

(b) VNLB. (c) DVDnet. (d) FastDVDnet. Video denoising algorithms that depend explicitly on motion estimation techniques often present

artifacts due to erroneous flow in challenging cases. In the example above, the occlusion of the front building leads to motion artifacts in

the results of V-BM4D, VNLB, and DVDnet. Explicit motion compensation is avoided in the architecture of FastDVDnet. Indeed, the

network is able to implicitly handle motion due to its design characteristics. Best viewed in digital format.

ity assessment metric [35]. This metric not only takes into

account image quality, but also temporal distortions in the

video. We computed the ST-RRED scores with the imple-

mentation provided by the scikit-video library2.

It can be observed that for smaller values of noise, VNLB

performs better on Set8. Indeed, DVDnet tends to over de-

noise in some of these cases. FastDVDnet and VNLnet are

the best performing algorithms on DAVIS for small sigmas

2http://www.scikit-video.org

in terms of PSNR and ST-RRED, respectively. However,

for larger values of noise DVDnet surpasses VNLB. Fast-

DVDnet performs consistently well in all cases, which is

a remarkable feat considering that it runs 80 times faster

than DVDnet, 26 times faster than VNLnet, and more than

4000 times faster than VNLB (see Section 6). Contrary

to other denoisers based on CNNs—e.g. VNLnet—, our

algorithms are able to denoise different noise levels with

only one trained model. On top of this, the use of meth-

ods involve no hand-tuned parameters, since they only take
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Comparison of results of the ’snowboarding’ sequence. (a) Clean frame. (b) Noisy frame σ = 40. (c) V-BM4D. (d) VNLB.

(e) NV. (f) VNLnet. (g) DVDnet. (h) FastDVDnet. Patch-based methods (V-BM4D, VNLB, and even VNLnet) struggle with noise in flat

areas, such as the sky, and leave behind medium-to-low-frequency noise. This leads to results with noticeable flickering, as the remaining

noise is temporally decorrelated. On the other hand, DVDnet and FastDVDnet output very convincing and visually pleasant results. Best

viewed in digital format.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Comparison of results of the ’motorbike’ sequence. (a) Clean frame. (b) Noisy frame σ = 50. (c) V-BM4D. (d) VNLB. (e) NV.

(f) VNLnet. (g) DVDnet. (h) FastDVDnet. Note the clarity of the denoised text, and the lack of chroma noise for FastDVDnet, DVDnet,

and VNLnet. Best viewed in digital format.

the image sequence and the estimation of the input noise

as inputs. Table 2 displays a comparison with ViDeNN.

This algorithm has not actually been trained for AWGN,

but for clipped AWGN. Then, a FastDVDnet model to de-

noise clipped AWGN was trained for this case, which we

call FastDVDnet clipped. It can be observed that the per-

formance of FastDVDnet clipped is superior to the perfor-

mance of ViDeNN by a wide margin.
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Table 1. Comparison of PSNR / ST-RRED on the Set8 and DAVIS testset. For PSNR: larger is better; best results are shown in blue, second

best in red. For ST-RRED: smaller is better; best results are shown bold.

Set8 VNLB V-BM4D NV VNLnet DVDnet FastDVDnet

σ = 10 37.26 / 2.86 36.05 / 3.87 35.67 / 3.42 37.10 / 3.43 36.08 / 4.16 36.44 / 3.00
σ = 20 33.72 / 6.28 32.19 / 9.89 31.69 / 12.48 33.88 / 6.88 33.49 / 7.54 33.43 / 6.65
σ = 30 31.74 / 11.53 30.00 / 19.58 28.84 / 33.19 - 31.79 / 12.61 31.68 / 11.85
σ = 40 30.39 / 18.57 28.48 / 32.82 26.36 / 47.09 30.55 / 19.71 30.55 / 19.05 30.46 / 18.45

σ = 50 29.24 / 27.39 27.33 / 49.20 25.46 / 57.44 29.47 / 29.78 29.56 / 27.97 29.53 / 26.75

DAVIS VNLB V-BM4D VNLnet DVDnet FastDVDnet

σ = 10 38.85 / 3.22 37.58 / 4.26 35.83 / 2.81 38.13 / 4.28 38.71 / 3.49
σ = 20 35.68 / 6.77 33.88 / 11.02 34.49 / 6.11 35.70 / 7.54 35.77 / 7.46
σ = 30 33.73 / 12.08 31.65 / 21.91 - 34.08 / 12.19 34.04 / 13.08
σ = 40 32.32 / 19.33 30.05 / 36.60 32.32 / 18.63 32.86 / 18.16 32.82 / 20.39
σ = 50 31.13 / 28.21 28.80 / 54.82 31.43 / 28.67 31.85 / 25.63 31.86 / 28.89

Table 2. Comparison with ViDeNN for clipped AWGN. See the

text for more details. For PSNR: larger is better; best results are

shown in bold.

DAVIS ViDeNN FastDVDnet clipped

σ = 10 37.13 38.45

σ = 30 32.24 33.52

σ = 50 29.77 31.23

6. Running times

Our method achieves fast inference times, thanks to its

design characteristics and simple architecture. Our algo-

rithm takes only 100ms to denoise a 960×540 color frame,

which is more than 3 orders of magnitude faster than V-

BM4D and VNLB, and more than an order of magnitude

faster than other CNN algorithms which run on GPU, DVD-

net and VNLnet. The algorithms were tested on a server

with a Titan Xp NVIDIA GPU card. Figure 6 compares the

running times of different state-of-the-art algorithms.

7. Conclusion

In this paper, we presented FastDVDnet, a state-of-the-

art video denoising algorithm. Denoising results of Fast-

DVDnet feature remarkable temporal coherence, very low

flickering, and excellent detail preservation. This level of

performance is achieved even without a flow estimation

step. The algorithm runs between one and three orders of

magnitude faster than other state-of-the-art competitors. In

this sense, our approach proposes a major step forward to-

wards high quality real-time deep video noise reduction.

Although the results presented in this paper hold for Gaus-

sian noise, our method could be extended to denoise other

types of noise.

Figure 6. Comparison of running times. Time to denoise a color

frame of resolution 960× 540. Note: values displayed for VNLB

do not include the time required to estimate motion.
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for their valuable contribution. This work has been partially

funded by the French National Research and Technology

Agency (ANRT) and GoPro Technology France.

1361



References

[1] ABSoft. Neat Video. https://www.neatvideo.com,

1999–2019. 5

[2] Pablo Arias and Jean-Michel Morel. Video denoising via

empirical bayesian estimation of space-time patches. Journal

of Mathematical Imaging and Vision, 60(1):70–93, Jan 2018.

2

[3] Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen,

Dillon Sharlet, and Jonathan T. Barron. Unprocessing Im-

ages for Learned Raw Denoising. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2019.

3

[4] Antoni Buades, Jose-Luis Lisani, and Marko Miladinovic.

Patch-based video denoising with optical flow estimation.

IEEE Transactions on Image Processing, 25(6):2573–2586,

Jun 2016. 2

[5] H.C. Burger, C.J. Schuler, and S. Harmeling. Image denois-

ing: Can plain neural networks compete with BM3D? In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 2392–2399, 2012. 1

[6] Jose Caballero, Christian Ledig, Andrew Aitken, Alejandro

Acosta, Johannes Totz, Zehan Wang, and Wenzhe Shi. Real-

time video super-resolution with spatio-temporal networks

and motion compensation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

4778–4787, 2017. 2

[7] Xinyuan Chen, Li Song, and Xiaokang Yang. Deep rnns for

video denoising. volume 9971 of SPIE Proceedings, page

99711T. SPIE, Sep 2016. 2

[8] Yunjin Chen and Thomas Pock. Trainable nonlinear reaction

diffusion: A flexible framework for fast and effective image

restoration. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 39(6):1256–1272, Jun 2017. 1

[9] Michele Claus and Jan van Gemert. Videnn: Deep blind

video denoising. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, pages

0–0, 2019. 2

[10] K Dabov, A Foi, and V Katkovnik. Image denoising

by sparse 3D transformation-domain collaborative filtering.

IEEE Transactions on Image Processing (TIP), 16(8):1–16,

2007. 1

[11] Axel Davy, Thibaud Ehret, Gabriele Facciolo, Jean-Michel

Morel, and Pablo Arias. Non-local video denoising by cnn.

In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), June 2019. 2

[12] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip

Hausser, Caner Hazirbas, Vladimir Golkov, Patrick van der

Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learn-

ing optical flow with convolutional networks. pages 2758–

2766. IEEE, Dec 2015. 2

[13] Thibaud Ehret, Axel Davy, Jean-Michel Morel, Gabriele

Facciolo, and Pablo Arias. Model-blind video denoising via

frame-to-frame training. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

11369–11378, 2019. 2
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Röthlin, Alex Harvill, David Adler, Mark Meyer, and Jan

Novák. Denoising with kernel prediction and asymmetric

loss functions. ACM Transactions on Graphics, 37(4):1–15,

Jul 2018. 2

[40] Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and

Cordelia Schmid. DeepFlow: Large displacement optical

flow with deep matching. In IEEE International Conference

on Computer Vision (ICCV), Sydney, Australia, Dec. 2013.

5

[41] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Sre-

bro, and Benjamin Recht. The marginal value of adaptive

gradient methods in machine learning. In Advances in Neural

Information Processing Systems (NIPS), pages 4148–4158,

2017. 5

[42] Shangzhe Wu, Jiarui Xu, Yu-Wing Tai, and Chi-Keung Tang.

Deep High Dynamic Range Imaging with Large Foreground

Motions. In European Conference on Computer Vision

(ECCV), pages 117–132, 2018. 2

[43] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and

Lei Zhang. Beyond a gaussian denoiser: Residual learning of

deep cnn for image denoising. IEEE Transactions on Image

Processing, 26(7):3142–3155, Jul 2017. 1, 5

[44] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Ffdnet: Toward

a fast and flexible solution for cnn-based image denoising.

IEEE Transactions on Image Processing, 27(9):4608–4622,

Sep 2018. 1, 2, 3, 5

1363


