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Abstract

Methods for teaching machines to answer visual ques-

tions have made significant progress in recent years, but

current methods still lack important human capabilities, in-

cluding integrating new visual classes and concepts in a

modular manner, providing explanations for the answers

and handling new domains without explicit examples. We

propose a novel method that consists of two main parts:

generating a question graph representation, and an answer-

ing procedure, guided by the abstract structure of the ques-

tion graph to invoke an extendable set of visual estimators.

Training is performed for the language part and the visual

part on their own, but unlike existing schemes, the method

does not require any training using images with associ-

ated questions and answers. This approach is able to han-

dle novel domains (extended question types and new object

classes, properties and relations) as long as corresponding

visual estimators are available. In addition, it can provide

explanations to its answers and suggest alternatives when

questions are not grounded in the image. We demonstrate

that this approach achieves both high performance and do-

main extensibility without any questions-answers training.

1. Introduction

Visual question answering is inspired by the remark-

able human ability to answer specific questions on images,

which may require analysis of subtle cues, along with the

integration of prior knowledge and experience. The learn-

ing of new visual classes, properties and relations, can be

easily integrated into the question-answering process. Hu-

mans can elaborate on the answers they give, explain how

they were derived, and why they failed to produce an ad-

equate answer. Current approaches to handle VQA by a

machine [67, 62, 55, 77, 32] take a different path, where

most answering systems are trained directly to select an an-

swer from common answers of a training set, based on fused

image features (mostly using a pre-trained CNN [25]) and

question features (mostly using an RNN).

The answering approach we take below is the first, as

far as we know, that does not rely on any explicit question-

Q: What shape is the object closest to Q: How many other objects are the same

the red sphere? size as the yellow stackable object?

A: cube A: 2

Q: Are all the boats white? Q: There is a person that is of a different

A: no [full: There are not enough white boats gender than the young person

(failed due to a red boat)] closest to the cup; how old is he?

A: 22-35

Figure 1. UnCoRd generalizes without QA training to novel prop-

erties and relations (top), and to real-world domain (bottom).

answering training. It uses a process composed according

to the question’s structure, and applies a sequence of ‘vi-

sual estimators’ for object detection and identifying a set of

visual properties and relations. Answering by our ’Under-

stand, Compose and Respond’ (UnCoRd) approach is di-

vided into two stages (illustrated in Figure 2). First, a graph

representation is generated for the question, in terms of

classes, properties and relations, supplemented with quan-

tifiers and logical connectives. An answering procedure

then follows the question graph, and seeks either a single

or multiple assignments of the classes, properties and rela-

tions in the graph to the image (Section 3.3). The method

is modular, extensible and uses intermediate results to pro-

vide elaborated answers, including alternatives to answers

not grounded in the image, and notifying about unsupported

categories. With an ability to handle extended domains,

the UnCoRd approach demonstrates the potential to build a

general answering scheme, not coupled to a specific dataset.

Our work includes several novel contributions. First, a

method that produces state-of-the-art results on the CLEVR

dataset [30] without any questions-answers training. Sec-

ond, we developed sequence-to-sequence based method, in-
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c: object class,  f: queried property, p: property, r: relation

Example

Figure 2. A schematic illustration of our method. The first stage (1) maps the question into a graph representation using a sequence-to-

sequence LSTM based model. At the second stage (2), the recursive answering procedure follows the graph, searching for a valid assignment

in the image. At each step, the handled node is set and objects (extracted using mask R-CNN) are examined according to the node’s require-

ments (utilizing corresponding visual estimators). If succeeded, a new node is set (according to a DFS traversal) and the function is called

again to handle the unassigned subgraph. The Example illustrates the flow: ’check node (a)’ → ’relation success’ → ’check node (b)’ → answer.

dependent of images, to map questions into their graph rep-

resentation. Third, we describe a formalism to represent a

broad range of possible questions, with an algorithm that

finds valid assignments of a question graph in the image,

and provides an answer. Fourth, we present a model that

can both perform well on CLEVR, as well as generalize to

novel domains by just adding visual estimators (for objects,

properties and relations) but without QA examples. Some

examples are shown in Figure 1 (elaborated later in text).

2. Related Work

Current answering schemes are dominated by end-to-

end methods, trained as multi-class classifiers. Many recent

works focused on improving the image-question fused fea-

tures [17, 9, 84, 10, 16], attention mechanisms for selecting

important features [80, 54, 47, 4, 12, 59, 50, 27], including

self and guided attention [83, 21, 82], applying pre-trained

networks [65, 46, 86], and incorporating outputs of other vi-

sual tasks [23, 3, 15, 68, 40, 75, 33, 28]. Some provide rea-

soning using ”facts” extraction (e.g. scene type) [73], image

caption [42, 1, 41] or by linking visual ”facts” with ques-

tion’s logical form [51, 36]. Other integrated external prior

knowledge, by generating a query to a knowledge database

[72, 14], fusing it in the representation [78, 38], using a tex-

tual image description [39] or by added loss terms [66]. The

language prior was addressed as well [22, 20, 13, 76, 57].

Some methods use dynamic networks with architec-

ture affected by the question [18, 56]. The Neural Mod-

ule Networks (NMN) are dynamically composed out of

sub-modules. Originally modules arrangement was based

on the dependency parsing of the question [6, 5], while

later versions used supervised answering program learning

[31, 26, 52, 63], including a probabilistic model [71]. Note

that the modules are trained only as components of an an-

swering network for a specific dataset and do no function as

independent visual estimators. One method [81] performs

full scene analysis in order to carry out the program. This

method uses questions-answers training to learn the pro-

grams, hence cannot be extended by a simple addition of

visual estimators. Moreover, performing full scene analysis

(detecting all objects, properties and relations in the scene)

may become infeasible for data less restricted than CLEVR

(especially for relations). In our method, the answering

process is guided by the question and does not perform a

full scene analysis. It allows a flexible integration of addi-

tional visual capabilities (e.g. novel object classes), provid-

ing elaborated answers and proposing alternatives. These

capacities are obtained without requiring any QA examples.

Current methods fit models to particular datasets and ex-

ploit inherent biases, which can lead to ignoring parts of

the question/image, and to failures on novel domains and

rephrasing [2, 60]. In contrast to the modular approach we

pursue, any adaptation or upgrade requires a full retraining.

3. Method

3.1. Overview

In the formalism we use, a simple question without quan-

tifiers can be transformed to an assertion about the image

that may have free variables (e.g.’color’ in ’what is the color

of...’). The question is answered by finding an assignment to

the image that will make the statement true, and retrieving

the free variables. The quantifiers derived from the question

require multiple true assignments (such as ’5’, ’all’, etc.).

The procedure we use seeks the required assignments and
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returns the desired answer. The answering process consists

of two stages (see Figure 2 for a scheme):

1. Question mapping into a graph representation - First,

a representation of the question as a directed graph is

generated, where nodes represent objects and edges rep-

resent relations between objects. Graph components in-

clude objects classes, properties and relations. The node

representation includes all the object visual requirements

needed to answer the question, which is a combination of

the following (see examples in the supplement, section 1):

• Object class c (e.g.’horse’).

• Object property p (e.g.’red’).

• Queried object property f (e.g.’color’).

• Queried set property g (e.g.’number’).

• Quantifiers (e.g.’all’, ’two’).

• Quantity relative to another node (e.g. same).

• Node type: regular or SuperNode: OR of nodes (with

optional additional requirements).

2. Answering procedure - In this stage, a recursive proce-

dure finds valid assignments of the graph in the image.

The number of required assignments for each node is

determined by its quantifiers. The procedure follows the

graph, invoking relevant sub-procedures and integrates

the information to provide the answer. Importantly, it

depends only on the abstract structure of the question

graph, where the particular object classes, properties and

relations are parameters, used to apply the corresponding

visual estimators (e.g. which property to extract). The

invoked sub-procedures are selected from a pool of the

following basic procedures, which are simple visual pro-

cedures used to compose the full answering procedure:

• Detect object of a certain class c.

• Check the existence of object property p.

• Return an object property of type f .

• Return an object’s set property of type g.

• Check the existence of relation r between two objects.

Our construction of a question graph and using its ab-

stract structure to guide the answering procedure leads to

our ability to handle novel domains by adding visual estima-

tors but using the same answering procedure. In our method

we only train the question-to-graph mappers and the re-

quired visual estimators. Unlike QA training, we use inde-

pendent trainings, which may utilize existing methods and

be developed separately. This also simplifies domain exten-

sion (e.g. automatic modification is simpler for question-

graph examples than for question-image-answer examples).

3.2. Question to Graph Mapping

Understanding natural language questions and parsing

them to a logical form is a hard problem, still under study

[29, 7, 74, 11, 58]. Retrieving question’s structure by lan-

guage parsers was previously performed in visual question

answering [6], utilizing the Stanford Parser [34].

We handled the question-to-graph task as a translation

problem from natural language questions into a graph rep-

resentation, training an LSTM based sequence to sequence

models [64]. The graph was serialized (using DFS traversal)

and represented as a sequence of strings (including special

tokens for graph fields), so the model task is to translate the

question sequence into the graph sequence (see examples in

Section 1 of the supplement). All our models use the ar-

chitecture of Google’s Neural Machine Translation model

[79], and are trained using tensorflow implementation [48].

A simple post-processing fixes invalid graphs. The descrip-

tion below starts with a question-to-graph model trained for

CLEVR data, and then elaborates on the generation of ex-

tended models, trained for extended scopes of questions.

3.2.1 Question-to-Graph for CLEVR Data

Our basic question-to-graph model is for CLEVR questions

and categories (3 objects, 12 properties, 4 property types, 4

relations). The graph annotations are based on the CLEVR

answering programs [30], corresponding to the dataset’s

questions. The programs can be described as trees, where

nodes are functions performing visual evaluations for ob-

ject classes, properties and relations. These programs can

be transferred to our graph representation, providing anno-

tations for our mappers training. Note that concepts may be

mapped to their synonyms (e.g.’ball’ to ’sphere’).

3.2.2 Extended Question-to-Graph Domain

CLEVR questions are limited, both in the used categories

and in question types (e.g. without quantifiers). To handle

questions beyond the CLEVR scope, we trained question-

to-graph mappers using modified sets of questions (random-

ization was shown to enable domain extension [69]). There

were two types of modifications: increasing the vocabulary

of visual elements (object classes, properties and relations)

and adding questions of new types. The vocabulary was

expanded by replacing CLEVR visual elements with ones

from a larger collection. This operation does not add ques-

tion examples to the set, but uses the existing examples with

replaced visual elements. Note that as this stage deals with

question mapping and not question answering, the ques-

tions, which are generated automatically, do not have to be

meaningful (e.g. ”What is the age of the water?”) as long as

they have a proper mapping, preserving the role of each vi-

sual element. To guarantee graph-question correspondence

a preprocessing is performed where for each concept, all its

synonyms are modified to one form. In addition, for each

question all appearances of a particular visual element are

replaced with the same term. We used three replacement

’modes’, each generating a modified dataset by selecting

from a corresponding set (real world categories from exist-

ing datasets): i) Minimal: Most categories are from COCO

[43] and VRD [45] (100 objects, 32 properties, 7 property
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types, 82 relations). ii) Extended: ’Minimal’ + additional

categories, sampled from ’VG’ (230 objects, 200 properties,

53 property types, 160 relations). iii) VG: The categories

of the Visual Genome dataset [35] (65,178 objects, 53,498

properties, 53 property types, 47,448 relations, sampled ac-

cording to prevalence in the dataset). The categories in-

clude many inaccuracies, such as mixed categories (e.g.’fat

fluffy clouds’) and irrelevant concepts (e.g. objects: ’there

are white’), which adds inconsistency to the mapping.

The second type of question modification increased the

variability of questions. We created enhanced question sets

where additional examples were added to the sets gener-

ated by each replacement mode (including ’None’). These

examples include questions where ’same <p>’ is replaced

with ’different <p>’ (where <p> is a property), questions

with added quantifiers (’all’ and numbers) and elemental

questions (with and without quantifiers). The elemental

questions were defined as existence and count questions for:

class, class and property, class and 2 properties, 2 objects

and a relation, as well as queries for objects class (in a rela-

tion) and property types (including various WH questions).

The words vocabulary we used for training all sets was

the same: 56,000 words, composed by the union of the En-

glish vocabulary from IWSLT’15 [49] together with all the

used object classes, properties and relations. Both the ques-

tion and the graph representations were based on the same

vocabulary, with additional tokens in the graph vocabulary

to mark graph nodes and fields (e.g. <NewNode>, <p>).

Different mappers were trained for all the modified

sets above. An example of a graph, mapped using the

’Extended-Enhanced’ model, as well as the corresponding

original question is given in Figure 3. Note that the modi-

fied question, although meaningless, has the same structure

as the original question and is mapped to the same graph,

except for the replaced visual elements and added quanti-

fiers. This means that the same answering procedure will

be carried out, fulfilling our intent to apply the same proce-

dure to similar structured questions.

c:object

p: tiny,red,

metallic

c:sphere

p:cyan

c: object

f : sizeright left
c:object

p: full, tied-up,

tiled

n:16

c:girl
p: light blue

q:all

c:object

f :fabricwalking towards next to

Q: What is the size of the object that is both Q: What is the fabric of the object that is both

right of the cyan sphere and left of the tiny walking towards all the light blue girls and

red metallic object? next to the sixteen full tied-up tiled objects?

Figure 3. Left: A CLEVR question and a corresponding graph.

Right: A modified question and a corresponding graph, mapped

using Extended-Enhanced model. The accuracy of the modified

representation is confirmed, as it matches the original accurate

graph (with modified graph concepts).

3.3. Answering Procedure

In this stage a recursive procedure seeks valid assign-

ments (see Section 3.1) between the question graph and the

image. The question graph, the image and the mask R-

CNN [24] produced for the image provide the input to the

procedure that recursively processes each node (see Figure

2). For each node, basic procedures (see Section 3.1) are

invoked sequentially, according to the node’s requirements

and activate visual estimators according to the particular vi-

sual elements. The number of required valid assignments is

set by the node’s quantifier (a single assignment, a specific

number, or all) or by the need of all objects for evaluating

the entire object set (e.g. counting, number comparisons).

The next processed nodes are according to a DFS traversal.

Each basic procedure provides an answer, used to produce

the final answer, reporting unsupported categories and pro-

viding elaborations, based on intermediate results. For more

details and examples see Section 2 of the supplement.

3.3.1 CLEVR Visual Estimators

In order to find a valid assignment of a question graph in

the image, and provide the answer, corresponding visual es-

timators need to be trained. Object locations are not ex-

plicitly provided for CLEVR data, however they can be

automatically recovered using the provided scene annota-

tions. This process provided approximated contour annota-

tions for CLEVR objects (see Figure 4), which were used

for training. Mask R-CNN [24] was used for instance seg-

mentation. For property classifiers, simple CNN models

(3 convolutional layers and 3 fully connected layers) were

trained to classify color and material; size was estimated ac-

cording to object’s bottom coordinates and its largest edge.

Relations are classified according to objects’ locations.

3.3.2 Real World Visual Estimators

Handling questions in the real-world domain beyond

CLEVR objects was performed by utilizing existing visual

estimators. For instance segmentation we use a pre-trained

mask R-CNN [24] for the 80 classes of COCO dataset [43].

Any other visual estimator may be incorporated to enhance

answering capability. In our experiments (Section 4.2.5 and

Figure 1) we use color map estimation [70], age and gender

classification [37] (utilizing face detection [53]) and depth

estimation [44] (utilized for estimating spatial relations).

4. Experiments

The experiments tested the abilities of the UnCoRd sys-

tem, to first, provide accurate results for the CLEVR dataset

and second, to handle extended questions and real-world

domains. Our analysis included the two answering stages:

creating a correct graph representation of the question,

and answering the questions. Adam optimizer was used

for question-to-graph and visual estimators training with a

learning rate of 10
−4 (10−3 for the ’Extended-Enhanced’

model), selected according to the corresponding validation

set results. Each model training was using one NVIDIA
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Tesla V100 GPU. All reported results are for a single evalu-

ation. For each model, the same version was used in all ex-

periments. Unless stated, system was configured to provide

short answers (concise and without elaborations); markings

on images in the figures correspond to intermediate results.

Code will be available at https://github.com/benyv/uncord

4.1. CLEVR Experiments

We trained a question-to-graph model for CLEVR

(’None’-’Basic’, as denoted in Section 4.2.1), which gen-

erated 100% perfect graphs on its validation set. The visual

estimators, described in Section 3.3.1 were also trained and

provided the results given in Table 1. CLEVR relations were

estimated by simple rules using the objects’ coordinates.

Figure 4. Instance segmentation example

for CLEVR data. Left: GT (approximated

from scene data), Right: results.

EstimatorAPIoU=.50 Acc.

Ins. seg. 99.0

Color 99.98

Material 99.97

Size 100

Table 1. CLEVR

estimators results on

CLEVR validation set

We tested the answering performance of the UnCoRd

system on the CLEVR test set. The results, including for

other state-of-the-art methods (all use answers labels for

training) are given in Table 2.

Method Exist Count
Comp. Query Comp. Overall Overall

Num. Att. Att. test set val. set

IEP-strong [31] 97.1 92.7 98.7 98.1 98.9 96.9

FiLM [56] 99.3 94.3 93.4 99.3 99.3 97.6

DDRprog [63] 98.8 96.5 98.4 99.1 99.0 98.3

MAC [27] 99.5 97.1 99.1 99.5 99.5 98.9

TbD [52] 99.2 97.6 99.4 99.5 99.6 99.1

HAN [50] 99.6 97.2 96.9 99.6 99.6 98.8

NS-VQA [81]a 99.9 99.7 99.9 99.8 99.8 - 99.8

UnCoRdNone-B 99.89 99.54 99.91 99.74 99.80 99.74 99.8

Table 2. CLEVR QA accuracy for state-of-the-art methods

aReported for val. set, hence not compared to test set results

As can be seen, our model achieves state-of-the-art re-

sults without training for the visual question answering task

and not using any answers GT, as other methods. In addi-

tion UnCoRd can elaborate and explain answers and fail-

ures using intermediate results, and extend the handled do-

main with no need of images and related QA examples, as

demonstrated in Section 4.2 and Figure 6. On a sample

of 10,000 validation set examples, all mistakes were due

to wrong visual estimators’ predictions, mainly miss detec-

tion of a highly occluded object. Hence, accurate annotation

of object coordinates (as performed in NS-VQA [81]) may

even further reduce the small number of errors. Note that

NS-VQA requires full scene analysis, which is not scalable

for domain extension with a large number of objects and

relations. It also uses images with question-answer pairs

to train the programs, coupling the method to the specific

trained question answering domain.

4.2. Out of Domain Experiments

Next, we test UnCoRd beyond the scope of CLEVR data.

We trained question-to-graph models on the modified and

enhanced CLEVR data and used corresponding visual esti-

mators. We examined whether domain extension is possible

while maintaining a good performance on the original data.

4.2.1 Question to Graph

For evaluating question representation, we trained and

tested (see Section 3.2.2) 8 question-to-graph models that

include all replacement modes (None, Minimal, Extended,

VG), each trained in two forms: Basic (B), i.e. no added

question examples (∼700K examples) and Enhanced (E),

i.e. with additional examples (∼1.4M examples).

In Table 3, we report the results of each trained model on

the validation sets of all 8 models, which provides informa-

tion on generalization across the different sets. Note that as

the ”None” extension, unlike the data of other models, in-

cludes mapping from concepts to their synonyms (see Sec-

tion 3.2.2), prediction for ”None” data by the ”Minimal”,

”Extended” and ”VG” models include a preprocessing stage

transforming each concept synonyms to a single form.

Train

Test None Minimal Extended VG

B E B E B E B E

None
B 100 49.5 0.5 0.2 0.1 0.0 0.1 0.1

E 99.7 99.8 0.5 0.4 0.1 0.1 0.1 0.1

Minimal
B 99.8 48.9 98.4 50.0 0.5 0.3 1.2 0.6

E 99.0 98.6 98.0 97.7 0.5 1.0 1.1 1.1

Extended
B 99.1 48.6 98.2 49.9 96.2 49.1 18.1 9.4

E 99.1 98.7 97.9 97.5 95.7 95.8 19.3 20.0

VG
B 87.5 44.8 65.7 34.6 84.1 45.3 76.9 41.9

E 90.0 90.0 63.7 64.1 81.9 83.0 75.0 77.1

Table 3. Accuracy of question-to-graph mapping for all data types

Results demonstrate that models perform well on data

with lower variability than their training data. The high

performance of the ’Extended’ models on their correspond-

ing data illustrates that substantial extensions are possible in

question-to-graph mapping without requiring any new train-

ing images. VG models’ lower accuracy is expected due to

the unsuitable elements in its data (see Section 3.2.2). Addi-

tional tests are required to check possible advantages of VG

models for different domains. We report such a test next.

4.2.2 VQA Representation

In this experiment, representation capabilities are tested for

a different dataset. Since normally, annotations correspond-

ing to our graph representation are not provided, we sam-

pled 100 questions of the VQA [8] validation set and man-

ually examined the results for the eight question-to-graph

models (see Section 4.2.1).

The results in Table 4 express the large gaps in the abil-

ities of models to represent new domains. Models trained
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specifically on CLEVR do not generalize at all to the un-

trained domain. As the models are trained on more diverse

data, results improve substantially, peaking clearly for VG-

Enhanced model by a large margin from other models. This

is also evident in the example given in Figure 5 where ade-

quacy of the graph increases in a similar manner. This result

is interesting as using this model provides high accuracy

for CLEVR as well (see Table 5). The fact that substantial

performance gain is achieved for a data domain that was

not used in training (the VQA dataset domain), while pre-

serving good results on the original data (CLEVR), demon-

strates the potential of the approach to provide a general an-

swering system for visual questions. Further investigation is

required for means to enrich question description examples

and produce further significant improvements.

None Minimal Extended VG

B E B E B E B E

1 0 12 12 22 22 34 50

Table 4. Accuracy of graph representation for VQA [8] sample,

given for the different UnCoRd mappers. As expected, training on

more diverse data allows better generalization across domains.

Q: What kind of ground is beneath the young baseball player?

c: cylinder

c: cube

f : material

’same size’

c: baseball

p: young

c: what

’beneath’

c: baseball

player

p: young

c: ground

f : kind

’beneath’

None-Basic Min-Enhanced VG-Enhanced

Figure 5. Generated graphs for a free form question (from the

VQA [8] dataset). Blue text: accurate concepts, red: inaccurate.

4.2.3 Maintaining Performance on CLEVR Questions

We evaluated the performance change for the CLEVR test

set, as the training data variability of the question-to-graph

models increases. The results are given in Table 5.

Mapper Exist Count
Comp. Query Comp.

Overall
Num. Att. Att.

None
B 99.89 99.54 99.91 99.74 99.80 99.74

E 99.89 99.54 99.91 99.74 99.80 99.74

Min
B 99.81 99.36 99.87 99.73 99.80 99.68

E 99.69 99.21 99.47 99.46 99.59 99.46

Ext
B 96.82 89.34 78.64 99.40 99.41 94.80

E 99.78 99.33 98.36 99.65 99.76 99.49

VG
B 96.82 89.34 78.64 99.44 99.41 94.81

E 98.03 97.39 96.88 97.62 97.22 97.49

Table 5. Accuracy of CLEVR dataset question answering by Un-

CoRd using the different question-to-graph mappers

It is evident that even models that were trained on a

much larger vocabulary and question types than the origi-

nal CLEVR data still perform well, mostly with only minor

accuracy reduction. This demonstrates that with more vari-

able training we can handle more complex questions, while

maintaining good results on the simpler domains. Examples

on CLEVR images for both CLEVR questions and others

are shown in Figure 6 (using ’None-Enhanced’ mapper).

(a) Q: There is a yellow thing to the (b) Q: How many big cubes are of a

right of the rubber thing on the different color than the large

left side of the gray rubber cylinder?

cylinder; what is its material? A: 3

A: metal

(c) Q: What color is the cube to the (d) Q: Are all the spheres purple?

right of the four big spheres? A: no [full: There are not enough purple

A: yellow spheres (failed due to a red sphere)]

Figure 6. Examples for answering different question types on

CLEVR images: (a) taken from CLEVR, (b) includes ’different

color’ relation, (c) uses a quantifier, and (d) a simple property ex-

istence (+ ’all’ quantifier) question.

4.2.4 CLEVR Humans

An example of using the CLEVR images with different

questions is the CLEVR-Humans [31] (7145 questions in

test set), where people were asked to provide challenging

questions for CLEVR images. The questions vary in phras-

ing and in the required prior knowledge.

Method No FT FT

IEP-18k 54.0 66.6

FiLM 56.6 75.9

MAC 57.4 81.5

NS-VQA - 67.0

UnCoRd-None
B 60.46

E 60.59

UnCoRd-Min
B 48.24

E 52.23

UnCoRd-Ext
B 43.97

E 52.83

UnCoRd-VG
B 43.47

E 48.71

Table 6. Question answering ac-

curacy of CLEVR-Humans test

set for state-of-the-art meth-

ods, with and without finetuning

(FT).

Q: What color is the item to the far left?

(GT: purple)

None-E A: brown, VG-E A: purple

IEP-Str A (No FT): blue, IEP-Hum A (FT): purple

Q: How many of these things could be

stacked on top of each other? (GT: 8)

None-E A: 1, VG-E A: Unknown class: each other

IEP-Str A (FT): 0, IEP-Hum A (FT): 2

Figure 7. Examples for CLEVR-

Humans questions
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Results, given in Table 6, demonstrate that for models

without finetuning, our ’None-Enhanced’ model provides

state-of-the-art results (without any answer examples). For

all models, questions with phrasing not included in train-

ing are prone to errors, including ’hallucinations’ of con-

cepts. Note that CLEVR-Humans answers are the same

answers as in CLEVR (by instructions to workers), hence

models biased towards CLEVR (the ”None” models) have

a better success chances. Models with a rich vocabulary

may capture the question graph more accurately, but that

may include concepts with no corresponding visual esti-

mators, resulting with answers such as: ”Unknown relation

’in between’”. Adding such visual estimators will improve

performance. Since accuracy calculation does not reward

for such limitation indications, just ”guessing” the answer

would increase the computed accuracy, especially as suc-

cess chances rise with a simple question categorization (e.g.

50% for yes/no and size questions). However, indicating

limitations gives a better sense of the system’s level of un-

derstanding the question, and can lead to corrective actions.

Such answers can be promoted in QA systems, by reduc-

ing ”score” for wrong answers, or giving partial scores to

answers identifying a missing component.

Examples of CLEVR-Humans questions are given in

Figure 7. It is evident that the more general model (VG-

Enhanced) can perform on out of scope questions (top) and

report limitations (bottom).

4.2.5 Extensibility to Real-World Images

The UnCoRd system can be naturally extended to novel do-

mains by a simple plug-in of visual estimators. This is il-

lustrated in Figure 1 for using new properties/relations and

for an entirely different domain of real-world images. An

experiment that adds questions with a novel property is pre-

sented in Section 3 of the supplement. We next describe an

experiment for real-world images, where we use real world

visual estimators (see Section 3.3.2) and our most general

trained mapper (VG-Enhanced). We compare our model

to Pythia [85], which has top performance on the VQA v2

dataset [19]. The experiment includes two parts:

1. ’Non VQA v2’ questions: 100 questions outside Pythia’s

training domain (VQA v2), with unambiguous answers,

on 50 COCO images (two similar questions per image

with different answers). We freely generated questions

to include one or more of the following categories:

• A combination of properties and relations require-

ments linked by logical connectives (’and’, ’or’).

• Property comparison (e.g.’same color’).

• Quantifiers (e.g.’all’, ’five’).

• Quantity comparison (e.g.’fewer’, ’more’).

• A chain of over two objects connected by relations.

2. ’VQA v2’ questions: 100 questions sampled from VQA

v2 dataset [19] with terms that have visual estimators in

UnCoRd and unambiguous answers (annotated by us).

In addition to the estimators mentioned in Section 3.3.2,

ConceptNet [61] is used by UnCoRd to query for optional

classes when superordinate groups are used (e.g.’animals’).

More details are in Section 4 of the supplement.

The non VQA v2 results, given in Table 7, demonstrate

the substantial advantage of UnCoRd for these types of

questions. All UnCoRd’s failures are due to wrong re-

sults of the invoked visual estimators. Note the substantial

performance difference in Pythia between yes/no and WH

questions, unlike the moderate difference in UnCoRd. We

found that Pythia recognizes the yes/no group (i.e. answers

’yes’/’no’), but its accuracy (56%) is close to chance level

(50%). Examples of successful UnCoRd answers to the non

VQA v2 questions are provided in Figure 8, while failure

examples, including failure sources, are shown in Figure 9.

Pythia’s answers are given as well.

Method Yes/No WH Overall

Pythia [85] 56.0 14.0 35.0

UnCoRd-VG-E 88.0 64.0 76.0

Table 7. Answering accuracy for 100 questions outside the VQA

v2 domain (including quantifiers, comparisons, multiple relation

chains and multiple relations and properties) on COCO images.

Q: How many cell phones are left of the Q: What object is supporting the person

red cell phone that is closest to the that is left of the person above the

right cell phone? skateboard?

UnCoRd A: 9, Pythia A: 4 UnCoRd A: bicycle, Pythia A: skateboard

Q: How many cell phones are left of the Q: What thing is on an object that is left

right cell phone? of the person above the skateboard?

UnCoRd A: 11, Pythia A: 5 UnCoRd A: person, Pythia A: skateboard

Q:Is the number of people that are to the Q: What color is the suitcase that is both

right of the left ball the same as the below a blue suitcase and left of a

number of balls? suitcase?

UnCoRd A: no, Pythia A: no UnCoRd A: red, Pythia A: blue

Q: Is the number of people that are to the Q: What color is the suitcase that is both

right of the left ball greater than the below a blue suitcase and right of a

number of balls? suitcase?

UnCoRd A: yes, Pythia A: no UnCoRd A: orange, Pythia A: blue

Figure 8. Examples of UnCoRd successes in answering questions

outside the VQA v2 domain on COCO images.

Results for the 100 VQA v2 questions are given in Table

8. As can be seen, UnCoRd’s results are better by a large

margin, compared to Pythia [85] end-to-end model, even
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Q: What color is the kite closest to the Q: There is a bottle that is left of a bottle;

yellow kite that is left of the orange kite? how many wine glasses are right of it?

UnCoRd A: no valid orange kite, Pythia A: blue UnCoRd A: no bottle, Pythia A: 5

Q: What color is the kite closest to the Q: There is a bottle that is right of a bottle;

yellow kite that is right of the how many wine glasses are left of it?

orange kite? UnCoRd A: no bottle, Pythia A: 5

UnCoRd A: no valid orange kite, Pythia A: blue

Failure source: wrong color estimation [70] Failure source: failed object detection

(below: failed object in the red box above) (below: mask R-CNN results [24])

Object

pixels

Predicted

pixels’

colors

(yellow

instead

of orange)

Figure 9. Examples of UnCoRd failures in answering questions

outside the VQA v2 domain on COCO images.

though questions were sampled from VQA v2, a dataset

used for Pythia’s training. As in the previous part, all Un-

CoRd’s failures are only due to wrong results of the invoked

visual estimators. Examples of UnCoRd’s answers for the

VQA v2 questions are given in Figure 10, including the cor-

responding answers of Pythia.

Method Yes/No WH Overall

Pythia [85] 90.0 68.3 77.0

UnCoRd-VG-E 97.5 88.3 92.0

Table 8. Answering accuracy for 100 questions sampled from

VQA v2 dataset (on terms with visual estimators in UnCoRd).

The above experiments on real-world images show that

when corresponding visual estimators are available, our

method performs better than a leading end-to-end model,

both for questions outside the training domain of the end-

to-end model (where the advantage is substantial) and for

questions from this domain. This is achieved without any

question answering training.

5. Conclusions and Future Directions

We proposed a novel approach to answer visual ques-

tions by combining a language step, which maps the ques-

tion into a graph representation, with a novel algorithm that

maps the question graph into an answering procedure. Be-

cause the algorithm uses the abstract structure of this graph,

it allows a transfer to entirely different domains. Training

is performed for the language step to learn the graph repre-

sentation, and for the visual step to train visual estimators.

However, unlike existing schemes, our method does not use

images and associated question-answer pairs for training.

Our approach allows handling novel domains provided that

corresponding visual estimators are available. The com-

bination of the question graph and answering procedure

Q: What kind of animal is shown? Q: Is there a boat behind the car?

VG-E A: horse [full: The type of the animal: VG-E A: no [full: There is no car

horse, where horse is a The boat is behind a boat]

subclass of animal] Pythia A: yes

Pythia A: horse

Q:How many people are on the motorcycle? Q: Is there a yellow bus in the picture?

UnCoRd A: 1 UnCoRd A: no [full: There are no yellow

Pythia A: 1 buses (failed due to a blue bus)]

Pythia A: no

Q: How many brown horses are there? Q: How many people are there?

UnCoRd A: 1, Pythia A: 2 UnCoRd A: 6, Pythia A: 7

Figure 10. Examples of UnCoRd answers to VQA v2 questions

(including ’full’ answers when they add information).

also gives the method some capacity to explain its answers

and suggest alternatives when question is not grounded in

the image. Based on this approach, our answering system

achieves near perfect results on a challenging dataset, with-

out using any question-answer examples. We have demon-

strated that question representation and answering capabil-

ities can be extended outside the scope of the data used in

training, preserving good results for the original domain.

Substantial work is required to obtain a system that will

be able to perform well on entirely general images and

questions. The main immediate bottleneck is obtaining

question-to-graph mapping with general representation ca-

pabilities for a broad range of questions. Question graph

representation may also be enhanced to support questions

with more complex logic, as well as extending the scope

of the supported visual categories (e.g. global scene types).

Any general VQA requires vast estimation capabilities, as

any visual category can be queried. In UnCoRd they are

modularly incremented and automatically integrated with

existing questions. Additional basic areas that current

schemes, including ours, have only begun to address, are

the use of external, non-visual knowledge in the answering

process, and the composition of detailed, informative an-

swers, integrating the language and visual aspects of VQA.
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