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Abstract

We introduce STAViS1, a spatio-temporal audiovisual

saliency network that combines spatio-temporal visual and

auditory information in order to efficiently address the

problem of saliency estimation in videos. Our approach

employs a single network that combines visual saliency and

auditory features and learns to appropriately localize sound

sources and to fuse the two saliencies in order to obtain a

final saliency map. The network has been designed, trained

end-to-end, and evaluated on six different databases that

contain audiovisual eye-tracking data of a large variety of

videos. We compare our method against 8 different state-

of-the-art visual saliency models. Evaluation results across

databases indicate that our STAViS model outperforms our

visual only variant as well as the other state-of-the-art mod-

els in the majority of cases. Also, the consistently good

performance it achieves for all databases indicates that it

is appropriate for estimating saliency “in-the-wild”. The

code is available at https://github.com/atsiami/STAViS.

1. Introduction

Audio is present in the majority of scenes where vision

is also present. Nature as well as everyday life offer unlim-

ited examples of multi-sensory and cross-modal events, a

large amount of which concern auditory and visual senses.

Audiovisual integration is a well studied phenomenon in

neuroscience with interesting findings that have motivated

research in the area [36, 37, 60]. Many of them provide

sufficient evidence that human attention and perception is

influenced by audiovisual stimuli in a different way than

auditory or visual stimuli in isolation. For example, the

well-known McGurk effect [35] proved that attention can be

heavily affected by incongruent audiovisual stimuli, lead-

ing to illusionary perceptions. On the other hand, congru-

ent ones, like in the pip & pop effect [59], can lead to en-

hanced attention. Modeling human attention is important in

1This research has been cofinanced by the European Union and Greek

national funds through the Operational Program Competitiveness, En-

trepreneurship and Innovation, under the call RESEARCH CREATE IN-

NOVATE (project code:T1EDK- 01248 / MIS: 5030856).
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Figure 1. Example frames with their eye-tracking data of a bell

tolling. The second row depicts the saliency maps produced by our

visual-only saliency network, while the third row is the output of

our proposed STAViS network, which succeeds in better capturing

human attention.

a variety of applications, like video summarization [28, 16],

robotics [15, 30, 67], and virtual reality [54].

Despite the previously mentioned evidence of a strong

audiovisual interplay, audio modality has been rather ne-

glected when modeling human attention, with most com-

puter vision research focusing only on visual information.

We aim to address the problem of saliency estimation in

videos “in-the-wild”, namely how bottom-up human atten-

tion is modeled, by integrating auditory information into

visual saliency, without prior knowledge of the video con-

tent. Fig. 1 highlights and motivates the problem we aim

to address: tolling bells is an audiovisual event. The de-

picted frames, with their eye-tracking data superimposed,

exhibit an example of human attention in an audiovisual

scene. This attention can be much better captured by an

audiovisual attention model than by a visual-only one, as

the corresponding saliency maps indicate.

In parallel, Convolutional Neural Networks (CNNs)

have infiltrated computer vision and have enhanced dramat-

ically the performance in the majority of spatial tasks in

computer vision, such as object detection or semantic seg-

mentation [53, 22, 21]. The huge amounts of video data

that are becoming more and more available through on-

line sources, enable and at the same time require continu-

ously better performance in tasks like activity recognition,

4766



video saliency, scene analysis or video summarization, im-

posing the need to exploit not only spatial information, but

also temporal [8, 48, 28]. Similar advances have also been

achieved in audio processing areas, such as acoustic event

detection [45], speech recognition [18, 10], sound localiza-

tion [57], by using deep learning techniques.

As an additional free of charge source of information, au-

ditory stream has been incorporated in many video-related

applications during the last three years [1, 69]. Audio

contains rich information that when integrated with spatio-

temporal visual information, it facilitates learning and im-

proves performance in many traditionally visual-only tasks.

Most importantly, audio comes for free, as it is already in-

cluded in the majority of videos and synchronized with the

visual stream. We are particularly interested in audiovisual

attention modeling, through audiovisual saliency, where the

main goal is to predict human fixations in a video.

We propose STAViS, a novel spatio-temporal audiovi-

sual saliency network that combines spatio-temporal visual

with auditory information to efficiently address the prob-

lem of saliency estimation in videos. We mainly aspire to

make the next logical step in video saliency prediction by

introducing a new audiovisual framework rather than pro-

pose just a better visual model. To our best knowledge, our

proposed system is the first deep learning saliency approach

that employs both video and audio and addresses the fixa-

tion prediction problem, except for concurrent work [56]

where two independent networks for the two modalities are

employed and their outputs are simply concatenated as a

late fusion scheme. Our approach employs a single mul-

timodal network that combines visual and auditory infor-

mation at multiple stages and learns to appropriately fuse

the two modalitites, in order to obtain a final saliency map.

We propose ways to perform sound source localization in

the video and subsequently fuse spatio-temporal auditory

saliency with spatio-temporal visual saliency, in order to

obtain the final audiovisual saliency map.

For visual saliency our approach is extending a

state-of-the-art spatio-temporal saliency network, called

SUSiNet [28], part of a multi-task network that jointly ad-

dresses 3 different problems: saliency estimation, activity

recognition and video summarization. Regarding audio, we

obtain audio features using SoundNet [3], a state-of-the-art

CNN for acoustic event classification. For sound localiza-

tion, we aim to retrieve the potential correspondences be-

tween auditory and visual streams, in the sense of cross-

modal semantic concepts. We explore 3 different ways of

locating sounds in a video, obtaining an auditory saliency

map. Subsequently, we investigate fusion schemes to inte-

grate spatio-temporal and auditory saliencies and obtain a

final saliency map. We explore three alternatives as well.

The network has been designed, trained end-to-end and

evaluated on 6 different databases that contain audiovisual

eye-tracking data. These databases contain a large variety

of videos, ranging from home-made videos to documen-

taries, and from short, simple videos to Hollywood movies.

Our method is compared to 8 different state-of-the-art vi-

sual saliency models in all 6 databases. Evaluation results

across databases indicate that STAViS model outperforms

both the visual variant network and the other methods in the

majority of cases. Also, its consistently good performance

for all databases, indicates that it is suitable for estimating

saliency in videos “in-the-wild”.

2. Related Work

There is a very broad literature regarding visual saliency,

both for classical approaches and for deep learning ones.

On the other hand, audiovisual approaches in saliency are

limited. Below, we describe the most notable works in vi-

sual saliency with deep methods, audiovisual saliency, and

other recent audiovisual approaches in similar problems.

Visual Saliency: The early CNN-based approaches for

saliency were based on the adaptation of pretrained CNN

models for visual recognition tasks [31, 61]. Later, in

[44] both shallow and deep CNN were trained end-to-end

for saliency prediction while [23, 24] trained the networks

by optimizing common saliency evaluation metrics. In

[43] the authors employed end-to-end Generative Adver-

sarial Networks (GAN), while [63] has utilized multi-level

saliency information from different layers through skip con-

nections. Long Short-term Memory (LSTM) networks have

also been used for tracking visual saliency both in static

images [11] and video stimuli [64, 65, 34]. In order to

improve saliency estimation in videos, many approaches

employ multi-stream networks, such as RGB/Optical Flow

(OF) [4, 32], RGB/OF/Depth [33], or multiple subnets

such as objectness/motion [25] or saliency/gaze [17] path-

ways. Another recent approach [38] employs a 3D fully-

convolutional network with temporal aggregation, based on

the assumption that the saliency map of any frame can be

predicted by considering a limited number of past frames.

Audiovisual saliency models: The first attempts in model-

ing audiovisual saliency were application-specific [49, 50,

46, 9, 47, 52], employing mostly traditional signal process-

ing techniques both for visual saliency and audio local-

ization. Coutrot and Guyader [13, 12, 14] and Song [55]

have tried to more directly validate their models with hu-

mans. After estimating the visual saliency map they explic-

itly weigh the face image regions appropriately to generate

an audiovisual saliency map to better account for eye fixa-

tions during movie viewing. Also, Min et al. [40, 39] devel-

oped an audiovisual attention model for predicting eye fix-

ations in scenes containing moving, sound-generating ob-

jects. For auditory attention, they employed an auditory

source localization method to localize the sound-generating

object on the image and fuse it with visual saliency mod-
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Figure 2. STAViS architecture: the spatio-temporal audiovisual network is based on the ResNet architecture and has one spatio-temporal

visual path, one auditory path and their fusion.

els. A more general model that is not application-specific

that investigated ways to fuse audio and video for fixation

prediction with signal processing techniques has been pre-

sented in [58].

Other deep audiovisual approaches: As mentioned be-

fore, during the last three years more and more atten-

tion is paid on integration of audio in traditionally visual-

only problems, such as object localization or segmenta-

tion. In [1, 2] audiovisual correspondence in videos is

learned without supervision resulting in good video and au-

dio representations as well as in good classification in both

modalities. Audiovisual representations learned in a self-

supervised way and used for audiovisual scene analysis are

also proposed in [51, 42], while in [57], the authors ad-

dress the problem of audiovisual event localization in un-

constrained videos. A system that learns to locate image re-

gions that produce sound and creates a representation of the

sound from each pixel is described in [69, 68]. Also, Sound-

Net [3] exploits the natural synchronization between vision

and sound to learn an acoustic representation using two-

million unlabeled videos, yielding improved performance

in acoustic scene/object classification tasks. In [26], the au-

thors exploit auditory and visual information to build ef-

fective models for both audio and video analysis from self-

supervised temporal synchronization.

3. Spatio-Temporal AudioVisual Saliency Net-

work

The proposed designed spatio-temporal audiovisual net-

work for saliency estimation (Fig. 2) consists of a spatio-

temporal visual module that computes visual saliency, an

audio representation module that computes auditory fea-

tures based on [3], a sound source localization module that

computes spatio-temporal auditory saliency, an audiovisual

saliency estimation module that combines and fuses the vi-

sual and auditory saliencies, and finally, the appropriate

losses. These are described in detail in the next subsections.

3.1. Spatio­Temporal Visual Network

The architecture of our designed spatio-temporal net-

work for visual saliency, depicted in Fig. 2, employs the

general ResNet architecture [22] and specifically the 3D

extension proposed initially for action classification [20].

The visual network pathway (dark purple color), with pa-

rameters Wres, includes the first 4 ResNet convolutional

blocks conv1, conv2, conv3, conv4 that provide outputs

X1, X2, X3, X4, in different spatial and temporal scales.

In parallel, an attention mechanism called Deeply Super-

vised Attention Module (DSAM) is applied by taking the

element-wise product between each channel of the feature

map Xm and the attention map Mm, to enhance the most

salient regions of these feature representations:

X̃m = (1 +Mm)⊙Xm, m = 1, . . . , 4. (1)

The idea of deep supervision that is the core of DSAM

has been used in edge detection [66], object segmentation

[7] and static saliency [63], but contrary to these previous

works, here DSAM’s role is double: It is used both for en-

hancing visual feature representations as well as for provid-

ing the multi-level saliency maps, as depicted by shades of

green in Fig. 2. Thus, DSAM parameters Wm
am are trained

both by the main-path of the visual network and the eye-

tracking data through the skip connections of the Fig. 2.

Figure 3 shows the architecture of the DSAM module

at level m. It includes an averaging pooling in the tem-

poral dimension followed by two spatial convolution layers

that provide the saliency features Sm and the activation map

Am. Both representations are up-sampled (using the appro-

priate deconvolution layers) to the initial image dimensions

and used for the deep supervision of the module as well as

for the multi-level saliency estimation. A spatial softmax

operation applied at the activation map Am(x, y) yields the

attention map Mm(x, y):

Mm(x, y) =
exp(Am(x, y))∑

x

∑
y exp(A

m(x, y))
(2)
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Figure 3. Deeply Supervised Attention Module (DSAM) enhances

the global network’s representations and provides the multi-level

saliency maps for spatio-temporal saliency.

3.2. Audio Representation Network

For the audio representation we select to work directly

on the sound waveforms and employ an 1-D fully convolu-

tional network, rather than compute time-frequency repre-

sentations and apply 2D CNNs [26, 1, 69]. First, audio is

cropped in order to match the visual frames duration (i.e. 16

frames). The employed network can handle variable length

audio, thus no sub-sampling is required to address the sam-

pling rate variation from video to video. Subsequently, a

Hanning window is applied in order to weigh higher the

central audio values representing the current time instance,

but also include past and future values with attenuation [58].

Afterwards, for the high-level information encoding we em-

ploy a network architecture with parameters Wa based on

the first seven layers of the SoundNet [3]. These layers are

followed by a temporal max-pooling layer for obtaining a

fixed dimension vector fa ∈ R
Da for the whole sequence.

3.3. Sound Source Localization in Videos

The previous module’s goal is to produce good audio

representations. Our next goal is to exploit these repre-

sentations in order to detect cross-modal semantic concepts

in videos. We essentially aim to retrieve correspondences

between audio and spatio-temporal visual information, and

thus obtain a spatio-temporal auditory saliency map. This

can be viewed also as a spatial sound source localization

problem. For example, a moving car, a speaking face or a

rustling leaf are cross-modal events, where we need to de-

tect where the audio comes from in the video.

Our approach selects as visual features the output of the

3D conv3 block X3 (that has feature dimension Dv) as in

this layer with have both rich semantic information for the

visual stream and quite large resolution in the spatial do-

main. A temporal average pooling is applied in order to

marginal out the temporal dimension and have a global rep-

resentation fv ∈ R
Dv×NX×NY for the whole sequence.

Since visual and auditory features have different feature di-

mensions, we re-project both in a hidden dimension Dh by

applying two different affine transformations:

h̃a = Ua · fa + ba, hv = Uv · fv + bv, (3)

where h̃a ∈ R
Dh , hv ∈ R

Dh×NX×NY and Ua,ba,Uv,bv

are the corresponding learning parameters. We also apply

a spatially tiling to the audio features to match the visual

features spatial dimensions, getting ha ∈ R
Dh×NX×NY .

For finding or learning correspondences between the au-

dio and visual features ha, hv we have investigated three

different approaches. In the first, we simply compute the

cosine similarity between the two representation vectors

which does not require any learning parameters and pro-

vides a single localization map L1 ∈ R
NX×NY . Re-

garding the second approach, we take the weighted in-

ner product of the vectors ha, hv at each pixel (x, y), and

we can get either a single or multiple localization maps

L
j
2 ∈ R

NX×NY , j = 1, . . . , Nout:

L
j
2(x, y) =

Dh∑

k=1

sj,k · hk
v(x, y) · h

k
a(x, y) + βj , (4)

where sj,k, βj are learning parameters. In the third case,

that constitutes also the proposed approach, a bilinear trans-

formation is applied to the incoming multimodal data that

can also yield either a single or multiple output maps L
j
3 ∈

R
NX×NY , j = 1, . . . , Nout:

L
j
3(x, y) = hv(x, y)

T ·Mj · ha(x, y) + µj

=

Dh∑

l=1

Dh∑

k=1

M j,l,k · hl
v(x, y) · h

k
a(x, y) + µj , (5)

where M j,l,k, µj are the learning parameters. Note that the

previous approaches (L1, L2) are special cases of this bi-

linear one (L3), that allows for richer interactions between

the inputs. Specifically when the matrices M
j are diag-

onal, with sj,k as diagonal elements, we have the case of

weighted inner product (L2). When the matrix M is the

unit matrix the result is very close (modulo a normalization

factor) to the cosine similarity.

3.4. Audiovisual Saliency Estimation

We have now computed an auditory saliency map, ex-

pressed via source localization maps. However, there are

many aspects in a video that can attract the human atten-

tion that may not be related to audio events. Thus, in or-

der to build a multi-modal saliency estimation network that

can perform well “in-the-wild” with any kind of stimuli, we

need to also include the visual-only information as modeled

by the spatio-temporal visual network. For that purpose an

important contribution of this paper is the investigation of

different ways to perform audiovisual fusion.

The simplest fusion scheme is to learn a linear weighted

sum of the visual only map Sv and an audio-related map
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Sa (yielded by applying independent fully convolution lay-

ers to the multi-level concatenated visual saliency features

V j = (S1| . . . |Sm| . . . |SM ) and the localization maps Lj

respectively): Sav
1 = wv · σ(Sv) + wa · σ(Sa), where

σ(·) denotes the sigmoid activation function.

Moreover, inspired by previous signal processing based

approaches for audiovisual saliency [58, 29], we also in-

vestigate an attention based scheme where the audio stream

modulates the visual one: Sav
2 = σ(Sv) ⊙ (1 + σ(Sa)).

In case of multiple localization maps, we can multiply one

by one the concatenated visual saliency features V j with

the localization maps Lj and then apply a fully convo-

lution layer for taking the single saliency map: S̃
av,j
2 =

σ(V j)⊙ (1 + σ(Lj)).
However, as depicted in Fig. 2, our main and most

general approach that allows more free interaction be-

tween the visual and audio-based features maps is to

concatenate the multimodal features and then apply a

convolution layer for their fusion in one saliency map:

Sav
3 = Wcat ∗ (V |L) + βav .

Finally, we can also apply a late fusion scheme of all the

previous approaches expressed by a weighted learned sum:

Sav
fus = w̃v · σ(S

v) + w̃a · σ(S
a) + wav · σ(S

3).

3.5. Saliency Losses

For the training of the parameters Wv that are associated

with the visual stream, we construct a loss that compares the

saliency map Sv and the activations Am with the ground

truth maps Ysal obtained by the eye-tracking data:

Lv(Wv) = D(Wv|σ(S
v), Ysal)+

4∑

m=1

D(Wm
AM |σ(Am), Ysal),

(6)

where σ(·) denotes the sigmoid non-linearity and D(·) is

a loss function between the estimated and the ground truth

2D maps. When we train the parameters Wav of the audio-

visual network, we use the trained visual-only network as a

starting point and we do not use the skip connections of the

DSAM modules:

Lav(Wav) = D(Wav|σ(S
av), Ysal). (7)

Several different metrics to evaluate saliency are em-

ployed in order to compare the predicted saliency map

P ∈ [0, 1]NX×NY to the eye-tracking data [6]. As ground

truth maps we can use either the map of fixation locations

Yfix ∈ {0, 1}NX×NY on the image plane of size NX ×NY

or the dense saliency map Yden ∈ [0, 1]NX×NY that is pro-

duced by convolving the binary fixation map with a gaus-

sian kernel. Thus, as D(·) we employ three loss functions

associated with the different aspects of saliency evaluation.

The first is the cross-entropy loss between the predicted map

P and the dense map Yden:

DCE(W|P, Yden) = −
∑

x,y

Yden(x, y)⊙ log(P (x, y;W))

+(1− Yden(x, y))⊙ (1− log(P (x, y;W))).

(8)

The second loss function is based on the linear Correlation

Coefficient (CC) [6] that is widely used in saliency evalu-

ation and measures the linear relationship between the pre-

dicted saliency P and the dense ground truth map Yden:

DCC(W|P, Yden) = −
cov(P (x, y;W), Yden(x, y))

ρ(P (x, y;W)) · ρ(Yden(x, y))
,

(9)

where cov, ρ denote the covariance and the standard de-

viation respectively. The last loss is derived from the

Normalized Scanpath Saliency (NSS) metric [6], which

is computed as the estimated map values P̃ (x, y;W) =
P (x,y;W)−µ(P (x,y;W))

ρ(P (x,y;W)) , after zero mean normalization

and unit standardization, at human fixation locations

(Yfix(x, y) = 1):

DNSS(W|P̃ , Yfix) = −
1

Nf

∑

x,y

P̃ (x, y;W)⊙ Yfix(x, y),

(10)

where Nf =
∑

x,y Yfix(x, y) denotes the total num-

ber of fixation points. The final loss of the i-th input

sample is given by a weight combination of the losses

Li
CE ,L

i
CC ,L

i
NSS that are given either by Eq.(6) or Eq.(7)

using the corresponding loss functions Di
CE ,D

i
CC ,D

i
NSS :

Li
sal(W) = w1L

i
CE + w2L

i
CC + w3L

i
NSS , (11)

where w1, w2, w3 are the weights of each loss type.

3.6. Implementation

Our implementation and experimentation with the visual

network uses as backbone the 3D ResNet-50 architecture

[20] that has showed competitive performance against other

deeper architectures for action recognition task, in terms of

performance and computational budget. As starting point

for Wres we used the weights from the pretrained model in

the Kinetics 400 database. For the audio stream we employ

the SoundNet (using 7 out of 8 layers) architecture [3] that

is based on 1D temporal convolution and has been success-

fully applied in acoustic scene/event classification tasks. As

starting point for our audio representation network param-

eters Wa we use the weights from the pretrained model

that has been trained on two million videos from Flickr [3].

Training: For training we employ stochastic gradient de-

scent with momentum 0.9, while we assign a weight decay

of 1e-5 for regularization. We have also employed effec-

tive batchsizes of 128 samples, and multistep learning rate.
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Figure 4. Sample frames from Coutrot1 database with their eye-

tracking data, and the corresponding ground truth, spatio-temporal

visual, and audiovisual saliency maps as produced by STAViS

(visual-only and audiovisual). Also NSS curve over time for vi-

sual and audiovisual approaches is depicted.

First we train the visual-only spatio-temporal network and

afterwards the whole audiovisual network using the visual

network’s weights as starting points. Note that DSAM mod-

ules’ skip connections are used only for visual-only network

training. The weights w1, w2, w3 for the saliency loss are

selected as 0.1, 2, 1 respectively, after experimentation.

Data Augmentation: The input samples in the network

consist of 16-frames RGB video clips spatially resized at

112×112 pixels, as well as the corresponding audio stream.

We have also applied data augmentation for random gener-

ation of training samples. First, we divided the initial long-

duration videos into 90-frame, non-overlapping segments

and then generated the 16-frames from each segment by ap-

plying a random flipping process, as in [62], but without

random cropping. We applied the same spatial transforma-

tions to the 16 frames of the video clip and the eye-tracking

based saliency map of the median frame, which is consid-

ered the clip’s ground truth map.

Testing: During testing phase, we obtain an estimated

saliency map per frame using a 16-frame sliding window

with step 1 without any random flipping.

4. Experiments

4.1. Datasets

In order to train and evaluate the proposed audiovi-

sual saliency network, 6 different datasets are employed,

containing audiovisual eye-tracking data: DIEM, AVAD,
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Figure 5. Sample frames from Coutrot2 database with their eye-

tracking data, and the corresponding ground truth, spatio-temporal

visual, and audiovisual saliency maps as produced by STAViS

(visual-only and audiovisual). Also NSS curve for visual and au-

diovisual approaches is depicted.

Method

Dataset Overall

CC ↑ NSS ↑ AUC-J ↑ sAUC ↑ SIM ↑

Visual 0.5260 2.54 0.8922 0.6187 0.4088

L1 AudioOnly 0.5132 2.48 0.8923 0.6220 0.4100

L2 AudioOnly 0.5381 2.63 0.8969 0.6171 0.4157

L3 AudioOnly 0.5226 2.59 0.8935 0.6228 0.4027

L1 Sav
1 0.5243 2.62 0.8924 0.6224 0.4103

L2 Sav
1 0.5344 2.69 0.8944 0.6215 0.4249

L3 Sav
1 0.5354 2.71 0.8959 0.6236 0.4278

L1 Sav
2 0.5069 2.43 0.8687 0.6223 0.2985

L2 Sav
2 0.5082 2.44 0.8699 0.6225 0.2996

L3 Sav
2 0.5066 2.46 0.8622 0.6219 0.2981

Lmul
3 S̃av

2 0.5271 2.56 0.8943 0.6242 0.4132

L
mul

3
S
av

3
0.5414 2.73 0.8983 0.6267 0.4241

Lmul
3 Sav

fus 0.5401 2.70 0.8979 0.6261 0.4290

Table 1. Ablation study: L1, L2 and L3 refer to the audio local-

ization method: cosine, inner product and bilinear respectively.

Sav
1 , Sav

2 , Sav
3 and Sav

fus refer to the different fusion methods. Su-

perscript “mul” refers to multiple feature maps.

Coutrot1, Coutrot2, SumMe, and ETMD. These databases

consist of various types of videos, ranging from very struc-

tured small videos to completely unstructured, user-made

Youtube videos. Our goal is to train and evaluate the model

using different types of audiovisual data, in order to obtain

a good performance “in-the-wild” and help the model learn

if and when it should use audio to enhance visual saliency.

A short description for each database follows.

AVAD: AVAD database [39] contains 45 short clips of 5-10

sec duration with several audiovisual scenes, e.g. dancing,

guitar playing, bird signing, etc. A joint audiovisual event
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Method

Dataset DIEM Coutrot1 Coutrot2

CC ↑ NSS ↑ AUC-J ↑ sAUC ↑ SIM ↑ CC ↑ NSS ↑ AUC-J ↑ sAUC ↑ SIM ↑ CC ↑ NSS ↑ AUC-J ↑ sAUC ↑ SIM ↑

STAViS [STA] 0.5795 2.26 0.8838 0.6741 0.4824 0.4722 2.11 0.8686 0.5847 0.3935 0.7349 5.28 0.9581 0.7106 0.5111

STAViS [ST] 0.5665 2.19 0.8792 0.6648 0.4719 0.4587 1.99 0.8617 0.5764 0.3842 0.6529 4.19 0.9405 0.6895 0.4470

DeepNet [44] [S] 0.4075 1.52 0.8321 0.6227 0.3183 0.3402 1.41 0.8248 0.5597 0.2732 0.3012 1.82 0.8966 0.6000 0.2019

DVA [63] [S] 0.4779 1.97 0.8547 0.641 0.3785 0.4306 2.07 0.8531 0.5783 0.3324 0.4634 3.45 0.9328 0.6324 0.2742

SAM [11] [S] 0.4930 2.05 0.8592 0.6446 0.4261 0.4329 2.11 0.8571 0.5768 0.3672 0.4194 3.02 0.9320 0.6152 0.3041

SalGAN [43] [S] 0.4868 1.89 0.8570 0.6609 0.3931 0.4161 1.85 0.8536 0.5799 0.3321 0.4398 2.96 0.9331 0.6183 0.2909

ACLNet [64, 65] [ST] 0.5229 2.02 0.8690 0.6221 0.4279 0.4253 1.92 0.8502 0.5429 0.3612 0.4485 3.16 0.9267 0.5943 0.3229

DeepVS [25] [ST] 0.4523 1.86 0.8406 0.6256 0.3923 0.3595 1.77 0.8306 0.5617 0.3174 0.4494 3.79 0.9255 0.6469 0.2590

TASED [38] [ST] 0.5579 2.16 0.8812 0.6579 0.4615 0.4799 2.18 0.8676 0.5808 0.3884 0.4375 3.17 0.9216 0.6118 0.3142

Table 2. Evaluation results for saliency in DIEM, Coutrot1 and Coutrot2 databases. The proposed method’s (STAViS [STA]) results are

depicted in the first row, while the second one refers to our visual-only version. In most cases, the proposed network outperforms the ex-

isting state-of-the-art methods for saliency estimation according the five evaluation metrics. [STA] stands for spatio-temporal audiovisual,

[ST] for spatio-temporal visual models while [S] denotes a spatial only model that is applied to each frame independently.

Method

Dataset AVAD SumMe ETMD

CC ↑ NSS ↑ AUC-J ↑ sAUC ↑ SIM ↑ CC ↑ NSS ↑ AUC-J ↑ sAUC ↑ SIM ↑ CC ↑ NSS ↑ AUC-J ↑ sAUC ↑ SIM ↑

STAViS [STA] 0.6086 3.18 0.9196 0.5936 0.4578 0.4220 2.04 0.8883 0.6562 0.3373 0.5690 2.94 0.9316 0.7317 0.4251

STAViS [ST] 0.6041 3.07 0.9157 0.5900 0.4431 0.4180 1.98 0.8848 0.6477 0.3325 0.5602 2.84 0.9290 0.7278 0.4121

DeepNet [44] [S] 0.3831 1.85 0.8690 0.5616 0.2564 0.3320 1.55 0.8488 0.6451 0.2274 0.3879 1.90 0.8897 0.6992 0.2253

DVA [63] [S] 0.5247 3.00 0.8887 0.5820 0.3633 0.3983 2.14 0.8681 0.6686 0.2811 0.4965 2.72 0.9039 0.7288 0.3165

SAM [11] [S] 0.5279 2.99 0.9025 0.5777 0.4244 0.4041 2.21 0.8717 0.6728 0.3272 0.5068 2.78 0.9073 0.7310 0.3790

SalGAN [43] [S] 0.4912 2.55 0.8865 0.5799 0.3608 0.3978 1.97 0.8754 0.6882 0.2897 0.4765 2.46 0.9035 0.7463 0.3117

ACLNet [64, 65] [ST] 0.5809 3.17 0.9053 0.5600 0.4463 0.3795 1.79 0.8687 0.6092 0.2965 0.4771 2.36 0.9152 0.6752 0.3290

DeepVS [25] [ST] 0.5281 3.01 0.8968 0.5858 0.3914 0.3172 1.62 0.8422 0.6120 0.2622 0.4616 2.48 0.9041 0.6861 0.3495

TASED [38] [ST] 0.6006 3.16 0.9146 0.5898 0.4395 0.4288 2.10 0.8840 0.6570 0.3337 0.5093 2.63 0.9164 0.7117 0.3660

Table 3. Evaluation results for audiovisual saliency in AVAD, SumMe and ETMD databases. The proposed method’s (STAViS [STA])

results are depicted in the first row, while the second one refers to our visual-only version. In most cases, the proposed network outper-

forms the existing state-of-the-art methods for saliency estimation according the five evaluation metrics. [STA] stands for spatio-temporal

audiovisual, [ST] for spatio-temporal visual models while [S] denotes a spatial only model that is applied to each frame independently.

per video is always present. Eye-tracking data from 16 par-

ticipants have been recorded.

Coutrot databases: Coutrot databases [13, 14] are split in

Coutrot1 and Coutrot2: Coutrot1 contains 60 clips with dy-

namic natural scenes split in 4 visual categories: one/several

moving objects, landscapes, and faces. Eye-tracking data

from 72 participants have been recorded. Coutrot2 contains

15 clips of 4 persons in a meeting and the corresponding

eye-tracking data from 40 persons.

DIEM: DIEM database [41] consists of 84 movies of all

sorts, sourced from publicly accessible repositories, includ-

ing advertisements, documentaries, game trailers, movie

trailers, music videos, news clips, and time-lapse footage.

Thus, the majority of DIEM videos are documentary-like,

which means that audio and visual information do not cor-

respond to the same event. Eye movement data from 42
participants were recorded via an Eyelink eye-tracker, while

watching the videos in random order and with the audio on.

SumMe: SumMe database [19, 58] contains 25 unstruc-

tured videos, i.e. mostly user-made videos, as well as their

corresponding multiple-human created summaries, which

were acquired in a controlled psychological experiment.

Audiovisual eye-tracking data have been collected [58]

from 10 viewers, recorded via an Eyelink eye-tracker.

ETMD: ETMD database [27, 58] contains 12 videos from

six different hollywood movies. Audiovisual eye-tracking

data have been collected [58] from 10 viewers, recorded via

an Eyelink eye-tracker.

4.2. Experimental Results

Training has been performed by combining data from

all datasets: For DIEM, the standard split from literature

has been employed [5]. For the other 5 databases, where

there is no particular split, we created 3 different splits of

the data, in the sense of 3-fold cross-validation, with non-

overlapping videos between train, validation and test sets

for each split, uniformly split among datasets. Among these

3 different splits, different videos were placed in each split,

namely, if video1 of dataset1 was placed in test set of split1,

then it would not appear in any other test set. We ensured

that all videos of each dataset would appear once in the test

set of one split. The models’ final performance was ob-

tained by taking the average among all 3 splits. The same

procedure was carried out both for our audiovisual and vi-

sual variants, in order to ensure a fair comparison.

For the evaluation of STAViS network, we first investi-

gate the performance of the various sound localization and

fusion techniques described in Sec. 3. We pick the method

with the best results and compare it to 8 state-of-the-art vi-

sual saliency methods (using their publicly available codes

and models), in all 6 databases on the same test data. We

employ five widely-used evaluation metrics for saliency [6]:

CC, NSS, AUC-Judd (AUC-J), shuffled AUC (sAUC) and

SIM (similarity). For sAUC we select the negative sam-

ples from the union of all viewers’ fixations across all other

frames except the frame for which we compute the AUC.

Ablation study: Regarding Table 1, we can observe
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that bilinear transformation L3 achieves better performance

compared to the other sound localization methods since the

latter can be consider as simpler versions of the bilinear

function. Moreover, it can be noted that methods based

only on audio localization can achieve quite high scores

while they are further improved when fused with pure vi-

sual cues. Especially when multiple maps are fused with

the visual ones by concatenation Sav
3 , thus allowing for the

most interaction between the features, the best performance

is achieved in almost all metrics. Competitive performance

is also achieved with late fusion, as indicated by the last

row of Table 1. Overall, cosine similarity for localization

L1 performs worst in all cases, since it does not have any

learnable parameters, while fusion scheme Sav
2 that has per-

formed well in signal processing based methods [58] does

not seem suitable for deep learning approaches. Thus, we

pick up method Lmul
3 Sav

3 as our proposed STAViS method.

Figures 4, 5 depict some sample frames from Coutrot1 and

Coutrot2 along with their corresponding eye-tracking data

and the ground truth, visual-only (ours) and the STAViS

saliency maps. Attention is much better captured by the

proposed STAViS model. They also depict NSS curve over

time for visualization and comparison purposes.

Comparisons with state-of-the-art: Next, we proceed

with extensive comparisons with 8 different state-of-the-art

saliency methods, depicted for the five metrics per database,

in Tables 2, 3. Results highlight the superiority of our

proposed audiovisual method, as it outperforms almost for

all databases and metrics the other state-of-the-art meth-

ods. We can observe that all the other state-of-the-art meth-

ods, except for TASED, achieve good performance in some

databases, but not consistently, meaning that they might

perform well for particular types of video but not for all

types. For example, ACLNet performs well for AVAD

database but not equally well in SumMe which has more

unstructured, home-made videos. TASED achieves good

performance, even better than STAViS for CC and NSS in

Coutrot1 and SumMe, but it does not perform equally well

for Coutrot2. Overall, a good performance is achieved from

our visual-only version as well.

Discussion: Our proposed spatio-temporal auditory

saliency model STAViS performs consistently well across

all datasets, achieving the best performance compared to

state-of-the-art methods for almost all databases and met-

rics. It should be noted that these databases contain a large

variety of videos types. From documentaries, where there is

no audiovisual correspondence, to Hollywood movies and

unprocessed user-made videos. Thus our model achieves a

good performance “in-the-wild”, without any prior knowl-

edge on the content of the video. This performance for

this large range could indicate that our model is capable of

learning if, where and when auditory saliency integration

should be performed. In addition, especially in Coutrot2
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Figure 6. Sample frame from ETMD, AVAD, DIEM and SumMe

databases with their eye-tracking data, and the corresponding

ground truth, STAViS, and other spatio-temporal state-of-the-art

visual saliency maps for comparisons.

that is the most “audiovisual” database in the sense that all

included events/videos consist of audiovisual scenes, our

model clearly outperforms the rest by a large margin prob-

ably because it better captures the audiovisual correspon-

dences. For visualization purposes, in Fig. 6 a sample frame

from ETMD, AVAD, DIEM and SumMe database is pre-

sented with its corresponding eye-tracking data in the first

row. The second row depicts the ground truth saliency map.

The third row includes the corresponding saliency maps

from our STAViS model, while the final 3 rows, the same

maps for ACLNet, DeepVS and TASED. It can easily be

observed that our results are closer to the ground truth.

5. Conclusions

We have proposed STAViS, a novel spatio-temporal au-

diovisual network that efficiently addresses the problem of

fixation prediction in videos, i.e. video saliency estimation.

It employs an extended state-of-the-art visual saliency net-

work, a state-of-the-art audio representation network and

features a sound source localization module that produces

one or multiple auditory saliency maps and a fusion module

that combines auditory and visual saliency maps in order to

produce an audiovisual saliency map. All components have

been designed, trained end-to-end, and extensively evalu-

ated in a variety of videos. Results for 5 different metrics in

6 different databases and comparison with 8 state-of-the-art

methods indicate the appropriateness and efficiency of this

audiovisual approach for saliency modeling.
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