
GLU-Net: Global-Local Universal Network for

Dense Flow and Correspondences

Prune Truong Martin Danelljan Radu Timofte

Computer Vision Lab, D-ITET, ETH Zürich, Switzerland
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Abstract

Establishing dense correspondences between a pair of

images is an important and general problem, covering ge-

ometric matching, optical flow and semantic correspon-

dences. While these applications share fundamental chal-

lenges, such as large displacements, pixel-accuracy, and

appearance changes, they are currently addressed with spe-

cialized network architectures, designed for only one par-

ticular task. This severely limits the generalization capabil-

ities of such networks to new scenarios, where e.g. robust-

ness to larger displacements or higher accuracy is required.

In this work, we propose a universal network architec-

ture that is directly applicable to all the aforementioned

dense correspondence problems. We achieve both high ac-

curacy and robustness to large displacements by investi-

gating the combined use of global and local correlation

layers. We further propose an adaptive resolution strat-

egy, allowing our network to operate on virtually any input

image resolution. The proposed GLU-Net achieves state-

of-the-art performance for geometric and semantic match-

ing as well as optical flow, when using the same network

and weights. Code and trained models are available at

https://github.com/PruneTruong/GLU-Net.

1. Introduction

Finding pixel-to-pixel correspondences between images

continues to be a fundamental problem in Computer Vi-

sion [14, 18]. This is due to its many important ap-

plications, including visual localization [48, 53], 3D-

reconstruction [1], structure-from-motion [47], image ma-

nipulation [16, 35], action recognition [50] and autonomous

driving [27]. Due to the astonishing performance achieved

by the recent developments in deep learning, end-to-end

trainable Convolutional Neural Networks (CNNs) are now

applied for this task in all the aforementioned domains.

The general problem of estimating correspondences be-

tween pairs of images can be divided into several differ-

Figure 1. Our GLU-Net estimates dense correspondences between

a source (left) and a target (right) image. The estimated corre-

spondences are here used to warp (center) the source image. The

warped result (center) accurately matches the target image (right).

The same network and weights are applied for Geometric match-

ing, Semantic matching and Optical flow tasks.

ent tasks, depending on the origin of the images. In the

geometric matching task [18], the images constitute differ-

ent views of the same scene, taken by a single or multiple

cameras. The images may be taken from radically different

viewpoints, leading to large displacements and appearance

transformations between the frames. On the other hand, op-

tical flow [4, 20] aims to estimate accurate pixel-wise dis-

placements between two consecutive frames of a sequence

or video. In the semantic matching problem [17, 35] (also

referred as semantic flow), the task is instead to find se-

mantically meaningful correspondences between different

instances of the same scene category or object, such as ‘car’

or ‘horse’. Current methods generally address one of these

tasks, using specialized architectures that generalize poorly

to related correspondence problems. In this work, we there-

fore set out to design a universal architecture that jointly

addresses all aforementioned tasks.

One key architectural aspect shared by a variety of cor-
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respondence networks is the reliance on correlation lay-

ers, computing local similarities between deep features ex-

tracted from the two images. These provide strong cues

when establishing correspondences. Optical flow methods

typically employ local correlation layers [13, 22, 23, 25, 51,

52], evaluating similarities in a local neighborhood around

an image coordinate. While suitable for small displace-

ments, they are unable to capture large viewpoints changes.

On the contrary, geometric and semantic matching architec-

tures utilize global correlations [31, 37, 43, 44, 45], where

similarities are evaluated between all pairs of locations in

the dense feature maps. While capable of handling long-

range matches, global correlation layers are computation-

ally unfeasible at high resolutions. Moreover, they constrain

the input image size to a pre-determined resolution, which

severely hampers accuracy for high-resolution images.

Contributions: In this paper, we propose GLU-Net, a

Global-Local Universal Network for estimating dense cor-

respondences. Our architecture is robust to large viewpoint

changes and appearance transformations, while capable of

estimating small displacements with high accuracy. The

main contributions of this work are: (i) We introduce a sin-

gle unified architecture, applicable to geometric matching,

semantic matching and optical flow. (ii) Our network care-

fully integrates global and local correlation layers to handle

both large and small displacements. (iii) To circumvent the

fixed input resolution imposed by the global cost volume,

we propose an adaptive resolution strategy that enables our

network to take any image resolution as input, crucial for

high-accuracy displacements. (iv) We train our network in

a self-supervised manner, relying on synthetic warps of real

images, thus requiring no annotated ground-truth flow.

We perform comprehensive experiments on the three

aforementioned tasks, providing detailed analysis of our

approach and thorough comparisons with recent state-of-

the-art. Our approach outperforms previous methods for

dense geometric correspondences on the HPatches [5] and

ETH3D [49] datasets, while setting a new state-of-the-

art for semantic correspondences on the TSS [54] dataset.

Moreover, our network, without any retraining or fine-

tuning, generalizes to optical flow by providing highly com-

petitive results on the KITTI [15] dataset. Both training

code and models are available at [55].

2. Related work

Finding correspondences between a pair of images is

a classical computer vision problem, uniting optical flow,

geometric correspondences and semantic matching. This

problem dates back several decades [20], with most clas-

sical techniques relying on hand crafted [2, 3, 6, 19, 34,

36, 46] or trained [12, 40, 56] feature detectors/descriptors,

or variational formulations [4, 20, 35]. In recent years,

CNNs have revolutionised most areas within vision, includ-

ing different aspects of the image correspondence problem.

Here, we focus on Convolutional Neural Network (CNN)-

based methods for generating dense correspondences or

flow fields, as these are most related to our work.

Optical Flow: Dosovitskiy et al. [13] constructed the first

trainable CNN for optical flow estimation, FlowNet, based

on a U-Net denoising autoencoder architecture [57] and

trained it on the large synthetic FlyingChairs dataset. Ilg et

al. [25] stacked several basic FlowNet models into a large

one, called FlowNet2, which performed on par with clas-

sical state-of-the-art methods on the Sintel benchmark [7].

Subsequently, Ranjan and Black [42] introduced SpyNet, a

compact spatial image pyramid network.

Recent notable contributions to end-to-end trainable op-

tical flow include PWC-Net [51, 52] and LiteFlowNet [22],

followed by LiteFlowNet2 [23]. They employ multiple con-

strained correlation layers operating on a feature pyramid,

where the features at each level are warped by the current

flow estimate, yielding more compact and effective net-

works. Nevertheless, while these networks excel at small

to medium displacements with small appearance changes,

they perform poorly on strong geometric transformations or

when the visual appearance is significantly different.

Geometric Correspondence: Unlike optical flow, ge-

ometric correspondence estimation focuses on large geo-

metric displacements, which can cause significant appear-

ance distortions between the frames. Motivated by recent

advancements in optical flow architectures, Melekhov et

al. [37] introduced DGC-Net, a coarse-to-fine CNN-based

framework that generates dense 2D correspondences be-

tween image pairs. It relies on a global cost volume con-

structed at the coarsest resolution. However, the input size

is constrained to a fixed resolution (240×240), severely lim-

iting its performance on higher resolution images. Rocco et

al. [45] aim at increasing the performance of the global cor-

relation layer by proposing an end-to-end trainable neigh-

borhood consensus network, NC-Net, to filter out ambigu-

ous matches and keep only the locally and cyclically consis-

tent ones. Furthermore, Laskar et al. [33] utilize a modified

version of DGC-Net, focusing on image retrieval.

Semantic Correspondence: Unlike optical flow or ge-

ometric matching, semantic correspondence poses addi-

tional challenges due to intra-class appearance and shape

variations among different instances from the same ob-

ject or scene category. Rocco et al. [43, 44] proposed

the CNNGeo matching architecture, predicting globally

parametrized affine and thin plate spline transformations be-

tween image pairs. Other approaches aim to predict richer

geometric deformations [10, 29, 30, 45] using e.g. Spatial

Transformer Networks [26]. Recently, Jeon et al. [28] intro-

duced PARN, a pyramidal model where dense affine trans-

formation fields are progressively estimated in a coarse-to-

fine manner. SAM-Net [31] obtains better results by jointly
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learning semantic correspondence and attribute transfer.

Huang et al. [21] proposed DCCNet, which fuses correla-

tion maps derived from local features and a context-aware

semantic feature representation.

3. Method

We address the problem of finding pixel-wise corre-

spondences between a pair of images Is ∈ R
H×W×3 and

It ∈ R
H×W×3. In this work, we put no particular assump-

tions on the origin of the image pair itself. It may corre-

spond to two different views of the same scene, two consec-

utive frames in a video, or two images with similar semantic

content. Our goal is to estimate a dense displacement field,

often referred to as flow, w ∈ R
H×W×2 that warps image

Is towards It such that,

It(x) ≈ Is(x+w(x)) . (1)

The flow w represents the pixel-wise 2D motion vectors in

the target image coordinate system. It is directly related to

the pixel correspondence map m(x) = x + w(x), which

directly maps an image coordinate x in the target image to

its corresponding position in the source image.

In this work, we design an architecture capable of ro-

bustly finding both long-range correspondences and accu-

rate estimation of pixel-wise displacements. We thereby

achieve a universal network for predicting dense flow

fields, applicable to geometric matching, semantic corre-

spondences and optical flow. The overall architecture fol-

lows a CNN feature-based coarse-to-fine strategy, which

has proved widely successful for specific tasks [22, 28, 31,

37, 51]. However, contrary to previous works, our archi-

tecture combines global and local correlation layers, as dis-

cussed in Section 3.1 and 3.2, to benefit from their comple-

mentary properties. We further circumvent the input reso-

lution restriction imposed by the global correlation layer by

introducing an adaptive resolution strategy in Section 3.3.

It is based on a two-stream feature pyramid, which allows

dense correspondence prediction for any input resolution

image. Our final architecture is detailed in Section 3.4 and

the training procedure explained in Section 3.5.

3.1. Local and Global Correlations

Current state-of-the-art architectures [21, 22, 28, 37, 51]

for estimating image correspondences or optical flow rely

on measuring local similarities between the source and tar-

get images. This is performed in a deep feature space,

which provides a discriminative embedding with desirable

invariances. The result, generally referred to as a correlation

or cost volume, provides an extremely powerful cue when

deriving the final correspondence or flow estimate. The cor-

relation can be performed in a local or global manner.

Local correlation: In a local correlation layer, the feature

similarity is only evaluated in the neighborhood of the target

image coordinate, specified by a search radius R. Formally,

the correlation cl between the target F l
t ∈ R

Hl×Wl×dl and

source F l
s ∈ R

Hl×Wl×dl feature maps is defined as,

cl(x,d) = F l
t (x)

TF l
s (x+ d) , ‖d‖∞ ≤ R , (2)

where x ∈ Z
2 is a coordinate in the target feature map and

d ∈ Z
2 is the displacement from this location. The dis-

placement is constrained to ‖d‖∞ ≤ R, i.e. the maximum

motion in any direction is R. We let l denote the level in

the feature pyramid. While most naturally thought of as a

4-dimensional tensor, the two displacement dimensions are

usually vectorized into one to simplify further processing in

the CNN. The resulting 3D correlation volume cl thus has a

dimensionality of Hl ×Wl × (2R+ 1)2.

Global correlation: A global correlation layer evalu-

ates the pairwise similarities between all locations in the

target and source feature maps. The correlation volume

Cl ∈ R
Hl×Wl×Hl×Wl contains at each target image lo-

cation x ∈ Z
2 the scalar products between corresponding

feature vector F l
t (x) and the vectors F l

s (x
′) ∈ R

d extracted

from all source feature map coordinates x′,

Cl(x,x′) = F l
t (x)

TF l
s (x

′) . (3)

As for the local cost volume, we vectorize the source dimen-

sions, leading to a 3D tensor of size Hl ×Wl × (HlWl).
Comparison: Local and global correlation layers have a

few key contrary properties and behaviors. Local correla-

tions are popularly employed in architectures designed for

optical flow [13, 22, 51], where the displacements are gen-

erally small. Thanks to their restricted search region, local

correlation layers can be applied for high-resolution feature

maps, which allows accurate estimation of small displace-

ments. On the other hand, a local correlation based archi-

tecture is limited to a certain maximum range of displace-

ments. Conversely, a global correlation based architecture

does not suffer from this limitation, encapsulating arbitrary

long-range displacements.

The major disadvantage of the global cost volume is that

its dimensionality scales with the size of the feature map

Hl × Wl. Therefore, due to the quadratic O((HlWl)
2)

scaling in computation and memory, global cost volumes

are only suitable at coarse resolutions. Moreover, post-

processing layers implemented with 2D convolutions ex-

pect a fixed channel dimensionality. Since the channel di-

mension HlWl of the cost volume depends on its spatial di-

mensions Hl × Wl, this effectively constrains the network

input resolution to a fixed pre-determined value, referred to

as HL ×WL. The network can thus not leverage the more

detailed structure in high-resolution images and lacks pre-

cision, since the images require down-scaling to HL ×WL

before being processed by the network. Architectures with

only local correlations (Local-Net) or with a unique global

correlation (Global-Net) are visualized in Figure 2a, b.
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Figure 2. Schematic representation of different architectures for dense flow field estimation w. Local-Net (a) and Global-Net (b) employ

only local and global correlation layers, respectively. Our GLOCAL-Net (c) combines both to effectively handle short and long-range

displacements. GLU-Net (d) additionally employs our adaptive resolution strategy, thus capable of processing high-resolution images.

3.2. GlobalLocal Architecture

We introduce a unified network that leverages the advan-

tages of both global and local correlation layers and which

also circumvents the limitations of both. Our goal is to han-

dle any kind of geometric transformations - including large

displacements - while achieving high precision for detailed

and small displacements. This is performed by carefully

integrating global and local correlation layers in a feature

pyramid based network architecture.

Inspired by DGC-Net [37], we employ a global correla-

tion layer at the coarsest level. The purpose of this layer

is to handle the long-range correspondences. Since these

are best captured in the coarsest scale, only a single global

correlation is needed. In subsequent layers, the dense flow

field is refined by computing image feature similarity us-

ing local correlations. This allows precise estimation of the

displacements. Combining global and local correlation lay-

ers allows us to achieve robust and accurate prediction of

both long and small-range motions. Such an architecture is

visualized with GLOCAL-Net in Figure 2c. However, this

network is still restricted to a certain input resolution. Next,

we introduce a design strategy that circumvents this issue.

3.3. Adaptive resolution

As previously discussed, the global correlation layer im-

poses a pre-determined input resolution for the network to

ensure a constant channel dimensionality of the global cost

volume. This severely limits the applicability and accuracy

of the correspondence network, since higher resolution im-

ages requires down-scaling before being processed by the

network, followed by up-scaling of the resulting flow. In

this section, we address this key issue by introducing an ar-

chitecture capable of taking images of any resolution, while

still benefiting from a global correlation.

Our adaptive-resolution architecture consists of two sub-

networks, which operate on two different image resolutions.

The first, termed L-Net, takes source and target images

downscaled to a fixed resolution HL × WL, which allows

a global correlation layer to be integrated. The H-Net on

the other hand, operates directly on the original image res-

olution H × W , which is not constrained to any specific

value. It refines the flow estimate generated by the L-Net

with local correlations applied to a shallow feature pyramid

constructed directly from the original images. It is schemat-

ically represented in Figure 2d.

Both sub-networks are based on a coarse-to-fine archi-

tecture, employing the same feature extractor backbone. In

detail, the L-Net relies on a global correlation at the coars-

est level in order to effectively handle any kind of geometric

transformations, including very large displacements. Sub-

sequent levels of L-Net employ local correlations to refine

the flow field. It is then up-sampled to the coarsest reso-

lution of H-Net, where it serves as the initial flow estimate

used for warping the source features Fs. Subsequently, the

flow prediction is refined numerous times within H-Net, that

operates on the full scale images, thus providing a very de-

tailed, sub-pixel accurate final estimation of the dense flow

field relating Is and It.

For high-resolution images, the upscaling factor between

the finest pyramid level, lL, of L-Net and the coarsest, lH ,

of H-Net (see Figure 2d) can be significant. Our adaptive

resolution strategy allows additional refinement steps of the

flow estimate between those two levels during inference,

thus improving the accuracy of the estimated flow, without

training any additional weights. This is performed by re-

cursively applying the lH layer weights at intermediate res-

olutions obtained by down-sampling the source and target

features from lH . In summary, our adaptive resolution net-

work is capable of seamlessly predicting an accurate flow

field in the original input resolution, while also benefiting

from robustness to long-range correspondences provided by

the global layer. The entire network is trained end-to-end.

3.4. Architecture details

In this section, we provide a detailed description of our

architecture. While any feature extractor backbone can be

employed, we use the VGG-16 [8] network trained on Im-

ageNet [32] to provide a fair comparison to previous works

in geometric [37] and semantic correspondences [28]. For

our L-Net, we set the input resolution to (HL × WL) =
(256 × 256). It is composed of two pyramid levels, using

Conv5-3 (16×16 resolution) and Conv4-3 (32×32 reso-

lution) respectively. The former employs global correlation,
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Figure 3. Architectural details of our GLU-Net. It is composed of two modules, operating on two different image resolutions. The L-Net

(right) relies on a global correlation for long-range matches, while the H-Net (left) refines the flow estimate with local correlations.

while the latter is based on a local correlation. The H-Net is

composed of two feature pyramid levels extracted from the

original image resolution H×W . For this purpose, we em-

ploy Conv4-3 and Conv3-3 having resolutions H
8
× W

8

and H
4
×W

4
respectively. The H-Net is purely based on local

correlation layers. Our final architecture GLU-Net, com-

posed of four pyramid levels in total, is detailed in Figure 3.

Next, we describe the various architectural components.

Coarsest resolution and mapping estimation: We com-

pute a global correlation from the L2-normalized source

and target features. The cost volume is further post-

processed by applying channel-wise L2-normalisation fol-

lowed by ReLU [38] to strongly down-weight ambiguous

matches [43]. Similar to DGC-Net [37], the resulting global

correlation C is then fed into a correspondence map decoder

Mtop to estimate a 2D dense correspondence map m at the

coarsest level L1 of the feature pyramid:

m
1 = Mtop

(
C
(
F 1

t , F
1

s

))
. (4)

The correspondence map is then converted to a displace-

ment field, as w1(x) = m
1(x)− x.

Subsequent flow estimations: The flow is refined by local

correlation modules. At level l, the flow decoder M infers

the residual flow ∆w̃
l as,

∆w̃
l = M

(
c
(
F l

t , F̃
l
s ;R

)
, up

(
w

l−1
))

. (5)

c is a local correlation (2) with search radius R and F̃ l
s (x) =

F l
s

(
x+ up

(
w

l−1
)
(x)

)
is the warped source feature map

Fs according to the upsampled flow up
(
w

l−1
)
. The com-

plete flow field is computed as w̃l = ∆w̃
l + up

(
w

l−1
)
.

Flow refinement: Contextual information have been

shown advantageous for pixel-wise prediction tasks [9, 21].

We thus use a sub-network R, called the refinement net-

work, to post-process the estimated flow at the highest lev-

els of L-Net and H-Net (L2 and L4 in Figure 3) by effec-

tively enlarging the receptive field size. It takes the features

f l of the second last layer from the flow decoder M l as in-

put and outputs the refined flow w
l = R

(
f l
)
+ w̃

l. For the

other pyramid level (L3), the final flow field is wl = w̃
l.

Cyclic consistency: Since the quality of the correlation

is of primary importance for the flow estimation process,

we introduce an additional filtering step on the global cost

volume to enforce the reciprocity constraint on matches. We

employ the soft mutual nearest neighbor filtering introduced

by [45] and apply it to post-process the global correlation.

3.5. Training

Loss: We train our network in a single phase. We freeze the

pre-trained backbone feature extractor during training. Fol-

lowing FlowNet [13], we apply supervision at every pyra-

mid level using the endpoint error (EPE) loss with respect

to the ground truth displacements.

Dataset: Our network is solely trained on pairs generated

by applying random warps to the original images. Since

our network is designed to also estimate correspondences

between high-resolution images, training data of sufficient

resolution is preferred in order to utilize the full potential of

our architecture. We use a combination of the DPED [24],

CityScapes [11] and ADE-20K [58] datasets, which have

images larger than 750×750. On the total dataset of 40, 000
images, we apply the same synthetic transformations as

in tokyo (DGC-Net [37] training data). The resulting im-

age pairs are cropped to 520 × 520 for training. We call

this dataset DPED-CityScape-ADE. We provide additional

training and architectural details in the supplementary.

6262



Figure 4. Qualitative comparison with state-of-the-art on geometric correspondence datasets. Top: Pairs of HP images. Bottom: Pairs of

images from ETH3D taken by two different cameras. Our approach effectively handles large variations in view-point and appearance.

4. Experimental Validation

In this section, we comprehensively evaluate our ap-

proach for three diverse problems: geometric matching, se-

mantic correspondences and optical flow. Importantly, we

use the same network and model weights, trained on DPED-

CityScape-ADE, for all three applications. More detailed

results are available in the supplementary material.

4.1. Geometric matching

We first apply our GLU-Net for the task of geometric

matching. The images thus consist of different views of the

same scene and include large geometric transformations.

HP: As in DGC-Net [37], we employ the 59 sequences

of the HPatches dataset [5] labelled with v_X, which have

viewpoint changes, thus excluding the ones labelled i_X,

which only have illumination changes. Each image se-

quence contains a source image and 5 target images taken

under increasingly larger viewpoints changes, with sizes

ranging from 450 × 600 to 1613 × 1210. In addition to

evaluating on the original image resolution (referred to as

HP), we also evaluate on downscaled (240 × 240) images

and ground-truths (HP-240) following [37].

ETH3D: To validate our approach for real 3D scenes,

where image transformations are not constrained to sim-

ple homographies, we also employ the Multi-view dataset

ETH3D [49]. It contains 10 image sequences at 480×752 or

514× 955 resolution, depicting indoor and outdoor scenes.

The authors additionally provide a set of sparse geometri-

cally consistent image correspondences (generated by [47])

that have been optimized over the entire image sequence us-

ing the reprojection error. We sample image pairs from each

sequence at different intervals to analyze varying magnitude

of geometric transformations, and use the provided points as

sparse ground truth correspondences. This results in about

500 image pairs in total for each selected interval.

Metrics: In line with [37], we employ the Average End-

Point Error (AEPE) and Percentage of Correct Keypoints

(PCK) as the evaluation metrics. AEPE is defined as the

Euclidean distance between estimated and ground truth flow

fields, averaged over all valid pixels of the target image.

PCK is computed as the percentage of correspondences x̃j

with an Euclidean distance error ‖x̃j − xj‖ ≤ δ, w.r.t. to

the ground truth xj , that is smaller than a threshold δ.

Compared methods: We compare with DGC-Net [37]

trained on tokyo, which is the current state-of-the-art for

dense geometric matching. For a fair comparison we also

train a version, called DGC-Net†, using the same data

(DPED-CityScape-ADE) as our GLU-Net. We addition-

ally compare with two state-of-the-art optical flow meth-

ods, PWC-Net [51] and LiteFlowNet [22], both trained on

Flying-Chairs [13] followed by 3D-things [25]. We use the

PyTorch [41] implementations [37, 39, 51] of the models

and the pre-trained weights provided by the authors.

Results: We first present results on the HP and HP-240

in Table 1. Our model strongly outperforms all others by

a large margin both in terms of accuracy (PCK) and ro-

bustness (AEPE). It is interesting to note that while our

HP-240x240 HP

Run-time AEPE PCK-1px PCK-5px AEPE PCK-1px PCK-5px

LiteFlowNet [22] 45.10 ms 19.41 28.36 % 57.66 % 118.85 13.91 % 31.64 %

PWC-Net [51, 52] 38.51 ms 21.68 20.99 % 54.19 % 96.14 13.14 % 37.14 %

DGC-Net [37] 138.30 ms 9.07 50.01 % 77.40 % 33.26 12.00 % 58.06 %

DGC-Net† 138.30 ms 9.12 43.09 % 79.35 % 33.47 9.19 % 56.02 %

GLU-Net (Ours) 38.10 ms 7.40 59.92 % 83.47 % 25.05 39.55 % 78.54 %

Table 1. Comparison of state-of-the-art algorithms applied to the

task of geometric matching, on the HPatches dataset [5]. Lower

AEPE and higher PCK are better.
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Figure 5. Quantitative results on geometric matching dataset

ETH3D [49]. AEPE and PCK-5 are computed on pairs of images

sampled from consecutive images of ETH3D at different intervals.

model is already better than DGC-Net on the small resolu-

tion HP-240, the gap in performance further broadens when

increasing the image resolution. Particularly, GLU-Net ob-

tains a PCK-1px value almost four times higher than that

of DGC-Net on HP. This demonstrates the benefit of our

adaptive resolution strategy, which enables to process high-

resolution images with high accuracy. Moreover, our model

achieves a 3.6 times faster inference compared to DGC-Net.

Figure 4 shows qualitative examples of different networks

applied to HP images and ETH3D image pairs taken by two

different cameras. Our GLU-Net is robust to large view-

points variations as well as drastic changes in illumination.

In Figure 5, we plot AEPE and PCK-5px obtained on the

ETH3D scenes for different intervals between image pairs.

For small intervals, finding correspondences strongly re-

sembles optical flow task while increasing it leads to larger

displacements. Therefore, specialised optical flow methods

PWC-Net [51] and LiteFlowNet [22] obtain slightly better

AEPE and PCK for low intervals, but rapidly degrade for

larger ones. In all cases, our approach consistently outper-

forms DGC-Net [37] in both metrics by a large margin.

4.2. Semantic matching

Here, we perform experiments for the task of semantic

matching, where images depict different instances of the

same object category, such as cars or horses. We use the

same model and weights as in the previous section.

Dataset and metric: We use the TSS dataset [54], which

provides dense flow fields annotations for the foreground

object in each pair. It contains 400 image pairs, divided into

three groups: FG3DCAR, JODS, and PASCAL, according

to the origins of the images. Following Taniai et al. [54],

we report the PCK with a distance threshold equal to α ·
max(Hs,Ws), where Hs and Ws are the dimensions of the

source image and α = 0.05.

Compared methods: We compare to several recent

state-of-the-art methods specialised in semantic matching

[21, 28, 29, 31, 44, 45]. In addition to our universal net-

work, we evaluate a version that adopts two architectural

details that are used in the semantic correspondence litera-

ture. Specifically, we add a consensus network [45] for the

global correlation layer and concatenate features from dif-

ferent levels in the L-Net, similarly to [28] (see Section 4.4

for an analysis). We call this version Semantic-GLU-Net.

Methods Feature backbone FG3DCar JODS PASCAL Avg.

CNNGeo(W) [44] ResNet-101 90.3 76.4 56.5 74.4

RTNs [29] ResNet-101 90.1 78.2 63.3 77.2

PARN [28] VGG-16 87.6 71.6 68.8 76.0

PARN [28] ResNet-101 89.5 75.9 71.2 78.8

NC-Net [45] ResNet-101 94.5 81.4 57.1 77.7

DCCNet [21] ResNet-101 93.5 82.6 57.6 77.9

SAM-Net [31] VGG-19 96.1 82.2 67.2 81.8

GLU-Net VGG-16 93.2 73.3 71.1 79.2

Semantic-GLU-Net VGG-16 94.4 75.5 78.3 82.8

Table 2. PCK [%] obtained by different state-of-the-art methods

on TSS [54] for the task of semantic matching.

To accommodate reflections, which do not occur in geo-

metric correspondence scenarios, we infer the flow field on

original and flipped versions of the target image and output

the flow field with least horizontal average magnitude.

Results: We report results on TSS in Table 2. Our univer-

sal network obtains state-of-the-art performance on average

over the three TSS groups. Moreover, individual results on

FG3Dcar and PASCAL are very close to best metrics. This

shows the generalization properties of our network, which is

not trained on the same magnitude of semantic data. In con-

trast, most specialized approaches fine-tuned on PASCAL

data [17]. Finally, including architectural details specif-

ically for semantic matching, termed Semantic-GLU-Net,

further improves our performance, setting a new state-of-

the-art on TSS, by improving a substantial 1.0% PCK over

the previous best. Interestingly, we outperform methods

that use a deeper, more powerful feature backbone. Quali-

tative examples of our approach are shown in Figure 6.

4.3. Optical flow

Finally, we apply our network, with the same weights as

previously, for the task of optical flow estimation. Here, the

image pairs stem from consecutive frames of a video.

Dataset and metric: For optical flow evaluation, we use

the KITTI dataset [15], which is composed of real road se-

quences captured by a car-mounted stereo camera rig. The

2012 set only consists of static scenes while the 2015 set is

extended to dynamic scenes. For this task, we follow the

standard evaluation metric, namely the Average End-Point

Error (AEPE). We also use the KITTI-specific F1 metric,

which represents the percentage of outliers.

Compared methods: We employ state-of-the-art PWC-

Figure 6. Qualitative examples of GLU-Net (Ours) and Semantic-

GLU-Net applied to TSS images [54].
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KITTI-2012 KITTI-2015

AEPE-all F1-all [%] AEPE-all F1-all [%]

LiteFlowNet [22] 4.00 17.47∗ 10.39 28.50

PWC-Net [51, 52] 4.14 20.28∗ 10.35 33.67

DGC-Net [37] 8.50∗ 32.28∗ 14.97∗ 50.98∗

DGC-Net† 7.96 34.35 14.33 50.35

GLU-Net 3.34 18.93 9.79 37.52

Table 3. Quantitative results on optical flow KITTI training

datasets [15]. Fl-all: Percentage of outliers averaged over all pix-

els. Inliers are defined as AEPE < 3 pixels or < 5%. Lower F1

and AEPE are best. ∗ Denotes values which are computed using

the trained models provided by the authors.

Net [51, 52] and LiteFlowNet [22] trained on Flying-

Chairs [13] and 3D-things [25]. We also compare to DGC-

Net [37] (tokyo) and DGC-Net† (DPED-CityScape-ADE).

Results: Since we do not finetune our model, we only

evaluate on the KITTI training sets. For fair comparison,

we compare to models not finetuned on the KITTI training

data. The results are shown in Table 3 and a qualitative ex-

ample is illustrated in Figure 7. Our network obtains highest

AEPE on both KITTI-2012 and 2015. Nevertheless, we ob-

serve that our method achieves a larger F1 on KITTI-2015

compared to approaches specifically trained and designed

for optical flow. This is largely due to our self-supervised

training data, which currently does not model independently

moving objects or occlusions, but could be included to pur-

sue a more purposed optical flow solution. Yet, our ap-

proach demonstrates competitive results for this challenging

task, without training on any optical flow data. This clearly

shows that our network can not only robustly estimate long-

range matches, but also accurate small displacements.

4.4. Ablation study

Here, we perform a detailed analysis of our approach.

Local-global architecture: We first analyze the impact

of global and local correlation layers in our dense corre-

spondence framework. We compare using only local layers

(Local-Net), a global layer (Global-Net) and our combina-

tion (GLOCAL-Net), presented in Figure 2. As shown in

Table 4, Local-Net fails on the HP dataset, due to its inabil-

ity to capture large displacements. While the Global-Net

can handle large viewpoint changes, it achieves inferior ac-

curacy compared to GLOCAL-Net, which additionaly inte-

grates local correlations layers.

Adaptive resolution: By further adding the adaptive reso-

lution strategy (Section 3.3), our approach (GLU-Net in Ta-

ble 4) achieves a large performance gain in all metrics com-

pared to GLOCAL-Net. This improvement is most promi-

nent for high resolution images, i.e. the original HP data.

Figure 7. Visualization of the flow outputted by different methods

for a KITTI-2012 image.

Local- Global- GLOCAL- GLU-Net GLU-Net

Net Net Net (no CC, no it-R) (no CC, it-R)

HP-

240

AEPE 10.62 9.72 8.77 7.69 7.69

PCK-1px [%] 35.10 41.28 48.53 53.83 53.83

PCK-5px [%] 73.03 72.76 78.12 83.17 83.17

HP

AEPE 147.96 34.64 31.64 25.55 25.09

PCK-1px [%] 7.41 8.86 10.23 35.26 36.81

PCK-5px [%] 19.27 50.11 56.73 75.79 77.55

Table 4. Effect of global and local correlations as well of adaptive

resolution strategy. it-R: iterative refinement, introduced with our

adaptive resolution (Section 3.3), CC: cyclic-consistency [45].

No CC + CC (Ours) + NC-Net + Concat-F

HP

AEPE 25.09 25.05 22.00 21.40

PCK-1px [%] 36.81 39.55 37.62 38.49

PCK-5px [%] 77.55 78.54 79.41 79.50

KITTI- AEPE 3.56 3.34 3.80 3.85

2012 F1-all [%] 21.67 18.93 23.49 23.84

TSS PCK [%] 78.97 79.21 82.10 82.76

Table 5. Effect of additional architectural details. All models are

with iterative refinement. We add CC: cyclic-consistency [45],

NC-Net: Neighborhood Consensus network [45], Concat-F: Con-

catenation of features of L-Net [28].

Iterative refinement: From Table 4, applying iterative re-

finement (it-R) clearly benefits accuracy for high-resolution

images (HP). This further allows us to seamlessly add extra

flow refinements, without incurring any additional network

weights, in order to process images of high resolution.

Global correlation: Lastly, we explore design choices for

the global correlation block in our architecture. As shown

in Table 5, adding cyclic consistency (CC) [45] as a post-

processing brings improvements for all datasets. Subse-

quently adding NC-Net and concatenating features of L-

Net (Concat-F) lead to major overall gain on the HP [5]

and TSS [54] datasets. However, we observe a slight degra-

dation in accuracy, as seen on KITTI [15]. We therefore

only include these components for the Semantic-GLU-Net

version (Section 4.2) and not in our universal GLU-Net.

5. Conclusion

We propose a universal coarse-to-fine architecture for es-

timating dense flow fields from a pair of images. By care-

fully combining global and local correlation layers, our net-

work effectively estimates long-range displacements while

also achieving high accuracy. Crucially, we introduce an

adaptive resolution strategy to counter the fixed input res-

olution otherwise imposed by the global correlation. Our

universal GLU-Net is thoroughly evaluated for the three di-

verse tasks of geometric correspondences, semantic match-

ing and optical flow. When using the same model weights,

our network achieves state-of-the-art performance on all

above tasks, demonstrating its universal applicability.
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pages 6237–6247, 2018. 2

[41] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban

Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-

ferentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

6

[42] Anurag Ranjan and Michael J. Black. Optical flow estima-

tion using a spatial pyramid network. In 2017 IEEE Con-

ference on Computer Vision and Pattern Recognition, CVPR

2017, Honolulu, HI, USA, July 21-26, 2017, pages 2720–

2729, 2017. 2

[43] Ignacio Rocco, Relja Arandjelovic, and Josef Sivic. Convo-

lutional neural network architecture for geometric matching.

In 2017 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,

2017, pages 39–48, 2017. 2, 5

[44] Ignacio Rocco, Relja Arandjelovic, and Josef Sivic. End-to-

end weakly-supervised semantic alignment. In 2018 IEEE

Conference on Computer Vision and Pattern Recognition,

CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,

pages 6917–6925, 2018. 2, 7

[45] Ignacio Rocco, Mircea Cimpoi, Relja Arandjelovic, Akihiko

Torii, Tomás Pajdla, and Josef Sivic. Neighbourhood consen-

sus networks. In Advances in Neural Information Processing

Systems 31: Annual Conference on Neural Information Pro-

cessing Systems 2018, NeurIPS 2018, 3-8 December 2018,
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[49] Thomas Schöps, Johannes L. Schönberger, Silvano Galliani,

Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-

dreas Geiger. A multi-view stereo benchmark with high-

resolution images and multi-camera videos. In 2017 IEEE

Conference on Computer Vision and Pattern Recognition,

CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages

2538–2547, 2017. 2, 6, 7

[50] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. CoRR,

abs/1406.2199, 2014. 1

[51] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

Pwc-net: Cnns for optical flow using pyramid, warping, and

cost volume. In 2018 IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2018, Salt Lake City, UT,

USA, June 18-22, 2018, pages 8934–8943, 2018. 2, 3, 6, 7,

8

[52] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

Models matter, so does training: An empirical study of cnns

for optical flow estimation. IEEE transactions on pattern

analysis and machine intelligence, 2019. 2, 6, 8

[53] Hajime Taira, Masatoshi Okutomi, Torsten Sattler, Mircea

Cimpoi, Marc Pollefeys, Josef Sivic, Tomás Pajdla, and Ak-

ihiko Torii. Inloc: Indoor visual localization with dense

matching and view synthesis. In 2018 IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2018, Salt

Lake City, UT, USA, June 18-22, 2018, pages 7199–7209.

IEEE Computer Society, 2018. 1

[54] Tatsunori Taniai, Sudipta N. Sinha, and Yoichi Sato. Joint re-

covery of dense correspondence and cosegmentation in two

images. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June

27-30, 2016, pages 4246–4255, 2016. 2, 7, 8

[55] Prune Truong. GLU-Net: Github project page. https:

//github.com/PruneTruong/GLU-Net, 2020. 2

[56] Prune Truong, Stefanos Apostolopoulos, Agata Mosinska,

Samuel Stucky, Carlos Ciller, and Sandro De Zanet. Glam-

points: Greedily learned accurate match points. 2019

IEEE/CVF International Conference on Computer Vision

(ICCV), pages 10731–10740, 2019. 2

[57] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and

Pierre-Antoine Manzagol. Extracting and composing robust

features with denoising autoencoders. In Machine Learn-

ing, Proceedings of the Twenty-Fifth International Confer-

ence (ICML 2008), Helsinki, Finland, June 5-9, 2008, pages

1096–1103, 2008. 2

[58] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-

dler, Adela Barriuso, and Antonio Torralba. Semantic un-

derstanding of scenes through the ADE20K dataset. Int. J.

Comput. Vis., 127(3):302–321, 2019. 5

6268


