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Abstract

Learning from web data has attracted lots of research

interest in recent years. However, crawled web images usu-

ally have two types of noises, label noise and background

noise, which induce extra difficulties in utilizing them ef-

fectively. Most existing methods either rely on human su-

pervision or ignore the background noise. In this paper,

we propose a novel method, which is capable of handling

these two types of noises together, without the supervision

of clean images in the training stage. Particularly, we for-

mulate our method under the framework of multi-instance

learning by grouping ROIs (i.e., images and their region

proposals) from the same category into bags. ROIs in each

bag are assigned with different weights based on the rep-

resentative/discriminative scores of their nearest clusters,

in which the clusters and their scores are obtained via our

designed memory module. Our memory module could be

naturally integrated with the classification module, leading

to an end-to-end trainable system. Extensive experiments

on four benchmark datasets demonstrate the effectiveness

of our method.

1. Introduction

Deep learning is a data-hungry method that demands

large numbers of well-labeled training samples, but acquir-

ing massive images with clean labels is expensive, time-

consuming, and labor-intensive. Considering that there are

abundant freely available web data online, learning from

web images could be promising. However, web data have

two severe flaws: label noise and background noise. La-

bel noise means the incorrectly labeled images. Since web

images are usually retrieved by using the category name

as the keyword when searching from public websites, un-

related images might appear in the searching results. Dif-

ferent from label noise, background noise is caused by the

cluttered and diverse contents of web images compared with
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Figure 1. Two web images crawled with keyword “dog”. Left:

Dog food; Right: A kid and a dog on the grassland.

standard datasets. Specifically, in manually labeled datasets

like Cifar-10, the target objects of each category usually ap-

pear at the center and occupy relatively large areas, yielding

little background noise. However, in web images, back-

ground or irrelevant objects may occupy the majority of

the whole image. One example is provided in Figure 1,

in which two images are crawled with the keyword “dog”.

The left image belongs to label noise since it has dog food,

which is indirectly related to “dog”. Meanwhile, the right

image belongs to background noise because the grassland

occupies the majority of the whole image, and a kid also

takes a salient position.

There are already many studies [33, 23, 36, 46, 52, 16,

31, 32, 34] on using web images to learn classifiers. How-

ever, most of them [53, 24, 13, 33, 23, 28, 19] only focused

on label noise. In contrast, some recent works began to con-

sider the background noise. In particular, Zhuang et al. [60]

used attention maps to suppress background noise, but this

method did not fully exploit the relationship among differ-

ent regions, which might limit its ability to remove noisy

regions. Sun et al. [46] utilized weakly supervised region

proposal network to distill clean region proposals from web

images, but this approach requires extra clean images in the

training stage.

In this work, we propose a novel method to address

the label noise and background noise simultaneously with-

out using human annotation. We first use an unsupervised

proposal extraction method [61] to capture image regions

which are likely to contain meaningful objects. In the re-
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mainder of this paper, we use “ROI” (Region Of Interest)

to denote both images and their region proposals. Fol-

lowing the idea of multi-instance learning, ROIs from the

same category are grouped into bags and the ROIs in each

bag are called instances. Based on the assumption that

there is at least a proportion of clean ROIs in each bag,

we tend to learn different weights for different ROIs with

lower weights indicating noisy ROIs, through which la-

bel/background noise can be mitigated. With ROI weights,

we can use the weighted average of ROI-level features

within each bag as bag-level features, which are cleaner

than ROI-level features and thus more suitable for training

a robust classifier.

Instead of learning weights via self-attention like [17,

60], in order to fully exploit the relationship among differ-

ent ROIs, we tend to learn ROI weights by comparing them

with prototypes, which are obtained via clustering bag-level

features. Each cluster center (i.e., prototype) has a represen-

tative (resp., discriminative) score for each category, which

means how this cluster center is representative (resp., dis-

criminative) for each category. Then, the weight of each

ROI can be calculated based on its nearest cluster center

for the corresponding category. Although the idea of the

prototype has been studied in many areas such as semi-

supervised learning [6] and few-shot learning [43], they

usually cluster the samples within each category, while we

cluster bag-level features from all categories to capture the

cross-category relationship.

Traditional clustering methods like K-means could be

used to cluster bag-level features. However, we use re-

cently proposed key-value memory module [29] to achieve

this goal, which is more powerful and flexible. The mem-

ory module could be integrated with the classification mod-

ule, yielding an end-to-end trainable system. Moreover, it

can online store and update the category-specific represen-

tative/discriminative scores of cluster centers at the same

time. As a minor contribution, we adopt the idea of Self-

Organizing Map [48] to improve the existing memory mod-

ule to stabilize the training process.

Our contributions can be summarized as follows: 1) The

major contribution is handling the label/background noise

of web data under the multi-instance learning framework

with the memory module; 2) The minor contribution is

proposing the self-organizing memory module to stabilize

the training process and results; 3) The experiments on sev-

eral benchmark datasets demonstrate the effectiveness of

our method in learning classifiers with web images.

2. Related Work

2.1. Webly Supervised Learning

For learning from web data, previous works focus on

handling the label noise in three directions, removing label

noise [42, 7, 8, 30, 53, 24, 33, 23, 28, 12, 39, 14], build-

ing noise-robust model [4, 10, 5, 36, 44, 3, 38, 49, 47, 21],

and curriculum learning [13, 19]. The above approaches

focused on label noise. However, web data also have back-

ground noise, as mentioned in [46]. To address this issue,

Zhuang et al. [60] utilized the attention mechanism [50] to

reduce the attention on background regions while Sun et al.

[46] used a weakly unsupervised object localization method

to reduce the background noise.

Most previous works utilize extra information like a

small clean dataset or only consider the label noise issue.

In contrast, our method can solve both label noise and back-

ground noise by only using noisy web images in the training

stage.

2.2. Memory Networks

Memory networks were recently introduced to solve the

question answering task [18, 45, 29]. Memory network was

first proposed in [18] and extended to be end-to-end train-

able in [45]. Miller et al. [29] added the key and value mod-

ule for directly reading documents, rendering the memory

network more flexible and powerful. More recently, mem-

ory networks have been employed for one-shot learning

[41, 20], few-shot learning [55, 58], and semi-supervised

learning [6].

Although memory networks have been studied in many

tasks, our work is the first to utilize the memory network to

handle the label/background noise of web data.

2.3. Multi­Instance Learning

In multi-instance learning (MIL), multiple instances are

grouped into a bag, with at least one positive instance trig-

gering the bag-level label. The main goal of MIL is to

learn a robust classifier with unknown instance labels. Some

early methods based on SVM [2, 27] treat one bag as an en-

tirety or infer instance labels within each bag. In the deep

learning era, various pooling operations have been studied

like mean pooling and max pooling [37, 59, 11]. Differ-

ent from these non-trainable pooling operators, some works

[35, 17, 22, 51] proposed trainable operators to learn differ-

ent weights for different instances. By utilizing the atten-

tion mechanism, Pappas and PopescuBelis [35] proposed

an attention-based MIL with attention weights trained in

an auxiliary linear regression model. AD-MIL [17] took a

further step and designed permutation-invariant aggregation

operator with the gated attention mechanism.

Under the MIL framework, we utilize a memory module

to learn weights for the instances in each bag, which has not

been explored before.

3. Methodology

In this paper, we denote a matrix/vector by using a upper-

case/lowercase letter in boldface (e.g., A denotes a matrix
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Figure 2. Illustration of our method. Black Arrow: Update the CNN model with bag-level features and bag labels. Dashed Arrow: Update

the memory module with bag-level features and bag labels. Red Arrow: Update the weights of ROIs based on the memory module. The

whole training algorithm is listed in Algorithm 1.

and a denotes a vector). ai denotes a particular row or col-

umn of A indexed by subscript i. ai,j denotes an element

of A at the i-th row and j-th column. Moreover, we use

aT to denote the transpose of a, and A ◦ B to denote the

element-wise product between A and B.

3.1. Overview of Our Method

The flowchart of our method is illustrated in Figure 2.

We first extract region proposals for each image using the

unsupervised EdgeBox method [61]. By tuning the hyper-

parameters in EdgeBox, we expect the extracted proposals

to cover most objects to avoid missing important informa-

tion (see details in Section 4.2). We group ROIs (i.e., im-

ages and their proposals) from the same category into train-

ing bags, in which ROIs within each bag are treated as in-

stances. To assign different weights to different ROIs in

each bag, we compare each ROI with its nearest key in the

memory module. Then we take the weighted average of

ROI-level features as bag-level features, which are used to

train the classifier and update the memory module.

3.2. Multi­Instance Learning Framework

We build our method under the multi-instance learning

framework. Particularly, we group several images of the

same category and their region proposals into one bag, so

that each bag has multiple instances (i.e., ROIs). We aim to

assign higher weights to clean ROIs and use the weighted

average of ROI-level features within each bag as bag-level

features, which are supposed to be cleaner than ROI-level

features.

Formally, we use S to denote the training set of multiple

bags, and B ∈ S denotes a single training bag. Note that we

use the same number ng of images in each bag and generate

the same number np of region proposals for each image,

leading to the same number nb of ROIs in each bag with

nb = ng(np + 1). Specifically, B = {xi|i = 1, 2, ..., nb}
is a bag of nb ROIs, in which xi ∈ R

d is the d-dim feature

vector of i-th ROI. We use w(xi) to denote the weight of xi

with
∑

xi∈B w(xi) = 1. As shown in Figure 2, the features

of ROIs are pooled from the corresponding regions on the

feature map of the last convolutional layer in CNN model,

similar to [40].

Given a bag with category label y ∈ [1, 2, ..., C] with C

being the number of total categories, we can also represent

its bag label as a C-dim one-hot vector y with only the y-th

element being one. After assigning weight w(xi) to each

xi, we use weighted average of ROI features in each bag

as the bag-level feature: x̄ =
∑

xi∈B w(xi) · xi ∈ R
d. Our

classification module is based on bag-level features with the

cross-entropy loss:

Lcls = −
∑

B∈S

yT log

(

f(
∑

xi∈B

w(xi) · xi)

)

, (1)

in which f(·) is a softmax classification layer. At the ini-

tialization step, the weights of region proposals are all set

as zero while the images are assigned with uniform weights

in each bag. We use w̄(xi) to denote such initialized ROI

weights. After initializing the CNN model, we tend to learn

different weights for ROIs by virtue of the memory module.

Next, we first introduce our memory module and then de-

scribe how to assign weights to ROIs based on our memory

module.

3.3. Self­Organizing Memory Module

The basic function of our memory module is clustering

bag-level features and each cluster center can be treated as

a prototype [42, 7, 8, 6, 43]. Although traditional cluster-

ing methods like K-means can realize a similar function, the
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memory module is more flexible and powerful. Specifically,

the memory module can be easily integrated with the classi-

fication module, leading to an end-to-end trainable system.

Besides, the memory module can simultaneously store and

update additional useful information, i.e., category-specific

representative/discriminative scores of each cluster center.

3.3.1 Memory Module Architecture:

Our memory module consists of key slots and values slots.

The key slots contain cluster centers, while the value slots

contain their corresponding category-specific representa-

tive/discriminative scores.

We use K ∈ Rd×L to denote key slots, in which L is the

number of key slots and the l-th column kl is the l-th key

slot representing the l-th cluster center.

To capture the relationship between clusters and cate-

gories, we design two value slots. We investigate two types

of cluster-category relationships, i.e., how discriminative

and how representative a learned cluster is to a category.

Correspondingly, we have two types of value slots: the “dis-

criminative” value slots (d-value slots) and the “representa-

tive” value slots (r-value slots). Each pair of d-value slot and

r-value slot corresponds to one key slot. Formally, we use

D ∈ RC×L (resp., R ∈ RC×L) to denote d-value (resp.,

r-value) slots, where dy,l (resp., ry,l) is the discriminative

(resp., representative) score of kl for the y-th category.

To better explain discriminative/representative score, we

assume that L clusters are obtained based on all training

bags and ny,l is the number of training bags from the y-

th category in the l-th cluster. Then, we can calculate

d̃y,l =
ny,l∑

C
y=1

ny,l
and r̃y,l =

ny,l∑
L
l=1

ny,l
. Intuitively, d̃y,l

means the percentage of the bags from the y-th category

among the bags in the l-th cluster. The larger d̃y,l is, the

more discriminative the l-th cluster is to the y-th category.

So we expect dy,l in d-value slots D to approximate d̃y,l.

Similarly, r̃y,l means the percentage of the bags in the l-th

cluster among the bags from the y-th category. The larger

r̃y,l is, the more representative the l-th cluster is to the y-th

category. So we expect ry,l in r-value slots R to approxi-

mate r̃y,l.

3.3.2 Memory Module Updating:

With all key and value slots randomly initialized, they are

updated based on the bag-level feature x̄ of training bag B
from c-th category and its one-hot label vector y.

First, we seek for the cluster that x̄ belongs to, which

is also referred to as the “winner key slot” of x̄. Precisely,

we calculate the cosine similarity between x̄ and all keys

as cos(x̄,kl) =
k
T
l x̄

‖kl‖2‖x̄‖2

for l = 1, 2, ..., L, and find the

winner key slot kz of x̄ where:

z = argmax
l

cos(x̄,kl) (2)

After determining that x̄ belongs to the z-th cluster, the

cluster center kz needs to be updated based on x̄. Unlike

the previous approach [58] which updates cluster centers

with computed gradients, we employ a loss function which

is more elegant and functionally similar:

Lkey = −
∑

B∈S

cos(x̄,kz), (3)

which can push the winner cluster center kz closer to x̄.

With similar loss functions, we also update d-value slots

and r-value slots accordingly. For d-value slots D, recall

that we expect dy,i to approximate d̃y,i which means the

percentage of the bags from the y-th category among the

bags in the i-th cluster. Then, the z-th column dz of D

could represent the category distribution in the z-th cluster,

so we need to update dz with the label vector y of x̄ as

follows,

Ld-value = −
∑

B∈S

cos(y,dz), (4)

s.t. ‖dz‖1 = 1, dz ≥ 0. (5)

Ld-value can push dz towards y while maintaining dz as a

valid distribution with (5), so dy,z will approximate d̃y,z
eventually.

For r-value slots R, recall that we expect ry,i to approx-

imate r̃y,i which means the percentage of the bags in the

i-th cluster among the bags from the y-th category. Then,

ry , the y-th row of R, could represent the distribution of all

bags from the y-th category over all clusters, so we need to

update ry with the one-hot cluster indicator vector z of x̄

(only the z-th element is 1) as follows,

Lr-value = −
∑

B∈S

cos(z, ry), (6)

s.t. ‖ry‖1 = 1, ry ≥ 0. (7)

Similar to dz , Lr-value can push ry towards z while keep-

ing it a valid distribution with (7), so ry,z will approximate

r̃y,z eventually. The theoretical proof and more details for

Ld-value and Lr-value can be found in Supplementary.

3.3.3 Self-Organizing Map (SOM) Extension:

A good clustering algorithm should be insensitive to initial-

ization and produce balanced clustering results. Inspired by

Self-Organizing Map [48], we design a neighborhood con-

straint on the key slots to achieve this goal, leading to our

self-organizing memory module.
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In particular, we arrange the key slots on a square grid.

When updating the winner key slot kz , we also update its

spatial neighbors. The neighborhood of kz is defined as

N (kz, δ) = {ki|geo(kz,ki) ≤ δ}, in which geo(·, ·) is the

geodesic distance of two key slots on the square grid and δ

is a hyper-parameter that controls the neighborhood size.

Then, the key loss Lkey in (3) can be replaced by

LSOM-key = −
∑

B∈S

∑

ki∈N (kz,δ)

η(kz,ki) · cos(x̄,ki), (8)

in which η(kz,ki) = (1 + geo(kz,ki))
−1 is the weight

assigned to ki and negatively correlated with the geodesic

distance (see more technical details in the Supplementary).

In summary, the total loss of updating our self-organizing

memory module can be written as:

Lmemory = LSOM-key + Ld-value + Lr-value. (9)

3.4. ROI Selection Based on Memory Module

Based on the memory module, we can assign different

weights to different ROIs in each bag. Specifically, given a

ROI x with its bag label y, we first seek for its winner key

slot kz , and obtain the discriminative (resp., representative)

score of kz for the y-th category, that is, dy,z (resp., ry,z).

For a clean ROI, we expect its winner key to be both dis-

criminative and representative for its category. For ease of

description, we define S = D ◦R with sy,z = dy,z · ry,z .

We refer to sy,z as the prototypical score of kz for the y-th

category. Therefore, ROIs with higher prototypical scores

are more prone to be clean ROIs.

Besides the prototypical score, we propose another dis-

count factor by considering ROI areas. Intuitively, we con-

jecture that smaller ROIs are less likely to have meaningful

content and thus should be penalized. Thus, we use area

score (a-score) σ(·) to describe the relative size of each ROI.

Recall that there are two types of ROIs in each bag: image

and region proposal. For original images, we set σ(x) = 1.

For region proposals, we calculate σ(x) as the ratio between

the area of region proposal x and the maximum area of all

region proposals (excluding the full image) from the same

image. To this end, we use a-score σ(x) to discount sy,z ,

resulting in a new weight for x:

w(x) = sy,z · σ(x). (10)

After calculating the ROI weights based on (10), we only

keep the top p (e.g., 10%) weights of ROIs in each bag while

the other weights are set to be zero. The ROI weights in

each bag are then normalized so that they sum to one.

3.5. Training Algorithm

For better representation, we use θcnn to denote the

model parameters of CNN and θmem to denote {K,D,R}
in memory module.

Algorithm 1 : The Training Process of Our Network

Require: Bags of ROIs B and bag label y. Initialize

p =10%. Initialize ROI weights as w̄(xi) in Sec-

tion 3.2.

Ensure: Model parameters {θcnn,θmem}.
1: Initialize θcnn based on (1) with w̄(xi).
2: Initialize θmem based on (9) with w̄(xi).
3: Repeat:

4: Update θcnn and θmem based on (11) while w(xi) are

updated based on (10) accordingly.

5: p← p+ 5%.

6: Break if p > 40%.

7: End Repeat.

At first, we utilize initial ROI weights w̄(xi) mentioned

in Section 3.2 to obtain weighted average of ROI-level fea-

tures as bag-level features, which are used to train the CNN

model θcnn and the memory module θmem. Then, we train

the whole system in an end-to-end manner. Specifically, we

train the CNN model θcnn and the memory module θmem

with the bag-level features x̄ =
∑

xi∈B w(xi) · xi, while

the weights of ROIs w(xi) are updated accordingly based

on updated θcnn and θmem. In this way, cleaner bag-level

features can help learn better key slots and value slots in the

memory module, while the enhanced memory module can

assign more reliable ROI weights and contribute to cleaner

bag-level features in turn. The total loss of the whole system

can be written as:

Lall = Lcls + Lmemory. (11)

For better performance, we leverage the idea of curricu-

lum learning [56]. It suggests that when training a model,

we should start with clean or simple training samples to

have a good initialization, and then add noisy or difficulty

training samples gradually to improve the generalization

ability of the model. After calculating the ROI weights, the

top-score ROIs in each bag should be cleaner than the low-

score ones. So p is used as a threshold parameter to filter

out the noisy ROIs in each bag. Following the idea of cur-

riculum learning, p is set to be relatively small at first so

that the selected ROIs are very discriminative and represen-

tative. Then we increase p gradually to enhance the gen-

eralization ability of the trained model. The total training

process can be seen in Algorithm 1.

For evaluation, we directly use the well-trained CNN

model to classify test images based on image-level features

without extracting region proposals. The memory module

is only used to denoise web data in the training stage, but

not used in the testing stage.
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Figure 3. Visualization of our memory module on Clothing1m dataset. We exhibit three key slots with “suit” as the category of interest,

with each row standing for one key slot. The left pie chart shows the category distribution in each key slot, and the right images are

representative ROIs belonging to each key slot. The d-score and r-score for “suit” category of each key slot are also reported.

4. Experiments

In this section, we introduce the experimental settings

and demonstrate the performance of our proposed method.

4.1. Datasets

Clothing1M: Clothing1M [54] is a large-scale fashion

dataset designed for webly supervised learning. It contains

about one million clothing images crawled from the Inter-

net, and the images are categorized into 14 categories. Most

images are associated with noisy labels extracted from their

surrounding texts and used as the training set. A few images

with human-annotated clean labels are used as the clean

dataset for evaluation.

Food-101 & Food-101N: Food-101 dataset [1] is a large

food image dataset collected from foodspotting.com. It

has 101 categories and 1k images for each category with

human-annotated labels. Food-101N is a web dataset pro-

vided by [24]. It has 310k images crawled with the same

taxonomy in Food101 from several websites (excluding

foodspotting.com). In our experiments, we use Food-101N

for training and Food-101 for evaluation.

Webvision & ILSVRC: The WebVision dataset [26] is

composed of training, validation, and test set. The train-

ing set is crawled from Flickr and Google by using the same

1000 semantic concepts as in the ILSVRC-2012 [9] dataset.

It has 2.4 million images with noisy labels. The validation

and test set are manually annotated. In our experiments, we

only use the WebVision training set for training but perform

the evaluation on both WebVision validation set (50k) and

ILSVRC-2012 validation set (50k).

4.2. Implementation Details

We adopt ResNet50 [15] as the CNN model and use the

output of its last convolutional layer as the feature map to

extract ROI features. For Clothing1M and Food101N, we

use ResNet50 pretrained on ImageNet following previous

works [24, 13]. For WebVision and ImageNet, ResNet50 is

trained from scratch with the web training images in Web-

Vision.

For the proposal extractor (i.e., Edge Boxes), there are

two important parameters MaxBoxes and MinBoxArea,

in which MaxBoxes controls the maximal number of re-

turned region proposals and MinBoxArea determines the

minimal area. In our experiments, we use MaxBoxes = 20
(i.e., np = 20) and MinBoxArea = 5000. By default,

we use two images in each training bag (i.e., ng = 2), so

the number of ROIs in each bag is nb = ng(np + 1) =
2× (20 + 1) = 42.

4.3. Qualitative Analyses

In this section, we provide in-depth qualitative analyses

to elaborate on how our method works. We first explore the

memory module and then explore training bags.

Memory Module: By taking Clothing1M dataset as an ex-

ample and “suit” as category of interest, we choose three

key slots for illustration in Figure 3, in which each row

stands for one key slot with its corresponding d-score and

r-score. To visualize each key slot, we select five ROIs with

highest cosine similarity to this key slot, i.e., cos(xi,kl).

The first key slot almost clusters an equal number of bags

from both “Suit” and “Windbreaker” as the pie chart shows,

so it has the lowest d-score. In the meantime, its total num-

ber of bags from “Suit” is smaller than those of the other
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Figure 4. Column-1: A training bag for “Suit” with ng = 3.

Column-2: Top 30% ROIs selected by our network. The bottom

image together with all its region proposals are removed. Column-

3&4: The heat map obtained by summing over ROI weights and

the histogram of the heat map pixels.

two slots, so its r-score is also the lowest. Hence, such a key

slot is neither discriminative nor representative to “Suit”.

The other two key slots are very discriminative for the

category “Suit” and have a very high d-score. However,

the third key slot is more representative for “Suit” than the

second one, resulting in a higher r-score. The explanation

is that the total number of bags with colorful suits (second

key slot) is smaller than those with black/grey suits (third

key slot), so we claim that the third key slot is more repre-

sentative to “Suit”. Combining the r-score and d-score, we

would claim that the third key slot is the most prototypical

to “Suit” (see the visualization of all L = 144 key slots in

Supplementary).

Training Bags: Based on the memory module, different

ROIs within each bag are assigned with different weights,

according to their areas and prototypical scores of their

nearest key slots. In Figure 4, we show a training bag with

three images (i.e., ng = 3). By comparing the first and

the second column, we can observe that the noisy images

and noisy region proposals have been removed based on the

learned ROI weights. By summing over the ROI weights,

we can obtain the attention heat map with brighter colors

indicating higher weights. The heat maps and their cor-

responding histograms are shown in the third and fourth

columns, respectively. It can be seen that the background

region has lower weights than the main objects. Therefore,

the results in Figure 4 demonstrate the ability of our net-

work to address the label noise and background noise.

4.4. Ablation Study

We first compare the results of our method with different

ng and L in Table 1, by taking the Clothing1M dataset as

an example.

The bag size: As Table 1 shows, our method with ng = 2

Parameter ng 1 2 3 4 5

Accuracy 72.9 82.1 81.1 78.5 75.9

Parameter L 42 82 122 162 202

Accuracy 78.7 81.7 82.1 81.9 81.6

Table 1. Accuracies (%) of our method with different ng and L on

the Clothing1M. The best result is denoted in boldface.

achieves the best performance, so we use it as the default

parameter in the rest experiments. Furthermore, it can be

seen that the performance with ng = 1 is worse than those

with ng > 1, because our method with only one image in

a bag will be unable to reduce the label noise when it is a

noisy image.

The number of key slots: As in Table 1, the performance

of our method is quite robust when the number of key slots

is big enough (L ≥ 8 × 8), while a too-small number

(L = 4×4) will lead to a performance drop. Notice that the

best performance is achieved with L = 12 × 12 while the

Clothing1M dataset has 14 categories, it suggests that when

each category can occupy about 12× 12÷ 14 ≈ 10 cluster-

ing centers in the memory module, our method will gener-

ally achieve satisfactory performance. Following this obser-

vation, we have L = 12× 12 for Clothing1M, L = 32× 32
for Food101, and L = 100 × 100 for WebVision and Ima-

geNet in the rest experiments.

Secondly, we study the contribution of each component

in our method in Table 2. ResNet50 and ResNet50+ROI

are two naive baselines, and SOMNet denotes our method.

ResNet50+ROI uses both images and region proposals

as input, but it only achieves slight improvement over

ResNet50, which shows that simply using proposals as data

augmentation is not very effective.

Three types of scores: Recall that we use three types of

scores to weight ROIs: r-score, d-score, and a-score. To

investigate their benefit, we report the performance of our

method by ablating each type of score, denoted by SOM-

Net(w/o d-score), SOMNet(w/o r-score), and SOMNet(w/o

a-score) in Table 2. We observe that the performance will

decrease with the absence of each type of score, which in-

dicates the effectiveness of our designed scores.

Curriculum learning: Notice we utilize the idea of cur-

riculum learning by gradually increasing p from 10% to

40% during training. In Table 2, SOMNet (p = 40%) de-

notes the result of directly using p = 40% from the start of

training, which has a performance drop of 0.8%. It proves

the effectiveness of using curriculum learning.

Background noise removal: We claimed that web data

have both label noise and background noise. To study the

influence of background noise, we only handle label noise

by not using region proposals, and the result is denoted by

SOMNet (w/o ROI) in Table 2. To make a fair compari-

son, we find out that ng = 5 and p = 60% are the opti-
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ResNet50 ResNet50+ROI SOMNet (w/o d-score) SOMNet (w/o r-score) SOMNet (w/o a-score)

68.6 69.1 76.8 73.5 74.8

SOMNet (p = 40%) SOMNet (w/o ROI) SOMNet+K-means SOMNet (w/o SOM) SOMNet

81.3 74.1 79.5 78.2 82.1

Table 2. Accuracies (%) of our method and special cases on the Clothing1M. The best result is denoted in boldface.

Training set Clothing1M Food101N WebVision

Test set Clothing1M Food101 WebVision ImageNet

Evaluation metric Top-1 Top-1 Top-1 Top-5 Top-1 Top-5

ResNet50 68.6 77.4 66.4 83.4 57.7 78.4

2014 Sukhbaatar et al. [44] 71.9 80.8 67.1 84.2 58.4 79.5

2015 DRAE [53] 73.0 81.1 67.5 85.1 58.6 79.4

2017 Zhuang et al. [60] 74.3 82.5 68.7 85.4 60.4 80.3

2018 AD-MIL [17] 71.1 79.2 66.9 84.0 58.0 78.9

2018 Tanaka et al. [47] 72.2* 81.5 67.4 84.7 59.5 80.0

2018 CurriculumNet [13] 79.8 84.5 70.7 88.6 62.7 83.4

2019 SL [52] 71.0* 80.9 66.2 82.3 58.7 78.8

2019 MLNT [25] 73.5* 82.5 68.3 85.0 60.2 80.1

2019 PENCIL [57] 73.5* 83.1 68.9 85.7 60.8 81.1

SOMNet 82.1 87.5 72.2 89.5 65.0 85.1

Table 3. The accuracies (%) of different methods on Clothing1M, Food101, Webvision, and ImageNet datasets. The results directly copied

from corresponding papers are marked with “*”. The best results are denoted in boldface.

mal parameters in this setting. However, the best result is

only 74.1%, which is much worse than using region pro-

posals. This result demonstrates the necessity of handling

background noise.

The self-organizing memory module: Since traditional

clustering methods like K-means can realize a similar func-

tion to the memory module, we replace our self-organizing

memory module with the K-means method and refer to this

baseline as SOMNet+K-means (see implementation details

in Supplementary). The performance drop in this setting

proves the effectiveness of joint optimization in an end-

to-end manner with our memory module. Moreover, to

demonstrate the effectiveness of using SOM as an exten-

sion, we set neighborhood size as 1, which is equivalent

to removing SOM. The comparison between SOMNet (w/o

SOM) and SOMNet indicates that it is beneficial to use

SOM in our memory module.

4.5. Comparison with the State­of­the­Art

We compare our method with the state-of-the-art webly

or weakly supervised learning methods in Table 3 on four

benchmark datasets: Clothing1M, Food101, WebVision,

and ImageNet. The baseline methods include Sukhbaatar

et al. [44], DRAE [53], Zhuang et al. [60], AD-MIL [17],

Tanaka et al. [47], CurriculumNet [13], SL [52], MLNT

[25], and PENCIL [57]. Some methods did not report their

results on the above four datasets. Even with evaluation on

the above datasets, different methods conduct experiments

in different settings (e.g., backbone network, training set),

so we re-run their released code in the same setting as our

method for fair comparison. For those methods which al-

ready report results in exactly the same setting as ours, we

directly copy their reported results (marked with “*”).

From Table 3, we can observe that our method achieves

significant improvement over the backbone ResNet50. The

average relative improvement (Top-1) on all four datasets is

9.18%. It also outperforms all the baselines, demonstrating

the effectiveness of our method for handling label noise and

background noise using the memory module.

5. Conclusion

In this paper, we have proposed a novel method, which

can address the label noise and background noise of web

data at the same time. Specifically, we have designed a

novel memory module to remove noisy images and noisy

region proposals under the multi-instance learning frame-

work. Comprehensive experiments on four benchmark

datasets have verified the effectiveness of our method.
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