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Abstract

While high resolution images contain semantically more

useful information than their lower resolution counterparts,

processing them is computationally more expensive, and in

some applications, e.g. remote sensing, they can be much

more expensive to acquire. For these reasons, it is desirable

to develop an automatic method to selectively use high res-

olution data when necessary while maintaining accuracy

and reducing acquisition/run-time cost. In this direction,

we propose PatchDrop a reinforcement learning approach

to dynamically identify when and where to use/acquire high

resolution data conditioned on the paired, cheap, low res-

olution images. We conduct experiments on CIFAR10, CI-

FAR100, ImageNet and fMoW datasets where we use signif-

icantly less high resolution data while maintaining similar

accuracy to models which use full high resolution images.

1. Introduction

Deep Neural Networks achieve state-of-the-art perfor-

mance in many computer vision tasks, including image

recognition [4], object detection [23], and object track-

ing [18]. However, one drawback is that they require high

quality input data to perform well, and their performance

drops significantly on degraded inputs, e.g., lower resolu-

tion images [49], lower frame rate videos [28], or under

distortions [38]. For example, [45] studied the effect of im-

age resolution, and reported a 14% performance drop on

CIFAR10 after downsampling images by a factor of 4.

Nevertheless, downsampling is often performed for com-

putational and statistical reasons [51]. Reducing the resolu-

tion of the inputs decreases the number of parameters, re-

sulting in reduced computational and memory cost and mit-

igating overfitting [2]. Therefore, downsampling is often

applied to trade off computational and memory gains with

accuracy loss [25]. However, the same downsampling level

is applied to all the inputs. This strategy can be suboptimal

because the amount of information loss (e.g., about a label)

depends on the input [7]. Therefore, it would be desirable

to build an adaptive system to utilize a minimal amount of

high resolution data while preserving accuracy.

In addition to computational and memory savings, an

adaptive framework can also benefit application domains

where acquiring high resolution data is particularly expen-

sive. A prime example is remote sensing, where acquiring

a high resolution (HR) satellite image is significantly more

expensive than acquiring its low resolution (LR) counter-

part [26, 32, 9]. For example, LR images with 10m-30m

spatial resolution captured by Sentinel-1 satellites [8] are

publicly and freely available whereas an HR image with

0.3m spatial resolution captured by DigitalGlobe satellites

can cost in the order of 1,000 dollars [6]. Similar exam-

ples arise in medical and scientific imaging, where acquir-

ing higher quality images can be more expensive or even

more harmful to patients [16, 15].

In all these settings, it would be desirable to be able to

adaptively acquire only specific parts of the HR quality in-

put. The challenge, however, is how to perform this selec-

tion automatically and efficiently, i.e., minimizing the num-

ber of acquired HR patches while retaining accuracy. As

expected, naive strategies can be highly suboptimal. For

example, randomly dropping patches of HR satellite images

from the functional Map of the World (fMoW) [3] dataset

will significantly reduce accuracy of a trained network as

seen in Fig. 1a. As such, an adaptive strategy must learn

to identify and acquire useful patches [27] to preserve the

accuracy of the network.

To address this challenges, we propose PatchDrop, an

adaptive data sampling-acquisition scheme which only sam-

ples patches of the full HR image that are required for in-

ferring correct decisions, as shown in Fig. 1b. PatchDrop

uses LR versions of input images to train an agent in a

reinforcement learning setting to sample HR patches only

if necessary. This way, the agent learns when and where

to zoom in the parts of the image to sample HR patches.

PatchDrop is extremely effective on the functional Map of

the World (fMoW) [3] dataset. Surprisingly, we show that

we can use only about 40% of full HR images without any

112345



67.3% 66.1% 64.0% 60.8%

28.8% 59.5% 46.8% 39.1%

(a)

Ship

Horse

TruckClassifier

Classifier

Classifier

Agent

Agent

Agent

Low Resolution 
Image

Sampled High 
Resolution Patches

x

(b)

Figure 1: Left: shows the performance of the ResNet34 model trained on the fMoW original images and tested on images

with dropped patches. The accuracy of the model goes down with the increased number of dropped patches. Right: shows

the proposed framework which dynamically drops image patches conditioned on the low resolution images.

significant loss of accuracy. Considering this number, we

can save in the order of 100,000 dollars when performing a

computer vision task using expensive HR satellite images

at global scale. We also show that PatchDrop performs

well on traditional computer vision benchmarks. On Ima-

geNet, it samples about 50% of HR images on average with

a minimal loss in the accuracy. On a different task, we then

increase the run-time performance of patch-based CNNs,

BagNets [1], by 2× by reducing the number of patches that

need to be processed using PatchDrop. Finally, leveraging

the learned patch sampling policies, we generate hard pos-

itive training examples to boost the accuracy of CNNs on

ImageNet and fMoW by 2-3%.

2. Related Work

Dynamic Inference with Residual Networks Similarly

to DropOut [36], [13] proposed a stochastic layer dropping

method when training the Residual Networks [11]. The

probability of survival linearly decays in the deeper lay-

ers following the hypothesis that low-level features play key

roles in correct inference. Similarly, we can decay the like-

lihood of survival for a patch w.r.t its distance from image

center based on the assumption that objects will be dom-

inantly located in the central part of the image. Stochas-

tic layer dropping provides only training time compression.

On the other hand, [43, 47] proposes reinforcement learning

settings to drop the blocks of ResNet in both training and

test time conditionally on the input image. Similarly, by re-

placing layers with patches, we can drop more patches from

easy samples while keeping more from ambiguous ones.

Attention Networks Attention methods have been ex-

plored to localize semantically important parts of im-

ages [42, 31, 41, 39]. [42] proposes a Residual Atten-

tion network that replaces the residual identity connections

from [11] with residual attention connections. By residu-

ally learning feature guiding, they can improve recognition

accuracy on different benchmarks. Similarly, [31] proposes

a differentiable saliency-based distortion layer to spatially

sample input data given a task. They use LR images in

the saliency network that generates a grid highlighting se-

mantically important parts of the image space. The grid is

then applied to HR images to magnify the important parts of

the image. [21] proposes a perspective-aware scene parsing

network that locates small and distant objects. With a two

branch (coarse and fovea) network, they produce coarse and

fine level segmentations maps and fuse them to generate fi-

nal map. [50] adaptively resizes the convolutional patches

to improve segmentation of large and small size objects.

[24] improves object detectors using pre-determined fixed

anchors with adaptive ones. They divide a region into a

fixed number of sub-regions recursively whenever the zoom

indicator given by the network is high. Finally, [30] pro-

poses a sequential region proposal network (RPN) to learn

object-centric and less scattered proposal boxes for the sec-

ond stage of the Faster R-CNN [33]. These methods are tai-

lored for certain tasks and condition the attention modules

on HR images. On the other hand, we present a general

framework and condition it on LR images.

Analyzing Degraded Quality Input Signal There has

been a relatively small volume of work on improving

CNNs’ performance using degraded quality input sig-

nal [20]. [37] uses knowledge distillation to train a student

network using degraded input signal and the predictions of

a teacher network trained on the paired higher quality sig-

nal. Another set of studies [45, 48] propose a novel method

to perform domain adaptation from the HR network to a

LR network. [29] pre-trains the LR network using the HR

data and finetunes it using the LR data. Other domain adap-

tation methods focus on person re-identification with LR
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images [14, 22, 44]. All these methods boost the accuracy

of the networks on LR input data, however, they make the

assumption that the quality of the input signal is fixed.

3. Problem statement
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Figure 2: Our Bayesian Decision influence diagram. The

LR images are observed by the agent to sample HR patches.

The classifier then observes the agent-sampled HR image

together with the LR image to perform prediction. The ul-

timate goal is to choose an action to sample a masked HR

image to maximize the expected utilities considering the ac-

curacy and the cost of using/sampling HR image.

We formulate the PatchDrop framework as a two step

episodic Markov Decision Process (MDP), as shown in the

influence diagram in Fig. 2. In the diagram, we represent

the random variables with a circle, actions with a square,

and utilities with a diamond. A high spatial resolution im-

age, xh, is formed by equal size patches with zero over-

lap xh = (x1
h, x

2
h, · · · , x

P
h ), where P represents the num-

ber of patches. In contrast with traditional computer vision

settings, xh is latent, i.e., it is not observed by the agent.

y ∈ {1, · · · , N} is a categorical random variable represent-

ing the (unobserved) label associated with xh, where N is

the number of classes. The random variable low spatial res-

olution image, xl, is the lower resolution version of xh. xl

is initially observed by the agent in order to choose the bi-

nary action array, a1 ∈ {0, 1}
P , where a

p
1 = 1 means that

the agent would like to sample the p-th HR patch xp
h. We

define the patch sampling policy model parameterized by

θp, as

π1(a1|xl; θp) = p(a1|xl; θp), (1)

where π1(xl; θp) is a function mapping the observed LR

image to a probability distribution over the patch sampling

action a1. Next, the random variable masked HR image,

xm
h , is formed using a

p
1 and xp

h, with the masking operation

formulated as xm
h = xh

⊙

a1. The first step of the MDP

can be modeled with a joint probability distribution over the

random variables, xh, y, xm
h , and xl, and action a1, as

p(xh, x
m
h , xl, y,a1) = p(xh)p(y|xh)p(xl|xh)

·p(a1|xl; θp)p(x
m
h |a1, xh). (2)

In the second step of the MDP, the agent observes the

random variables, xm
h and xl, and chooses an action a2 ∈

{1, · · · , N}. We then define the class prediction policy as

follows:

π2(a2|x
m
h , xl; θcl) = p(a2|x

m
h , xl; θcl), (3)

where π2 represents a classifier network parameterized by

θcl. The overall objective, J , is then defined as maximizing

the expected utility, R represented by

max
θp,θcl

J(θp, θcl) = Ep[R(a1,a2, y)], (4)

where the utility depends on a1, a2, and y. The reward

penalizes the agent for selecting a large number of high-

resolution patches (e.g., based on the norm of a1) and in-

cludes a classification loss evaluating the accuracy of a2

given the true label y (e.g., cross-entropy or 0-1 loss).

4. Proposed Solution

4.1. Modeling the Policy Network and Classifier

In the previous section, we formulated the task of Patch-

Drop as a two step episodic MDP. Here, we detail the ac-

tion space and how the policy distributions for a1 and a2

are modelled. To represent our discrete action space for

a1, we divide the image space into equal size patches with

no overlaps, resulting in P patches, as shown in Fig. 3. In

this study, we use P = 16 regardless of the size of the input

image and leave the task of choosing variable size bounding

boxes as a future work. In the first step of the two step MDP,

the policy network, fp, outputs the probabilities for all the

actions at once after observing xl. An alternative approach

could be in the form of a Bayesian framework where a
p
1 is

conditioned on a
1:p−1
1 [7, 30]. However, the proposed con-

cept of outputting all the actions at once provides a more

efficient decision making process for patch sampling.

In this study, we model the action likelihood function of

the policy network, fp, by multiplying the probabilities of

the individual high-resolution patch selections, represented

by patch-specific Bernoulli distributions as follows:

π1(a1|xl, θp) =

P
∏

p=1

s
a
p

1
p (1− sp)

(1−a
p

1
), (5)

where sp represents the prediction vector formulated as

sp = fp(xl; θp). (6)

To get probabilistic values, sp ∈ [0, 1], we use a sigmoid

function on the final layer of the policy network.

The next set of actions, a2, is chosen by the classifier,

fcl, using the sampled HR image xm
h and the LR input xl.

The upper stream of the classifier, fcl, uses the sampled HR

images, xm
h , whereas the bottom stream uses the LR im-

ages, xl, as shown in Fig. 3. Each one outputs probability
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Figure 3: The workflow of the PatchDrop formulated as a two step episodic MDP. The agent chooses actions conditioned

on the LR image, and only agent sampled HR patches together with LR images are jointly used by the two-stream classifier

network. We note that the LR network can be disconnected from the pipeline to only rely on selected HR patches to perform

classification. When disconnecting LR network, the policy network samples more patches to maintain accuracy.

distributions, slcl and sh
m

cl , for class labels using a softmax

layer. We then compute the weighted sum of predictions via

scl = (S/P )sh
m

cl + (1− S/P )slcl, (7)

where S represents the number of sampled patches. To form

a2, we use the maximally probable class label: i.e., a
j
2 = 1

if sjcl = max(scl) and a
j
2 = 0 otherwise where j represents

the class index. In this set up, if the policy network samples

no HR patch, we completely rely on the LR classifier, and

the impact of the HR classifier increases linearly with the

number of sampled patches.

4.2. Training the PatchDrop Network

After defining the two step MDP and modeling the pol-

icy and classifier networks, we detail the training procedure

of PatchDrop. The goal of training is to learn the optimal

parameters of θp and θcl. Because the actions are discrete,

we cannot use the reparameterization trick to optimize the

objective w.r.t. θp. To optimize the parameters θp of fp, we

need to use model-free reinforcement learning algorithms

such as Q-learning [46] and policy gradient [40]. Policy

gradient is more suitable in our scenario since the number

of unique actions the policy network can choose is 2P and

increases exponentially with P . For this reason, we use

the REINFORCE method [40] to optimize the objective

w.r.t θp using

∇θpJ = E[R(a1,a2, y)∇θp log πθp(a1|xl)]. (8)

Averaging across a mini-batch via Monte-Carlo sampling

produces an unbiased estimate of the expected value, but

with potentially large variance. Since this can lead to an

unstable training process [40], we replace R(a1,a2, y) in

Eq. 8 with the advantage function to reduce the variance:

∇θpJ = E[A

P
∑

p=1

∇θp log(spa
p
1 +(1− sp)(1−a

p
1))], (9)

A(a1, â1,a2, â2) = R(a1,a2, y)−R(â1, â2, y), (10)

where â1 and â2 represent the baseline action vectors. To

get â1, we use the most likely action vector proposed by the

policy network: i.e., ai1 = 1 if sip > 0.5 and sip = 0 other-

wise. The classifier, fcl, then observes xl and x̂m
h sampled

using â1, on two branches and outputs the predictions, ŝcl,
from which we get â

j
2: i.e., â

j
2 = 1 if ŝjcl = max(ŝcl) and

â
j
2 = 0 otherwise where j represent the class index. The ad-

vantage function assigns the policy network a positive value

only when the action vector sampled from Eq. 5 produces

higher reward than the action vector with maximum likeli-

hood, which is known as a self-critical baseline [34].

Finally, in this study we use the temperature scaling

method [40] to encourage exploration during training time

by bounding the probabilities of the policy network as

sp = αsp + (1− α)(1− sp), (11)

where α ∈ [0, 1].
Pre-training the Classifier After formulating our rein-

forcement learning setting for training the policy network,

we first pre-train the two branches of fcl, f
h
cl and f l

cl, on

xh ∈ Xh and xl ∈ Xl. We assume that Xh is observable

in the training time. The network trained on Xh can per-

form reasonably (Fig. 1a) when the patches are dropped at

test time with a fixed policy, forming xm
h . We then use this

observation to pre-train the policy network, fp, to dynami-

cally learn to drop patches while keeping the parameters of

fh
cl and f l

cl fixed.

Pre-training the Policy Network (Pt) After training the

two streams of the classifier, fcl, we pre-train the policy net-

work, fp, using the proposed reinforcement learning setting

while fixing the parameters of fcl. In this step, we only use

fh
cl to estimate the expected reward when learning θp. This

is because we want to train the policy network to understand

which patches contribute most to correct decisions made by

the HR image classifier, as shown in Fig. 1a.

Finetuning the Agent and HR Classifier (Ft-1) To fur-

ther boost the accuracy of the policy network, fp, we jointly

finetune the policy network and HR classifier, fh
cl. This

way, the HR classifier can adapt to the sampled images, xm
h ,
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Input: Input(Xl,Y, C) Xl = {x
1
l , x

2
l , ..., x

N
l }

for k ← 0 to K1 do
sp ← fp(xl; θp)
sp ← α+ (1− sp)(1− α)
a1 ∼ π1(a1|sp)

xm
h = xh

⊙

a1

a2 ← fh
cl(x

m
h ; θhcl)

Evaluate Reward R(a1,a2, y)

θp ← θp +∇θp
end

for k ← 0 to K2 do

Jointly Finetune θhcl and θp using fh
cl

end

for k ← 0 to K3 do

Jointly Finetune θhcl and θp using fh
cl and f l

cl

end

Algorithm 1: PatchDrop Pseudocode

while the policy network learns new policies in line with it.

The LR classifier, f l
cl, is not included in this step.

Finetuning the Agent and HR Classifier (Ft-2) In the

final step of the training stage, we jointly finetune the policy

network, fp, and fh
cl with the addition of f l

cl into the classi-

fier fcl. This way, the policy network can learn policies to

drop further patches with the existence of the LR classifier.

We combine the HR and LR classifiers using Eq. 7. Since

the input to f l
cl does not change, we keep θlcl fixed and only

update θhcl and θp. The algorithm for the PatchDrop training

stage is shown in Alg. 1. Upon publication, we will release

the code to train and test PatchDrop.

5. Experiments

5.1. Experimental Setup

Datasets and Metrics We evaluate PatchDrop on the

following datasets: (1) CIFAR10, (2) CIFAR100, (3) Im-

ageNet [4] and (4) functional map of the world (fMoW) [3].

To measure its performance, we use image recognition ac-

curacy and the number of dropped patches (cost).

Implementation Details In CIFAR10/CIFAR100 exper-

iments, we use a ResNet8 for the policy and ResNet32 for

the classifier networks. The policy and classifier networks

use 8×8px and 32×32px images. In ImageNet/fMoW, we

use a ResNet10 for the policy network and ResNet50 for

the classifier. The policy network uses 56×56px images

whereas the classifier uses 224×224px images. We initial-

ize the weights of the LR classifier with HR classifier [29]

and use Adam optimizer in all our experiments [17]. Fi-

nally, initially we set the exploration/exploitation parame-

ter, α, to 0.7 and increase it to 0.95 linearly over time.

Reward Function We choose R = 1 −

(

|a1|1
P

)2

if

y = ŷ(a2) and -σ otherwise as a reward. Here, ŷ and y rep-

resent the predicted class by the classifier after the observa-

tion of xm
h and xl and the true class, respectively. The pro-

posed reward function quadratically increases the reward

w.r.t the number of dropped patches. To adjust the trade-

off between accuracy and the number of sampled patches,

we introduce σ and setting it to a large value encourages the

agent to sample more patches to preserve accuracy.

5.2. Baseline and State­of­The­Art Models

No Patch Sampling/No Patch Dropping In this case,

we simply train a CNN on LR or HR images with cross-

entropy loss without any domain adaptation and test it on

LR or HR images. We call them LR-CNN and HR-CNN.

Fixed and Stochastic Patch Dropping We propose two

baselines that sample central patches along the horizontal

and vertical axes of the image space and call them Fixed-H

and Fixed-V. We list the sampling priorities for the patches

in this order 5,6,9,10,13,14,1,2,0,3,4,7,8,11,15 for Fixed-H,

and 4,5,6,7,8,9,10,11,12,13,14,15,0,1,2,3 for Fixed-V. The

patch IDs are shown in Fig. 3. Using a similar hypothesis,

we then design a stochastic method that decays the survival

likelihood of a patch w.r.t the euclidean distance from the

center of the patch p to the image center.

Super-resolution We use SRGAN [19] to learn to up-

sample LR images and use the SR images in the down-

stream tasks. This method only improves accuracy and in-

creases computational complexity since SR images have the

same number of pixels with HR images.

Attention-based Patch Dropping In terms of the state-

of-the art models, we first compare our method to the Spa-

tial Transformer Network (STN) by [31]. We treat their

saliency network as the policy network and sample the top

S activated patches to form masked images for classifier.

Domain Adaptation Finally, we use two of the state-of-

the-art domain adaptation methods by [45, 37] to improve

recognition accuracy on LR images. These methods are

based on Partially Coupled Networks (PCN), and Knowl-

edge Distillation (KD) [12].

The LR-CNN, HR-CNN, PCN, KD, and SRGAN are

standalone models and always use full LR or HR image.

For this reason, we have same values for them in Pt, Ft-1,

and Ft-2 steps and show them in the upper part of the tables.

5.3. Experiments on fMoW

One application domain of the PatchDrop is remote sens-

ing where LR images are significantly cheaper than HR im-

ages. In this direction, we test the PatchDrop on functional

Map of the World [3] consisting of HR satellite images. We

use 350,000, 50,000 and 50,000 images as training, valida-

tion and test images. After training the classifiers, we pre-
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Figure 4: Policies learned on the fMoW dataset. In columns 5 and 8, Ft-2 model does not sample any HR patches and the LR

classifier is used. Ft-1 model samples more patches as it does not utilize LR classifier.

train the policy network for 63 epochs with a learning rate

of 1e-4 and batch size of 1024. Next, we finetune (Ft-1 and

Ft-2) the policy network and HR classifiers with the learn-

ing rate of 1e-4 and batch size of 128. Finally, we set σ to

0.5, 20, and 20 in the pre-training, and fine-tuning steps.

As seen in Table 1, PatchDrop samples only about 40%

Acc. (%)

(Pt)
S

Acc. (%)

(Ft-1)
S

Acc. (%)

(Ft-2)
S

LR-CNN 61.4 0 61.4 0 61.4 0

SRGAN [19] 62.3 0 62.3 0 62.3 0

KD [37] 63.1 0 63.1 0 63.1 0

PCN [45] 63.5 0 63.5 0 63.5 0

HR-CNN 67.3 16 67.3 16 67.3 16

Fixed-H 47.7 7 63.3 6 64.9 6

Fixed-V 48.3 7 63.2 6 64.7 6

Stochastic 29.1 7 57.1 6 63.6 6

STN [31] 46.5 7 61.8 6 64.8 6

PatchDrop 53.4 7 67.1 5.9 68.3 5.2

Table 1: The performance of the proposed PatchDrop and

baseline models on the fMoW dataset. S represents the av-

erage number of sampled patches. Ft-1 and Ft-2 represent

the finetuning steps with single and two stream classifiers.
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Figure 5: Left: The accuracy and number of sampled

patches by the policy network w.r.t downsampling ratio

used to get LR images for the policy network and classifier.

Right: The accuracy and number of sampled patches w.r.t

to σ parameter in the reward function in the joint finetuning

steps (ds=4). It is set to 0.5 in the pre-training step.

of each HR image on average while increasing the accuracy

of the network using the full HR images to 68.3%. Fig. 4

shows some examples of how the policy network chooses

actions conditioned on the LR images. When the image

contains a field with uniform texture, the agent samples a

small number of patches, as seen in columns 5, 8, 9 and 10.

On the other hand, it samples patches from the buildings

when the ground truth class represents a building, as seen in

columns 1, 6, 12, and 13.

Also, we perform experiments with different downsam-

pling ratios and σ values in the reward function. This way,

we can observe the trade-off between the number of sam-

pled patches and accuracy. As seen in Fig. 5, as we in-

crease the downsampling ratio we zoom into more patches

to maintain accuracy. On the other hand, with increasing σ,

we zoom into more patches as larger σ value penalizes the

policies resulting in unsuccessful classification.

Experiments on CIFAR10/CIFAR100 Although CI-

FAR datasets already consists of LR images, we believe that

conducting experiments on standard benchmarks is useful

to characterize the model. For CIFAR10, after training the

classifiers, we pre-train the policy network with a batch size

of 1024 and learning rate of 1e-4 for 3400 epochs. In the

joint finetuning stages, we keep the learning rate, reduce the

batch size to 256, and train the policy and HR classifier net-

works for 1680 and 990 epochs, respectively. σ is set to -0.5

in the pre-training stage and -5 in the joint finetuning stages

whereas α is tuned to 0.8. Our CIFAR100 methods are sim-

ilar to the CIFAR10 ones, including hyper-parameters.

As seen in Table 2, PatchDrop drops about 56% of the

patches in the original image space in CIFAR10, all the

while with minimal loss in the overall accuracy. In the case

of CIFAR100, we observe that it samples 2.2 patches more

than the CIFAR10 experiment, on average, which might be

due to higher complexity of the CIFAR100 dataset.

Experiments on ImageNet Next, we test the Patch-

Drop on ImageNet Large Scale Visual Recognition Chal-

lenge 2012 (ILSVRC2012) [35]. It contains 1.2 million,

50,000, and 150,000 training, validation and test images.

For augmentation, we use randomly cropping 224×224px
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LR

HR

Ft-1

Ft-2

Figure 6: Policies learned on ImageNet. In columns 3 and 8, Ft-2 model does not sample any HR patches and the LR

classifier is used. Ft-1 model samples more patches as it does not use the LR classifier.

CIFAR10 CIFAR100 ImageNet

Acc. (%)

(Pt)

Acc. (%)

(Ft-1)

Acc. (%)

(Ft-2)

S

(Pt,Ft-1,Ft-2)

Acc. (%)

(Pt)

Acc. (%)

(Ft-1)

Acc. (%)

(Ft-2)

S

(Pt,Ft-1,Ft-2)

Acc. (%)

(Pt)

Acc. (%)

(Ft-1)

Acc. (%)

(Ft-2)

S

(Pt,Ft-1,Ft-2)

LR-CNN 75.8 75.8 75.8 0,0,0 55.1 55.1 55.1 0,0,0 58.1 58.1 58.1 0,0,0

SRGAN [19] 78.8 78.8 78.8 0,0,0 56.1 56.1 56.1 0,0,0 63.1 63.1 63.1 0,0,0

KD [37] 81.8 81.8 81.8 0,0,0 61.1 61.1 61.1 0,0,0 62.4 62.4 62.4 0,0,0

PCN [37] 83.3 83.3 83.3 0,0,0 62.6 62.6 62.6 0,0,0 63.9 63.9 63.9 0,0,0

HR-CNN 92.3 92.3 92.3 16,16,16 69.3 69.3 69.3 16,16,16 76.5 76.5 76.5 16,16,16

Fixed-H 71.2 83.8 85.2 9,8,7 48.5 65.8 67.0 9,10,10 48.8 68.6 70.4 10,9,8

Fixed-V 64.7 83.4 85.1 9,8,7 46.2 65.5 67.2 9,10,10 48.4 68.4 70.8 10,9,8

Stochastic 40.6 82.1 83.7 9,8,7 27.6 63.2 64.8 9,10,10 38.6 66.2 68.4 10,9,8

STN [31] 66.9 85.2 87.1 9,8,7 41.1 64.3 66.4 9,10,10 58.6 69.4 71.4 10,9,8

PatchDrop 80.6 91.9 91.5 8.5,7.9,6.9 57.3 69.3 70.4 9,9.9,9.1 60.2 74.9 76.0 10.1,9.1,7.9

Table 2: The results on CIFAR10, CIFAR100 and ImageNet datasets. S represents the average number of sampled patches

per image. The Pt, Ft-1 and Ft-2 represent the pre-training and finetuning steps with single and two stream classifiers.

area from the 256×256px images and perform horizontal

flip augmentation. After training the classifiers, we pre-

train the policy network for 95 epochs with a learning rate

of 1e-4 and batch size of 1024. We then perform the first

fine-tuning stage and jointly finetune the HR classifier and

policy network for 51 epochs with the learning rate of 1e-4

and batch size of 128. Finally, we add the LR classifier and

jointly finetune the policy network and HR classifier for 10

epochs with the same learning rate and batch size. We set σ
to 0.1, 10, and 10 for pre-training and fine-tuning steps.

As seen in Table 2, we can maintain the accuracy of the

HR classifier while dropping 56% and 50% of the patches

with the Ft-1 and Ft-2 model. Also, we show the learned

policies on ImageNet in Fig. 6. The policy network decides

to sample no patch when the input is relatively easier as in

column 3, and 8.

Analyzing Policy Network’s Actions To better under-

stand the sampling actions of policy network, we visualize

the accuracy of the classifier w.r.t the number of sampled

patches as shown in Fig. 7 (left). Interestingly, the accuracy

of the classifier is inversely proportional to the number of

sampled patches. We believe that this occurs because the

policy network samples more patches from the challenging

and ambiguous cases to ensure that the classifier success-

fully predicts the label. On the other hand, it successfully

learns when to sample no patches. However, it samples no

patch (S=0) 7% of the time on average in comparison to

sampling 4≤S≤7 50% of the time. Increasing the ratio for

S=0 is a future work of this study. Finally, Fig. 7 (right) dis-

plays the probability of sampling a patch given its position.

We see that the policy network learns to sample the central

patches more than the peripheral patches as expected.
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Figure 7: Left: The accuracy w.r.t the average number of

sampled patches by the policy network. Right: Sampling

probability of the patch IDs (See Fig. 3 for IDs).
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6. Improving Run-time Complexity of BagNets

Next, we use PatchDrop to decrease the run-time com-

plexity of local CNNs, such as BagNets. The BagNets have

recently been proposed as a novel image recognition archi-

tecture [1]. They run a CNN on image patches indepen-

dently and sum up class-specific spatial probabilities. Sur-

prisingly, the BagNets perform similarly to CNNs that pro-

cess the full image in one shot. This concept fits perfectly

to PatchDrop as it learns to select semantically useful lo-

cal patches which can be fed to a BagNet. This way, the

BagNet is not trained on all the patches from the image but

only on useful patches. By dropping redundant patches, we

can then speed it up and improve its accuracy. In this case,

we first train the BagNet on all the patches and pre-train the

policy network on LR images (4×) to learn patches impor-

tant for BagNet. Using LR images and a shallow network

(ResNet8), we reduce the run-time overhead introduced by

the agent to 3% of the CNN (ResNet32) using HR images.

Finally, we jointly finetune (Ft-1) the policy network and

BagNet. We illustrate our apporoach in Fig. 8.

We perform experiments on CIFAR10 and show the re-

sults in Table 3. The proposed Conditional BagNet using

PatchDrop improves the accuracy of BagNet by 7% clos-

ing the gap between global CNNs and local CNNs. Addi-

tionally, it decreases the run-time complexity by 50%, sig-

nificantly reducing the gap between local CNNs and global

CNNs in terms of run-time complexity1. The increase in the

speed can be further improved by running different GPUs

1The run-times are measured on Intel i7-7700K CPU@4.20GHz

15

0
1
2
3

Low Resolution 
Image

drop
drop
drop
drop

sample
sample

4
5
6

drop

drop

cat
horse

car

ship

Policy 
Network

CNN

CNN

CNN

CNN

5

6

2

10

--- Shared Weights ---

High Resolution 
Sampled Patches

9

0 4 8 12

1 5 13

2 6 10 14

3 7 11 15

9

Figure 8: Dynamic BagNet. The policy network processes

LR image and sample HR patches to be processed indepen-

dently by CNN. More details on BagNet can be found in [1].

Acc. (%)

(Pt)
S

Acc. (%)

(Ft-1)
S

Run-time. (%)

(ms)

BagNet (No Patch Drop) [1] 85.6 16 85.6 16 192

CNN (No Patch Drop) 92.3 16 92.3 16 77

Fixed-H 67.7 10 86.3 9 98

Fixed-V 68.3 10 86.2 9 98

Stochastic 49.1 10 83.1 9 98

STN [19] 67.5 10 86.8 9 112

BagNet (PatchDrop) 77.4 9.5 92.7 8.5 98

Table 3: The performance of the PatchDrop and other mod-

els on improving BagNet on CIFAR10 dataset. We use a

similar set up to our previous CIFAR10 experiments.

on the selected patches in parallel at test time.

Finally, utilizing learned masks to avoid convolutional

operations in the layers of global CNN is another promis-

ing direction of our work. [10] drops spatial blocks of the

feature maps of CNNs in training time to perform stronger

regularization than DropOut [36]. Our method, on the other

hand, can drop blocks of the feature maps dynamically in

both training and test time.

7. Conditional Hard Positive Sampling

PatchDrop can also be used to generate hard positives for

data augmentation. In this direction, we utilize the masked

images, Xm
h , learned by the policy network (Ft-1) to gen-

erate hard positive examples to better train classifiers. To

generate conditional hard positive examples, we choose the

number of patches to be masked, M , from a uniform dis-

tribution with minimum and maximum values of 1 and 4.

Next, given sp by the policy network, we choose M patches

with the highest probabilities and mask them and use the

masked images to train the classifier. Finally, we compare

our approach to CutOut [5] which randomly cuts/masks im-

age patches for data augmentation. As shown in Table 4, our

approach leads to higher accuracy in all the datasets when

using original images, Xh, in test time. This shows that the

policy network learns to select informative patches.

CIFAR10 (%)

(ResNet32)

CIFAR100 (%)

(ResNet32)

ImageNet (%)

(ResNet50)

fMoW (%)

(ResNet34)

No Augment. 92.3 69.3 76.5 67.3

CutOut [5] 93.5 70.4 76.5 67.6

PatchDrop 93.9 71.0 78.1 69.6

Table 4: Results with different augmentation methods.

8. Conclusion

In this study, we proposed a novel reinforcement learn-

ing setting to train a policy network to learn when and where

to sample high resolution patches conditionally on the low

resolution images. Our method can be highly beneficial in

domains such as remote sensing where high quality data is

significantly more expensive than the low resolution coun-

terpart. In our experiments, on average, we drop a 40-60%
portion of each high resolution image while preserving sim-

ilar accuracy to networks which use full high resolution

images in ImageNet and fMoW. Also, our method signif-

icantly improves the run-time efficiency and accuracy of

BagNet, a patch-based CNNs. Finally, we used the learned

policies to generate hard positives to boost classifiers’ accu-

racy on CIFAR, ImageNet and fMoW datasets.
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