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Abstract

Video super-resolution (VSR) aims to restore a photo-

realistic high-resolution (HR) video frame from both its

corresponding low-resolution (LR) frame (reference frame)

and multiple neighboring frames (supporting frames). Due

to varying motion of cameras or objects, the reference

frame and each support frame are not aligned. Therefore,

temporal alignment is a challenging yet important prob-

lem for VSR. Previous VSR methods usually utilize opti-

cal flow between the reference frame and each supporting

frame to warp the supporting frame for temporal align-

ment. However, both inaccurate flow and the image-level

warping strategy will lead to artifacts in the warped sup-

porting frames. To overcome the limitation, we propose a

temporally-deformable alignment network (TDAN) to adap-

tively align the reference frame and each supporting frame

at the feature level without computing optical flow. The

TDAN uses features from both the reference frame and each

supporting frame to dynamically predict offsets of sam-

pling convolution kernels. By using the corresponding ker-

nels, TDAN transforms supporting frames to align with the

reference frame. To predict the HR video frame, a re-

construction network taking aligned frames and the refer-

ence frame is utilized. Experimental results demonstrate

that the TDAN is capable of alleviating occlusions and ar-

tifacts for temporal alignment and the TDAN-based VSR

model outperforms several recent state-of-the-art VSR net-

works with a comparable or even much smaller model size.

The source code and pre-trained models are released in

https://github.com/YapengTian/TDAN-VSR.

1. Introduction

The goal of video super-resolution (VSR) is to recon-

struct a high-resolution (HR) video frame from its cor-

responding low-resolution (LR) video frame (reference

frame) and multiple neighboring LR video frames (support-

ing frames). HR video frames contain more image details

and are more preferred to humans. Therefore, the VSR tech-

nique is desired in many real applications, such as video
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Figure 1. VSR results for a frame in the walk sequence. We find

that our method can restore more accurate image structures and

details than the recent DUF network.

surveillance and high-definition television (HDTV).

To super-resolve the LR reference frame, VSR will ex-

ploit both the LR reference frame and multiple LR support-

ing frames. However, the LR reference frame and each sup-

porting frame may not be aligned due to the motion of cam-

era or objects. Thus, a vital issue in VSR is how to align the

supporting frames with the reference frame.

Previous methods [2, 3, 4, 5, 6] usually exploit optical

flow to predict motion fields between the reference frame

and supporting frames, then warp the supporting frames us-

ing their corresponding motion fields. Therefore, the optical

flow prediction is crucial for these approaches. Any errors

in the flow computation or the image-level warping opera-

tion may introduce artifacts around image structures in the

aligned supporting frames.

To alleviate the above issues, we propose a temporally-

deformable alignment network (TDAN) in this paper that

performs one-stage temporal alignment without using opti-

cal flow. Unlike previous optical flow-based VSR methods,

our approach can adaptively align the reference frame and

supporting frames at the feature level without explicit mo-

tion estimation and image warping operations. Therefore,

the aligned LR video frames will have less annoying im-

age artifacts, and the image quality of the reconstructed HR

video frame will be improved. In specific, inspired by the

deformable convolution [7], our TDAN uses features from

both the reference frame and each supporting frame to dy-
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namically predict offsets of sampling convolution kernels.

These dynamic kernels are then applied on features from

supporting frames to employ the temporal alignment. Here,

given different reference and supporting frame pairs, the

module will generate their corresponding sampling kernels,

which makes TDAN have strong capability and flexibility to

handle various motion conditions in temporal scenes. With

the aligned supporting frames and the reference frame, a

reconstruction network is utilized to predict an HR video

frame corresponding to the LR reference frame.

Experimental results on the widely-used VSR bench-

marks: Vid4 [8] and SPMCs-30 [4] show that our frame-

work achieves promising performance with beyond 0.5dB

improvements in terms of PSNR over recent ToFlow [5],

FRVSR [6], and FSTRN [9] on Vid4 and beyond 0.6dB im-

provements over recent DUF [1] on SPMCs-30. In Fig. 1,

we show a visual comparison to DUF, and we can see that

our method reconstructs more image details.

The contributions of this paper are three-fold: (1) we

propose a novel temporally-deformable alignment network

(TDAN) for feature-level alignment, which avoids the two-

stage process adopted by previous optical flow-based meth-

ods and is capable of explore image contexts for allevi-

ating occlusions; (2) we propose an end-to-end trainable

VSR framework based on the TDAN; and (3) our method

achieves better performance than several recent state-of-

the-art VSR performance on Vid4 and SPMCs-30 bench-

mark datasets. An early version of our work was firstly

released to ArXiv [10] in 2018. After that, it has already

made a good impact on our community and been followed

and improved by recent works including EDVR [11] for

video super-resolution and deblurring and Zooming Slow-

Mo [12] for space-time video super-resolution.

2. Related Work

Single Image Super-Resolution (SISR): Respecting for

the long-history research on SISR, we only survey deep

learning-based methods in this section. Dong et al. [13]

firstly proposed an end-to-end image super-resolution con-

volutional neural network (SRCNN). Kim et al. [14] intro-

duced a 20-layer deep network: VDSR with residual learn-

ing. Shi et al. [15] learned an efficient sub-pixel convo-

lution layer to upscale the final LR feature maps into the

HR output for accelerating SR networks. Deeper networks

like LapSRN [16], DRRN [17], and MemNet [18], were

explored to further improve SISR performance. However,

training images used in the previous methods have lim-

ited resolution, which makes the training of even deeper

and wider networks very difficult. Recently, Timofte et

al. introduced a novel large dataset (DIV2K) consisting

of 1000 DIVerse 2K resolution RGB images in NTIRE

2017 Challenge [19]. Current state-of-the-art SISR net-

works [20, 21, 22, 23, 24, 25, 26] trained on the DIV2K and

outperformed previous networks by a substantial margin. A

recent survey is conducted in [27].

Video Super-Resolution (VSR): It has been observed that

temporal alignment critically affects the performance of

VSR systems. Previous methods usually adopted two-stage

approaches based on optical flow. They conducted motion

estimation by computing optical flow in the first stage and

utilize the estimated motion fields to perform image warp-

ing/motion compensation in the second stage. For example,

Liao et al. [28] used two classical optical flow methods, TV-

L1 and MDP flow [29], with different parameters to gener-

ate HR SR-drafts, and then predicted the final HR frame by

a deep draft-ensemble network. Kappeler et al. [30] took

interpolated flow-warpped frames as inputs of a CNN to

predict HR video frames. However, both the pioneering

methods used classical optical flow algorithms, which are

separated from the frame reconstruction CNN and are much

slower than the flow CNN during inference.

To address the issue, Caballero et al. [2] introduced

the first end-to-end VSR network: VESCPN, which jointly

trains flow estimation and spatio-temporal networks. Liu

et al. [3] proposed a temporal adaptive neural network to

adaptively select the optimal range of temporal dependency

and a rectified optical flow alignment method for better mo-

tion estimation. Tao et al. [4] computed LR motion field

based on optical flow network and designed a new layer

to utilize sub-pixel information from motion and simulta-

neously achieve sub-pixel motion compensation (SPMC)

and resolution enhancement. Xue et al. [5] exploited task-

oriented motion cues via Task-Oriented Flow (TOFlow),

which achieves better VSR results than fixed flow algo-

rithms. Sajjadi et al. [6] extended the conventional VSR

models to a frame-recurrent VSR framework. Kim et

al. [31] introduced a spatio-temporal flow estimation net-

work to capture long-range temporal dependencies. How-

ever, sufficient high-quality motion estimation is not easy

to obtain even with state-of-the-art optical flow estimation

networks. Even with accurate motion fields, the image-

warping based motion compensation will produce artifacts

around image structures, which may be propagated into fi-

nal reconstructed HR frames. The proposed TDAN per-

forms a feature-wise one-stage temporal alignment without

relying on optical flow, which will alleviate the issues in

these previous optical flow-based VSR networks.

Recently, Jo et al. [1] proposed to use dynamic upsclaing

filter and Li et al. [9] utilized a 3D convolution-based resid-

ual network for VSR. However, without explicitly temporal

alignment, they have limited capacity in handling various

and diverse spatio-temporal visual patterns.

Deformable Convolution: CNNs have the inherent lim-

itation in modeling geometric transformations due to the

fixed kernel configuration. To enhance the transformation

modeling capability of CNNs, Dai et al. [7] proposed a de-
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Figure 2. The proposed TDAN-based VSR framework. Here, we only show the framework with one supporting frame. In our implemen-

tation, 4 neighboring supporting frames are used for exploring more temporal information.

formable convolution operation. It has been applied to ad-

dress several high-level vision tasks, such as object detec-

tion [7, 32], semantic segmentation [7], and human pose

estimation [33]. Although the deformable convolution has

shown superiority on these high-level vision tasks, it is

rarely explored in low-level vision problems.

3. Method

3.1. Overview

Let ILR
t ∈ R

H×W×C be the t-th LR video frame,

and IHR
t ∈ R

sH×sW×C be the corresponding HR video

frame, where s is the upscaling factor, H × W denotes

the frame size, and C refers to channel number. Our

goal is to restore the HR video frame IHR
t from the

reference LR frame ILR
t and 2N supporting LR frames

{ILR
t−N , ...ILR

t−1, I
LR
t+1, ..., I

LR
t+N}. Therefore, our VSR frame-

work takes the consecutive 2N + 1 frames {ILR
i }t+N

i=t−N

as the input to predict the HR frame IHR
t , which is illus-

trated in Fig. 2. It consists of two main sub-networks: a

temporally-deformable alignment network (TDAN) to align

each supporting frame with the reference frame and a super-

resolution (SR) reconstruction network to predict the HR

frame.

The TDAN takes a LR supporting frame ILR
i and the LR

reference frame ILR
t as inputs to predict the corresponding

aligned LR frame ILR′

i of the supporting frame:

ILR′

i = fTDAN (ILR
t , ILR

i ) . (1)

Feeding the 2N supporting frames into the TDAN sep-

arately, we can obtain 2N correspondingly-aligned LR

frames {ILR′

t−N , ...ILR′

t−1 , I
LR′

t+1 , ..., I
LR′

t+N}.

The 2N aligned frames along with the reference frame

are then fed into the super-resolution (SR) reconstruction

network. We can finally reconstruct the HR video frame:

IHR
t = fSR(I

LR′

t−N , ..., ILR′

t−1 , I
LR
t , ILR′

t+1 , ..., I
LR′

t+N ) . (2)

3.2. Temporally­Deformable Alignment Network

Given an LR supporting frame ILR
i and the LR refer-

ence frame ILR
t , the proposed TDAN will temporally align

ILR
i with ILR

t . It mainly consists of three modules: feature

extraction, deformable alignment, and aligned frame recon-

struction.

Feature Extraction: This module extracts visual features

FLR
i and FLR

t from ILR
i and ILR

t , respectively, via a shared

feature extraction network. The network consists of one

convolutional layer and k1 residual blocks [34] with Re-

LUs as the activation functions. In our implementation,

we adopted a modified residual structure from [20]. The

extracted features are then used for feature-wise temporal

alignment.

Deformable Alignment: The deformable alignment mod-

ule takes the FLR
i and FLR

t as inputs to predict sampling

parameters Θ for the feature FLR
i :

Θ = fθ(F
LR
i , FLR

t ) . (3)

Here, Θ = {△pn | n = 1, . . . , |R|} refers to

the offsets of the convolution kernels, where R =
{(−1,−1), (−1, 0), ..., (0, 1), (1, 1)} donates a regular grid

of a 3×3 kernel. With Θ and FLR
i , the aligned feature FLR′

i

of the supporting frame can be computed by the deformable

convolution:

FLR′

i = fdc(F
LR
i ,Θ) . (4)

More specifically, for each position p0 on the aligned fea-

ture map FLR′

i , we have:

FLR′

i (p0) =
∑

pn∈R

w(pn)F
LR
i (p0 + pn +△pn) . (5)

The convolution will be operated on the irregular positions

pn + △pn, where the △pn may be fractional. To address

the issue, the operation is implemented by using bilinear

interpolation, which is the same as that proposed in [7].

Here, the deformable alignment module consists of sev-

eral regular and deformable convolutional layers. For the

sampling parameter generation function fθ, it concatenates

FLR
i and FLR

t , and uses a 3× 3 bottleneck layer to reduce

the channel number of the concatenated feature map. Then,

the sampling parameters are predicted by a convolutional

layer with the kernel size |R| as the output channel number.

Finally, the aligned feature FLR′

i is obtained from Θ and

FLR
i based on deformable convolution operation. In prac-

tice, besides the deformable convolution for alignment, we

use 2 additional regular deformable convolutional layers be-

fore and 1 additional regular deformable convolutional layer

after the fdc for enhancing the transformation flexibility and

capability of the module. Section 4.3 contains the ablation
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study on the performance of the module with different num-

bers of the additional deformable convolutional layers.

We note that the feature of the reference frame FLR
t is

only used for computing the offset, and its information will

not be propagated into the aligned feature of the support-

ing frame FLR′

i . Besides, the adaptively-learned offset will

implicitly capture motion cues and explore neighboring fea-

tures within the same image structures for alignment.

Aligned Frame Reconstruction: Although the deformable

alignment has the potential to capture motion cues and align

FLR
i with FLR

t , the implicit alignment is difficult to learn

without a supervision. Therefore, we restore an aligned LR

frame ILR′

i for ILR
i and utilize an alignment loss to enforce

the deformable alignment module to sample useful features

for accurate temporal alignment. The aligned LR frame

ILR′

i ∈ R
H×W×C can be reconstructed from the aligned

feature map with a 3× 3 convolutional layer.

After feeding 2N reference and supporting frame pairs

into TDAN consecutively, we can obtain the corresponding

2N aligned LR frames, which will be used to predict the

HR video frame IHR
t in the SR reconstruction network.

3.3. SR Reconstruction Network

We use a SR reconstruction network to restore the HR

video frame IHR
i from the aligned LR frames and the refer-

ence frame. The network contains three modules: temporal

fusion, nonlinear mapping, and HR frame reconstruction,

which will aggregate temporal information from different

frames, predict high-level visual features, and restore the

HR frame for the LR reference frame, respectively.

Temporal Fusion: To fuse different frames cross the space-

time, we directly concatenate the 2N + 1 frames and then

feed them into a 3×3 convolutional layer to output the fused

feature map.

Nonlinear Mapping: The nonlinear mapping module with

k2 stacked residual blocks [20] will take the shadow fused

features as input to predict deep features.

HR Frame Reconstruction: After extracting deep features

in the LR space, inspired by the EDSR [20], we utilize an

upscaling layer to increase the resolution of the feature map

with a sub-pixel convolution as proposed by Shi et al. [15].

In practice, for ×4 upscaling, two sub-pixel convolution

modules will be used. The final HR video frame estima-

tion IHR′

t will be obtained by a convolutional layer from

the zoomed feature map.

3.4. Loss Functions

Two loss functions Lalign and Lsr are used to train the

TDAN and SR reconstruction networks, respectively. Note

that we have no ground-truth of the aligned LR frames. To

optimize the TDAN, we utilize the reference frame as the

label and make the aligned LR frames close to the reference

frame:

Lalign =
1

2N

t+N∑

i=t−N,6=t

‖ ILR′

i − ILR
t ‖22 . (6)

The objective function of the SR reconstruction network is

defined via L1 reconstruction loss:

Lsr =‖ IHR′

t − IHR
t ‖22 . (7)

Combining the two loss terms, we have the overall loss

function for training our VSR framework:

L = Lalign + Lsr . (8)

The two loss terms are simultaneously optimized when

training our VSR framework. Therefore, our TDAN-based

VSR network is end-to-end trainable. In addition, the

TDAN can be trained with a self-supervision without re-

quiring any annotations.

3.5. Analyses of the Proposed TDAN

Given a reference frame and a set of supporting frames,

the proposed TDAN can employ temporal alignment to

align the supporting frames with the reference frame. It has

several merits:

One-Stage Temporal Alignment: Most previous tempo-

ral alignment methods are based on optical flow, which

will split the temporal alignment problem into two sub-

problems: flow/motion estimation and motion compensa-

tion. As discussed in the paper, the performance of these

methods highly rely on the accuracy of flow estimation, and

the flow-based image warping will introduce annoying ar-

tifacts. Unlike these two-stage temporal alignments, our

TDAN is a one-stage approach, which aligns the support-

ing frames at the feature level. It implicitly captures mo-

tion cues via adaptive sampling parameter generation with-

out explicitly estimating the motion field, and reconstructs

the aligned frames from the aligned features.

Self-Supervised Training: The optical flow estimation is

crucial for the two-stage methods. For ensuring the accu-

racy of flow estimation, some VSR networks [4, 5, 3] uti-

lized additional flow estimation algorithms. Unlike these

methods, there is no flow estimation inside the TDAN, and

it can be trained in a self-supervised manner without relying

on any extra supervisions.

Exploration: For each location in a frame, its motion field

computed by optical flow only refers to one potential po-

sition p. It means that each pixel in a warpped frame will

only copy one pixel at p or use an interpolated value for a

fractional position. However, beyond utilizing information

at p, our deformable alignment module can adaptively ex-

plore more features at sampled positions, which may share

the same image structure as p, and it will help to aggre-

gate more contexts for better-aligned frame reconstruction.
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Methods Bicubic VSRnet [30] VESCPN [2] Liu et al. [3] DBPN [22] RDN [21] RCAN [23] TOFlow [5] TDAN

Vid4 23.79/0.633 24.73/0.697 25.34/0.730 25.53/0.749 25.33/0.731 25.40/0.735 25.42/0.737 25.90/0.765 26.42/0.789

SPMCs-30 27.08/0.744 -/- -/- -/- 29.76/0.830 29.92/0.836 30.07/0.841 29.47/0.831 30.38/0.854

Table 1. PSNR (dB) and SSIM of different networks on Vid4 and SPMCs-30 with upscale factor 4 under BI configuration. The top-2

results are highlighted with red and blue colors.

City/BI

HR Bicubic VSRnet [30] VESCPN [2] Liu et al. [3]

DBPN [22] RDN [21] RCAN [23] TOFlow [5] TDAN

Walk/BD

HR Bicubic DRVSR [4] DUF [1] TDAN

HR Bicubic DRVSR [4] DUF [1] TDAN

Figure 3. Visual comparisons for 4× VSR on the Vid4 dataset. We observed that the proposed TDAN restores better image structures and

details than other state-of-the-art VSR networks, which demonstrates the strong capability of the TDAN in temporal alignment leveraging

informative pixels from LR supporting frames.

Therefore, the proposed TDAN has stronger exploration ca-

pability than optical flow-based models.

4. Experiments

4.1. Experimental Settings

Datasets: In our experiments, we used Vimeo Super-

Resolution dataset et al. [5] containing 64612 training sam-

ples with 448 × 256 resolution as our training dataset and

31 frames from the Temple sequence [28] as the validation

dataset. Same as other methods, we evaluated our mod-

els on the Vid4 benchmark [8], which contains four video

sequences: city, walk, calendar, and foliage, and each se-

quence in the Vid4 has at least 30 720×480 video frames. In

addition, we compare different methods on a larger testing

set: SPMCs-30 [4]. It has 30 diverse and dynamic scenes

and each sequence has 31 960 × 520 HR frames. Since ei-

ther reconstructed frames or source code are not available

for some methods, we will not report their results on the

SPMCs-30.

Evaluation Metrics: PSNR, SSIM [35], and

VQM VFD [36] are used as evaluation metrics to

compare different VSR networks quantitatively. We used

PSNR between a reference frame and the corresponding

aligned supporting frame as a metric to evaluate temporal

alignment performance1. Following the evaluation from

previous approaches [1, 6, 2], we crop 8 pixels near image

boundary and ignore the first 3 and last 3 frames.

Degradation Methods: We compared our TDAN-based

network with current state-of-the-art VSR and SISR net-

works: VSRnet [30], ESPCN [15], VESCPN [2], Liu et

al. [3], TOFlow [5], DBPN [22], RDN [21], RCAN [23],

DRVSR [4], FSRVSR [6], FSTRN [9] ,and DUF [1]. The

first eight networks adopted the Matlab function imresize

with the option bicubic (BI) to generate LR video frames.

SPMC, FSRVSR, and DUF obtained LR frames by first

blurring HR frames via a Gaussian kernel and then down-

sampling the blurred frames (denote as BD for short). Note

that we compared the FRVSR-3-64 and DUF-16L models,

which have similar model sizes as our TDAN-based VSR

network. Recently, RBPN [37] has shown promising VSR

results. However, its model size is more than 6 times larger

than our TDAN, thus we do not include it into comparison.

We trained two different TDAN models with the two differ-

ent degradation methods for fair comparisons.

Implementation Details: In our implementation, k1 = 5

1There is no ground-truth aligned frames, so we use the reference frame

as a pseudo label to approximately measure the temporal alignment quality.
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car05 001/BI HR RCAN [21] ToFlow [5] TDAN

philips hkc01 001/BD HR Bicubic DUF [1] TDAN

Figure 4. Visual comparisons for 4× VSR on video frames from the SPMCs-30.

Methods Bicubic DRVSR [4] FSRVSR [6] FSTRN [9] DUF [1] TDAN

Vid4 23.47/0.616 26.03/0.775 26.17/0.798 24.76/0.720 26.85/0.816 26.86/0.814

SPMCs-30 26.68/0.730 29.89/0.840 -/- -/- 30.14/0.857 30.80/0.869

Table 2. PSNR (dB) and SSIM of different networks with upscale factor 4 under the BD configuration. Our TDAN achieves significant

improvements over the other methods on the SPMCs-30, which contains diverse and dynamic scenes.

Reference AlignedSupporting

Figure 5. Visualization of the learned sampling positions. The pro-

posed TDAN aligns supporting frames with the corresponding ref-

erence frame, and the aligned frame is reconstructed from features

from the supporting frame based on learned sampling positions

from both the reference and supporting frames. Green points in

the supporting frame indicate sampling positions for predicting

corresponding pixels labeled with red color in the aligned frame

by TDAN. We used 3 layers with 3× 3 kernels to sample features

from feature maps of supporting frames and reconstruct aligned

frames. So, we show 9
3 sampling points with green color for each

output pixel (red point). Note that we directly show sampling on

the supporting frame rather than feature maps, and center points

of 5x5 red boxes refer to target pixels for better visualization.

and k2 = 10 residual blocks are used in feature extraction

and SR reconstruction networks, respectively. We used a

downsampling factor: s = 4 in our experiments. Each train-

ing batch contains 64 × 5 LR RGB patches with the size

48 × 48, where 64 means the batch size and 5 refers to the

number of consecutive input frames. We implemented our

network with PyTorch [38] and adopt Adam [39] as the op-

timizer.

Supporting TDAN

FlowVSR Reference

Figure 6. Temporal alignment results of FlowVSR and TDAN on a

supporting/reference frame pair with a very large temporal gap (60

frames). The TDAN can exploit rich image contexts containing

similar content (green regions) as target pixels (red points) from

the supporting frame to employ accurately temporal alignment.

Note that the alignment is performed on feature maps of support-

ing frames, so the real exploited image regions for alignment will

be much larger than the green regions.

4.2. Comparisons

Results with BI Degradation: Table 1 shows quantitative

comparisons on the BI configuration. Note that our TDAN

used the same training dataset as TOFlow, and other VSR

methods did not release their training data or training source

code. Therefore we compared with their methods directly

based on the provided results. We can see that our TDAN

achieves the best performance among all compared state-of-

the-art flow-based VSR networks and SISR networks.
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Visual results for 4× VSR on the BI configuration are il-

lustrated in Fig. 3 and Fig. 4. We can find that the SISR net-

works without using the supporting frames: DPBN, RDN,

and RCAN, fail to restore missing image details, such as the

building structures in City image and numbers in Car image.

With motion compensation, VESCPN [2], Liu et al. [3], and

TOFlow [5] can compensate missing details from the sup-

porting frames. Our TDAN recovers more fine image de-

tails than others, which demonstrates the effectiveness of

the proposed framework.

Results with BD Degradation: Table 3 shows quantitative

comparisons on the BD configuration. Our method outper-

forms the flow-based networks (e.g. DRVSR and FRVSR)

and 3D convolution-based FSTRN, and achieves compara-

ble results with DUF on the Vid4 dataset. When testing on a

larger dataset: SPMCs-30, our TDAN is significantly better

than the other methods with 0.64dB improvements over the

DUF. It should be noted that DUF and FRVSR take 7 and

10 frames as inputs respectively, while our TDAN with 5

frames as inputs which exploits less sequence information.

Visual results on the BD configuration are shown in

Fig. 3 and Fig. 4. In comparison with recent DUF [1],

benefiting from the strong temporal alignment network, the

proposed TDAN is more effective in exploiting information

in the supporting frames. Therefore, it is more capable of

restoring image structures, for example, the baby face in

Walk and the bridge structures in philips hkc01 001.

Video Quality Evaluation We further compare our TDAN

to state-of-the-art VSR networks: Liu et al. [3], ToFlow [5],

DRVSR [4], and DUF [1] on a video quality assessment

metric: VQM VFD [36] shown in Table 3. The TDAN

outperforms recent flow-based methods: Liu et al. [3],

ToFlow [5], and DRVSR [4], and achieves significantly

better performance than DUF on the SPMCs-30. The re-

sults further demonstrate that our TDAN is more capable of

restoring spatio-temporal structures in nature videos.

Methods Liu et al. ToFlow TDAN-BI DRVSR DUF TDAN-BD

Vid4 0.113 0.104 0.094 0.100 0.084 0.084

SPMCs-30 - 0.0049 0.042 - 0.043 0.038

Table 3. VQM VFD [36] results under BI and BD settings. Note

that the VQM VFD can measure spatio-temporal consistency

quality of restored videos and smaller is better.

Model Sizes: Table 4 shows parameter numbers of several

networks with the leading VSR performance. We can see

that the state-of-the-art SISR networks: RDN, RCAN, and

TOFlow, have larger model sizes than the TDAN. Our pro-

posed TDAN has comparable parameter number with the

FRVSR and DUF. Even with such a light-weight model,

the proposed TDAN still achieves promising VSR perfor-

mance, which further validates the effectiveness of the pro-

posed one-stage temporal alignment framework.

Methods RDN RCAN TOFlow FRVSR DUF TDAN

Param./M 22.30 15.50 6.20 2.00 1.90 1.97

Table 4. Parameter numbers (×10
6) of several networks with lead-

ing VSR performance.

Models SISR MFSR FlowVSR D2 D3 D4 D5

PSNR 30.07 30.97 31.17 31.06 31.21 31.32 31.39

Table 5. VSR performance of different baseline models and vari-

ants of TDAN on the validation video sequences.

4.3. Ablation Study

To further investigate our TDAN, we compare it with

three models: SISR, MFSR, and FlowVSR, which are

trained on the Vimeo Super-Resolution dataset same as the

TDAN. The SISR model only uses the reference frame as

the input, and the MFSR directly concatenates the support-

ing and reference frames as the input. The FlowVSR adopts

optical flow to warp supporting frames, and then feeds the

aligned supporting frames and the reference frame into SR

reconstruction network. We use SpyNet [40] to predict op-

tical flow for the FlowVSR as in ToFlow [5]. For fair com-

parisons, the MFSR and FlowVSR networks have a same

SR reconstruction network as TDAN. Only the input chan-

nel number of the first convolutional layer in SISR is dif-

ferent from others, because only the reference frame is used

in the SISR network. In addition, we compare our TDAN

models with different numbers: 2, 3, 4, and 5 of deformable

convolutional layers, and we denote these networks as D2,

D3, D4, and D5, respectively. The four models all have 1

deformable convolutional layer for sampling features from

supporting frames and 1 layer before the reconstruction

layer in Fig. 2 for adaptively leveraging visual contexts. For

D3, D4, and D5, to strength the capability of the offset gen-

erator, they have additional 1, 2, and 3 layers, respectively,

before the convolutional offset generator in Fig. 2.

Effectiveness of TDAN for VSR Table 5 shows VSR per-

formance of SISR, MFSR, FlowVSR, D2, D3, D4, and D5

networks. We can see that the MFSR outperforms the SISR;

FlowVSR, D2, D3, D4, and D5 are better than the MFSR;

our D3, D4, and D5 perform better than FlowVSR. These

observations demonstrate that exploiting supporting frames

even without temporal alignment can improve VSR perfor-

mance; TDAN and flow-based warping are helpful in han-

dling motion issues and exploiting useful information in

supporting frames; the proposed TDAN (e.g. D3, D4, and

D5) can achieve better performance than the optical flow-

based FlowVSR model even with less parameters; more de-

formable layers can enhance the capability of TDAN. For

setting TDAN with comparable model size as FRVSR and

DUF, we used D4 in our experiments. From qualitative and

quantitative comparisons in Sec. 4.2, we find that even D4

has achieved state-of-the-art VSR performance.

Why TDAN is Capable of Temporal Alignment? Fig-
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ReferenceSupporting FlowVSR TDAN

Figure 7. Temporal alignment results of FlowVSR and TDAN on Foliage. Two visual occlusion regions are highlighted. A black car (red

box) appears in the supporting frame but does not show in the reference frame; part of a white car shows in the reference frame but not

in the supporting frame (green box). The proposed TDAN can effectively alleviate the occlusion issue and restore a photo-realistic image

with fine details by exploiting rich visual contexts.

Vid4 City Walk Calendar Foliage Avg.

FlowVSR 34.49 26.28 30.04 30.73 30.50

TDAN 49.63 48.14 44.74 46.77 47.32

Table 6. Temporal alignment results of FlowVSR and TDAN on

620 LR video frames in the Vid4 dataset.

ure 5 shows visualization of sampling positions on support-

ing frames based on learned offsets and temporal alignment

result on Temple. We see that sampling positions tend to

capture visual regions with different shapes containing sim-

ilar content as output pixels for temporal alignment rather

than spanning over whole objects as in object detection [7],

and the TDAN perfectly aligns the supporting frame with

the reference frame. Another example with an additional

visual comparison to FlowVSR is illustrated in Fig. 6. We

see that the TDAN can handle visual occlusion (pink line)

and large motion and deformation (the other two lines) with

exploiting image contexts containing similar content as tar-

get pixels from the supporting frame, but the optical flow-

based FlowVSR fails due to its limited exploration capacity

(one pixel). The results demonstrate that the learnable sam-

pling mechanism provides the TDAN strong ability to lever-

age rich and useful contextual information, which makes the

TDAN be effective in employing temporal alignment. Fig-

ure 7 further compares temporal alignment performance of

TDAN and FlowVSR on Foliage. Clearly, the FlowVSR

generates a blurry aligned frame and fails to address the oc-

clusion issue. In contrast, our TDAN can well handle visual

occlusions with stronger exploration ability.

Table 6 shows quantitative results of different temporal

alignment methods. We can find that the TDAN achieves

significantly better temporal alignment performance than

FLowVSR, which further demonstrates the superiority of

the proposed temporal alignment framework.

5. Limitations

In this work, we only use a light-weight TDAN model

with only 1.9 million parameters. Even though our TDAN

can effectively leveraging temporal information, the smaller

model might be not strong enough to recover certain im-

age structures and details. One failure case of the TDAN

is shown in Fig. 8. We can see that the TDAN fails to

HR RCAN TOFlow TDAN

Figure 8. A failure case of the TDAN. The very deep SISR net-

work: RCAN can accurately recover the structures of the shown

image region in the city video frame, but TOFlow and TDAN fail.

recover the structures in the building, but the very deep

SISR network: RCAN can accurately reconstruct them,

which demonstrates that the LR reference frame can pro-

vide enough cues for restoring the structures without requir-

ing additional information from the LR supporting frames.

Therefore, it is worth to learn a large model for more accu-

rate structure and detail reconstruction.

In TDAN, we use the LR reference frame as the label to

define the Lalign. However, the LR reference frame is not

exactly same as real aligned LR frames, which will make

the label noisy. Robust algorithms like [41] for learning

under label noise can be considered to improve the Lalign.

6. Conclusion

In this paper, we propose a one-stage temporal alignment

network: TDAN for video super-resolution. Unlike previ-

ous optical flow-based methods, which split the temporal

alignment problem into two sub-problems: motion estima-

tion and motion compensation, the TDAN implicitly cap-

tures motion cues via a deformable sampling module at the

feature level and directly predicts aligned LR video frames

from sampled features without image-wise warping opera-

tions. In addition, the TDAN is capable of exploring im-

age contextual information. With the advanced one-stage

temporal alignment design and the strong exploration capa-

bility, the proposed TDAN-based VSR framework outper-

forms the compared several state-of-the-art VSR networks.
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