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Figure 1: Shape and texture from a single image. The output is a 2.5D shape and a flat-texture generative process. The

approach succeeds for a wide variety of textures, including those for which previous methods break down.

Abstract

We consider the shape from texture problem, where the

input is a single image of a curved, textured surface, and the

texture and shape are both a priori unknown. We formulate

this task as a three-player game between a shape process,

a texture process, and a discriminator. The discriminator

adapts a set of non-linear filters to try to distinguish image

patches created by the texture process from those created

by the shape process, while the shape and texture processes

try to create image patches that are indistinguishable from

those of the other. An equilibrium of this game yields two

things: an estimate of the 2.5D surface from the shape pro-

cess, and a stochastic texture synthesis model from the tex-

ture process. Experiments show that this approach is robust

to common non-idealities such as shading, gloss, and clut-

ter. We also find that it succeeds for a wide variety of texture

types, including both periodic textures and those composed

of isolated textons, which have previously required distinct

and specialized processing.

1. Introduction

Texture is the repetition of appearance across local spa-

tial neighborhoods of a surface. When a surface is curved,

foreshortening causes spatial compression of local appear-

ance across an image, and this gives a perception of surface

shape. Computer vision systems that can exploit this phe-

nomenon will be able to factor images into their underlying

shape and texture components, which could serve as useful

intermediate representations for shape understanding, ma-

terial recognition, and other tasks.

Previous approaches to shape from texture use a vari-

ety of models for encoding the relevant aspects of local ap-

pearance, and they each target a particular class of textures.

Some approaches focus on textures that are composed of

isolated texture elements. These approaches operate by de-

tecting the elements and inferring the relative distortion be-

tween them, or the distortion of each one separately in cases

where prior information about the texture is known. Other

approaches apply to textures that are stationary stochastic

processes, and they estimate shape locally, by measuring

how the local frequency spectrum changes between nearby

image patches.

This paper explores the possibility of a single shape

from texture model that can recover shape from all texture

types, including those that are neither perfectly stationary

nor comprising perfectly discernible textons. Our model is

a three-player game between a discriminator, an unwarper,

and a generator. The generator is a texture process that out-

puts synthetic flat-texture patches computed from samples

of a pre-defined stochastic process, whereas the unwarper
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Figure 2: Shape from texture as a three-player game. A dis-

criminator D works to distinguish synthetic texture patches

created by the generator G from ones extracted from the im-

age and unwarped by the unwarper W . The generator and

unwarper try to produce patch distributions that are indis-

tinguishable, while the discriminator tries to tell them apart.

is a shape process that outputs patches from the input image

that are unwarped by a field of 2D affine spatial transfor-

mations. The generator and unwarper both feed their out-

put patches to the discriminator, which assigns each patch a

scalar value. During the game, the generator and unwarper

adapt to produce distributions of patches that are indistin-

guishable from those of the other, while the discriminator

adapts to tell them apart. At an equilibrium, the generator

provides a learned synthesis model for the latent flat texture

(right column of Figure 1), while the unwarper provides the

2.5D surface shape.

The game can succeed because the generator and un-

warper are designed to have intrinsic limitations. The gener-

ator can only create patches from a (learnable) cyclostation-

ary stochastic process, while the unwarper can only apply

smooth affine warp fields. Intuitively, this means that when-

ever the two processes are able to discover patch distribu-

tions that are similar to one another, these distributions are

likely to correspond to the true latent shape. This intuition is

supported theoretically by a companion paper [20], which

shows that an image of a surface that is texture-mapped with

a perfectly cyclostationary texture cannot be explained by

any other shape and cyclostationary texture. We also sup-

port it experimentally by evaluating its accuracy on a variety

of synthetic images and captured photographs.

2. Related Work

Our approach is inspired by two bodies of work that, un-

til now, have developed rather separately.

Parametric Texture Synthesis. We build upon decades

of work on statistical models for (flat) visual textures,

including foundational work by Julesz [13], Heeger and

Bergen [9], and many others (e.g., [19, 22, 3]). In this body

of work, 3D shape is avoided, and the task is to distinguish

one flat texture from others by finding the parameters of

a probability distribution p(I), over texture patches I , that

concentrates on patches that are perceptually similar to a

training set of examples. This work is often associated with

texture synthesis because that is the most convenient way to

evaluate it: once the statistical parameters are learned from

a training set, new samples can be drawn from p(I) for hu-

mans to evaluate as “looking the same”. Of these methods,

our approach is closest to the minimax entropy approach

of Zhu et al. [22] and to spatial GANs [12, 3], which use

minimax (adversarial) objectives to learn a model for the

distribution p(I).

The key difference between all of this work and ours is

that we aim to learn p(I) from a set of training samples

that, instead of being flat, are each affected by an unknown

spatial affine transformation. In addition to finding a dis-

tribution that concentrates on our input set of samples, we

also find affine transformations of these samples (subject to

surface continuity constraints) that allow the learned distri-

bution to concentrate even further. This capability is useful:

It means that one can learn the appearance of textured ob-

jects without having to flatten them first.

Shape from Texture. Among the rich collection of work in

shape from texture—see [18, 16] for deeper reviews—we

are most influenced by two classes of techniques. The first

was developed by Gårding [6], Malik and Rosenholtz [18],

and Clerc and Mallat [4]. The central idea is to encode the

appearance of an image patch by its spatial frequency spec-

trum, as determined by the magnitude responses to filters

that are localized in space and frequency, and then to rea-

son about local surface orientation and curvature by ana-

lyzing how that spectrum differs from the spectra of nearby

patches. One great advantage of this approach is that it pro-

vides local normal and curvature estimates without having

to rely on an orthographic camera model or on surfaces be-

ing continuous over extended areas. A significant disadvan-

tage is that it only applies to a restricted class of textures

that are periodic and that do not rotate across the surface.

The second class of techniques was created by

Forsyth [5], Lobay and Forsyth [16], and Loh and Hart-

ley [17]. It applies to textures that comprise a limited num-

ber of repeated texture elements (textons) that can be in-

dependently localized in the image. The basic strategy is

to first detect the elements and then to find a set of affine

transformations that align each pair of them. With appro-

priate spatial regularization, the pairwise affine transforma-

tions are sufficient to determine shape. The advantages of

this strategy are that it can succeed where the first class of

methods fails, and that it applies even when the textons ro-

tate or are distributed irregularly across the surface [17].

The disadvantage, of course, is that it is designed for a spe-

cific class of textures, excluding those for which repeating

isolated elements are not well defined.
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Our model borrows from both classes of techniques. In-

spired by the first class, we include stochastic periodic in-

puts to our texture generator, which allows the texture pro-

cess to exploit non-rotating periodicity when it exists while

ignoring it when it does not. Inspired by the second class of

methods, we represent shape using a field of affine transfor-

mations that are linked by spatial regularization.

3. Model Overview

We assume the input RGB image I : Ω → R
3 is cap-

tured by an orthographic camera, and we model the latent

2.5D surface shape as the graph of a continuous function

z : Ω → R, where Ω = {0, ..., w − 1} × {0, ..., h − 1} is

the image domain. We assume that the latent flat texture T
was generated by a cyclostationary process, meaning that its

statistics are spatially periodic. We denote by p(I) the dis-

tribution of flat texture patches I cropped from T . Our goal

is to infer both the surface at each pixel z(x, y) and the flat

texture distribution p(I) from the input image I, without

observing the flat texture beforehand.

When a surface is planar and slanted relative to the ortho-

graphic viewpoint, a square patch on the surface projects to

a non-square smaller image patch. This map is a restricted

type of 2D affine transformation that has three degrees of

freedom and is invertible [16]. We use the term warp to

refer to this type of transformation, and unwarp for its in-

verse. A patch from the input image around the pixel loca-

tion (x, y) (e.g., a red quadrilateral in Figure 2) corresponds

to a flat patch from p(I) that has been warped by some (un-

known) 2× 2 warp matrix W (x, y). Estimating these latent

warps W (x, y) at every pixel is sufficient for estimating the

latent surface z(x, y) (up to an inconsequential constant off-

set and 2-fold ambiguity which we discuss in Section 5).

For now, let us assume there is a single pre-determined

square patch size, denoted Q × Q, that is appropriate for

the input image. That is, for most image locations (x, y),
the area spanned by the warp W (x, y) applied to a Q × Q
square is small enough for the latent surface to be nearly

planar within it (i.e., with negligible curvature) and yet large

enough to contain useful statistics of the texture’s appear-

ance required for shape estimation. An extension to multi-

ple patch sizes and its importance are discussed in Section 5.

We denote by W the dense field of warps comprising a

warp W (x, y) for each pixel (x, y) in the input image. We

denote by q(I;W ) the distribution of square Q×Q patches

obtained by applying each unwarp W−1(x, y) to the non-

square image patch centered at (x, y) (bottom of Figure 2).

We say that a warp field is “good” if its inverse implies a

distribution q(I;W ) that is close to the flat texture distribu-

tion p(I). Since neither the true warp field nor the true flat

texture distribution are known a priori, we jointly estimate

them by creating a three-player game between a generator, a

discriminator, and an unwarper. Broadly speaking, the gen-

erator and discriminator behave as a generative adversarial

network [8] to learn a model of p(I), while the unwarper

learns a warp field W whose inverse implies a distribution

q(I;W ) that is similar to p(I).

In this game, the parameters of the generator G, discrim-

inator D, and unwarper W are alternately updated by:

G(t), D(t) = argmin
G

max
D

EI∼q(I;W (t−1))[logD(I)] (1)

+ EZ∼p(Z)[log(1−D(G(Z)))],

W (t) = argmax
W

EI∼q(I;W )[logD
(t)(I)]− C(W ), (2)

where p(Z) is a predetermined stochastic process, defined

in Section 4, whose samples are input to the generator; and

C(W ) is function, defined in Section 5, that encourages

smoothness in the estimated warp field.

The first term in the objective in Equation 1 quantifies

the ability of the discriminator to detect patches that come

from the unwarper (bottom of Figure 2), while the second

term quantifies its ability to detect patches G(Z) generated

by the generator (top of Figure 2). We alternate between

updating G and D (Equation 1), and updating W (Equa-

tion 2). Updating G and D aims to parametrize q(I;W ),
whereas updating W is meant to find the warps which are

given a high score by D, while also yielding a smooth sur-

face as defined by C(W ).

The effectiveness of this game relies on designing the

players to have some intrinsic limitations. Without limita-

tions, the generator and discriminator could learn a model

for the distribution of input image patches themselves, with-

out any unwarping, so the output could always be the triv-

ial “postcard” explanation consisting of a flat shape (pla-

nar z(x, y)). Similarly, if the unwarper were able to apply

unlimited transformations to the image patches, the game

could converge to a wide variety of distributions q(I;W )
corresponding to a wide variety of unrealistic shapes.

We avoid these scenarios by designing the generator

to only produce patches from a (learnable) cyclostation-

ary flat-texture process (Section 4), and by designing the

unwarper to only produce warp fields that correspond to

smooth continuous surfaces (Section 5). As shown in [20],

given an input image of a cyclostationary-textured surface,

the only unwarper W for which the distribution q(I;W )
represents patches taken from a cyclostationary process, is

the unwarper that corresponds to the true shape (up to ro-

tations in the tangent plane, which do not affect shape).

This means that when the unwarper discovers a distribution

q(I;W ) that is similar to the one modeled by the generator

and discriminator, this is likely to correspond to the true flat

texture distribution p(I) and true shape.
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4. Texture Model

Our texture model consists of a generator and discrimi-

nator that are trained adversarially. The architecture is in-

spired by the Periodic Spatial GAN [3], which is similarly

designed to generate cyclostationary textures. Our genera-

tor learns a deterministic map from samples of a predefined

stochastic process p(Z) to patches of a cyclostationary tex-

ture process. During the 3-player game the generator cre-

ates patches that are at least Q × Q, so its output can be

compared by the discriminator to Q × Q patches sampled

from q(I;W ). After the game converges, the convolutional

generator can be used to create arbitrarily large texture sam-

ples (see examples in Figures 1, 4, and 5).

4.1. Generator

Our generator is composed of a sequence of four stride-2
deconvolutions (often referred to as stride-12 convolutions)

with a kernel size of 5×5, each followed by a ReLU nonlin-

earity and a batch normalization layer [11]. The architecture

is shown in Figure 3.

Our generator takes in a collection of input maps, shown

in the figure. In order to avoid windowing effects in the

generated texture, we use the fact that these input maps can

be made arbitrarily large. For the first stride-2 deconvolu-

tion in our network, instead of generating an input map of

spatial size M × M , we generate a larger input of shape

(M + 3) × (M + 3). Applying a stride-2 deconvolution

then results in an output of shape (2M + 9) × (2M + 9),
which can then be cropped into (2M + 3) × (2M + 3).
By cropping 3 pixels from each side of both dimensions,

we eliminate any windowing effect. Repeating this process

for all four deconvolution layers results in an output of size

(16M+3)×(16M+3), which can finally be cropped to get

an output of shape 16M×16M with no windowing effects.

This padding scheme reduces constraints on the deconvolu-

tion kernels, and we found it to significantly stabilize our

results.

There are three types of stochastic inputs to the gener-

ator: local maps, periodic maps, and global maps. Local

maps are 2D spatial arrays whose elements are drawn inde-

pendently from [−1, 1]. We concatenate two such maps to

the input of each of the last two deconvolutions in the net-

work. The size of each local map needs to match with the

input it is concatenated to, and is therefore defined by the

architecture of the network (see Figure 3)

The local maps serve as a means of encoding variability

in the texture. Local maps injected in the first layers of the

network are processed by a relatively large number of non-

linear filters, and impact a large part of the output texture

patch due to the structure of the generator. In contrast, lo-

cal maps added towards the end of the generator undergo a

smaller number of transformations, and therefore can only

model small-scale variations in the output.

Figure 3: Side view of generator, showing only one spatial

dimension (spatial operations are square). Arrows denote

5×5 stride-2 deconvolution followed by a ReLU and a batch

normalization layer. Each arrow’s output is cropped (darkly

shaded) to avoid windowing effects. Adjacent blocks de-

note concatenation, and colored blocks are input samples

from predefined stochastic processes: green are spatially-

constant random samples (“global maps”); yellow are spa-

tially i.i.d. random samples (“local maps”); and pink are

randomly-shifted sinusoids with learnable frequencies (“pe-

riodic maps”). See text for details.

When dealing with real images, adding local maps later

in the network allows for better handling of noise and

changes in the appearance of the input texture. Adding lo-

cal maps earlier in the network may also have this effect, but

we found that it results in less accurate shape estimation.

Periodic maps are spatial arrays with values determined

by sinusoidal functions whose parameters are learned. We

concatenate two periodic maps to the input of the first and

second deconvolution layers. For the jth periodic map input

to the ith deconvolution layer we learn two parameters: the

amplitude a(i,j) and orientation θ(i,j) of the wave vector of

the map. We can then write the periodic maps as:

Z(i,j)
p (λ, µ) = sin

(

2πk
(i,j)
1 λ+ 2πk

(i,j)
2 µ+ φ(i,j)

)

,

k
(i,j)
1 = a(i,j) cos(θ(i,j)), (3)

k
(i,j)
2 = a(i,j) sin(θ(i,j)),

where λ, µ ∈ {0, ..., 2iM + 2} are the spatial coordinates

in the ith scale. The magnitude of each wave vector a(i,j)

is learned but limited by a sigmoid function to [0, 0.5] to

prevent aliasing in the input sinusoids. The phase φ(i,j) is

drawn uniformly from [0, 2π].
The periodic maps are used to capture the cyclostation-

ary statistics of the input texture. We found that adding pe-

riodic inputs across multiple scales in the network helps the

generator encode these statistics. The later a periodic input
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is injected into the network, the higher its frequency can be

in the output. By using periodic maps across multiple scales

we allow the network to learn a multiscale representation of

the periodic statistics of the texture.

In addition to the local and periodic maps, we also add

two global maps to the input of the first deconvolution layer.

Each global map is constant spatially, and its value is drawn

uniformly from [−1, 1]. The global maps are used to en-

code larger variations between patches in an image. For

example, we find that using global maps helps deal with

non-idealities in the input images, such as shading, by en-

coding those variations and obtaining a texture model that

is more robust to illumination effects.

4.2. Discriminator

The architecture of our discriminator is designed sym-

metrically to the generator, as suggested in [3]. It is com-

posed of a sequence of four stride-2 convolutions, each fol-

lowed by a leaky-ReLU activation with slope 0.2. Similar

to the cropping in our generator, we avoid windowing ef-

fects in the discriminator by not padding the input to any of

the convolution layers (i.e., we use “valid” convolution).

The discriminator architecture defines a receptive field

of size R×R in the input. An input patch I is transformed

by the discriminator to a probability map D(I) ∈ [0, 1]S×S .

The output of the discriminator at location (λ, µ), Dλµ(I),
only depends on a receptive field of size R × R in the in-

put. In order to estimate the log-probability that the dis-

criminator assigns to an entire patch I (for the objectives in

Equations 1 and 2), we define:

logD(I) =
1

S2

S
∑

λ=1

S
∑

µ=1

logDλµ(I). (4)

As suggested in [12, 8], when optimizing the discrimina-

tor according to Equation 1 we replace log(1 −D(G(Z)))

by 1
S2

∑S

λ=1

∑S

µ=1 log(1 −Dλµ(G(Z))), and when train-

ing the generator instead of minimizing this term we mini-

mize − logD(G(Z)) using the definition in Equation 4.

Since the discriminator is convolutional, we can use it to

evaluate how real a patch looks for any input size, as long as

it is no smaller than R×R. This enables us to use multiple

patch sizes Qi × Qi from the unwarper, as well as using a

different sized generator output. We discuss the importance

of being able to evaluate the discriminator on different patch

sizes in Section 5.

5. Shape Process

The field of affine warps learned by the unwarper should

correspond to a continuous surface. This places consider-

able constraints on them, which can be enforced in many

ways. Our strategy is to explicitly interpret each affine

transformation as relating to a 3D surface normal vector and

a 3D tangent vector, and to add two penalization terms to the

objective: one for the degree to which the normal field is not

integrable, and one for the degree to which the normal and

tangent fields are not smooth.

As mentioned in Section 4.2, we can use the discrimi-

nator to evaluate multiple patch sizes. We want the patch

size Q×Q output by the unwarper to be small enough to be

approximately planar, yet large enough to contain sufficient

information to facilitate shape estimation. Since the char-

acteristic texture sizes are not known a priori, we simply

use multiple patch sizes Qi ×Qi for a few different values

of Qi. We find that our system automatically makes use

of the appropriate values of Qi: Values that are too small

are ignored by the system since they do not contain enough

information to contribute to shape estimation, while values

that are too large to be approximately planar can contribute

to shape estimation without preventing the smaller patches

from capturing finer details in the shape.

The remainder of this section provides the details of our

warp parametrization. Our approach is heavily inspired

by [16] and [17]. In order to avoid local minima in shape

we find it useful to incorporate multiscale processing simi-

lar to [2].

We parametrize the field of warps W by defining a set

of four auxiliary variables at each pixel that represent the

3D normal and tangent vectors at that pixel. We relate the

normal and tangent vectors to the warp matrix at each point,

and use our auxiliary variables to define the smoothness cost

C(W ) in Equation 2.

We parametrize the surface normals using two scalars

p(x, y) and q(x, y) at each pixel location (x, y). At each

pixel the normal is:

n̂ =
−px̂− qŷ + ẑ
√

p2 + q2 + 1
, (5)

where x̂, ŷ and ẑ are the standard basis of R3.

In addition to the normal vectors, we wish to parametrize

the tangent vector at each pixel in the image. The two vec-

tors nzx̂− nxẑ and nz ŷ − ny ẑ are orthogonal to n̂ (whose

x̂, ŷ and ẑ components we denote by nx, ny and nz respec-

tively), and they span the tangent plane. Therefore we can

define two more scalars s(x, y) and c(x, y) for each pixel,

and set the tangent vector to be a (normalized) linear com-

bination:

t̂ =
cnzx̂+ snz ŷ − (cnx + sny)ẑ
√

c2n2
z + s2n2

z + (cnx + sny)2
. (6)

We found that this over-parametrization of the tangent’s one

degree of freedom works well in practice.

We assume an orthographic camera with viewing direc-

tion −ẑ. Consider the local 3D surface frame as the stan-

dard coordinate system x̂, ŷ and ẑ being rotated by the 3×3
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matrix that maps x̂ 7→ t̂, ẑ 7→ n̂, and ŷ 7→ n̂ × t̂
∆
= b̂. The

columns of this rotation matrix are, from left to right, t̂, b̂
and n̂. The camera projection is in the ẑ direction and so the

local 2D warp W (x, y) is simply the top-left 2× 2 block of

the rotation matrix:

W (x, y) =

[

tx(x, y) bx(x, y)
ty(x, y) by(x, y)

]

. (7)

The matrix W (x, y) determines the local foreshortening

in the vicinity of the location (x, y). Note that the matrix

indeed corresponds to foreshortening as det(W (x, y)) =
nz(x, y) ≤ 1. We can also assume that nz(x, y) ≥ 0, which

corresponds to the texture facing the camera.

Given a texture mapped onto a surface we use our three-

player game to estimate the normal vectors n̂ and tan-

gent vectors t̂, which define the field of warps of the un-

warper. However, given a specific warp W (x, y) there is

a 2-fold ambiguity in shape, since W is invariant under

(nx, ny, tz) 7→ (−nx,−ny,−tz) (see for example [14]).

Therefore the two surface normals n̂ = ±nxx̂±ny ŷ+nz ẑ
define the same exact warp.

Since this 2-fold ambiguity occurs independently for

each pixel in the input image, the normal and tangent vector

fields have many solutions corresponding to the same field

of warps. By adding a smoothness penalty term C(W ), we

encourage smooth and integrable solutions (Section 5.1),

but then our problem has multiple local optima. In order

to avoid these local optima, we use a multiscale representa-

tion of the surface normals (Section 5.2).

5.1. Shape Constraints

We define the shape cost C(W ) using an integrability

term and a smoothness term:

C(W ) = C(I)(W ) + C(S)(W ). (8)

The integrability term is that introduced by Horn and

Brooks for shape from shading problem [10] (a similar ap-

proach was used for shape from texture in [17]). The in-

tegral of ∇z = (p, q) over a closed loop should be small.

Choosing the integration path C to be a loop around a single

pixel and taking the average of the square of this discretized

integral over the entire image gives:

C(I) =
α(I)

hw

∑

i,j

[pi,j+1 − pi+1,j+1 + pi,j − pi+1,j (9)

+qi,j+1 + qi+1,j+1 − qi,j − qi+1,j ]
2,

where h and w are the height and width of the input image,

respectively, and α(I) is a scalar weight parameter.

We additionally enforce spatial smoothness in both n̂ and

t̂. We found that using the ℓ2 norm of the spatial gradients

Input Output shape Texture sample

Figure 4: Shape and texture results for photographs. From

left to right: input image; output surface normals; output

shape; and sample from the learned texture process. Green

inset squares show patch sizes used by the unwarper. For

visualization purposes, regions of clutter in the input were

manually cropped after convergence of the game.

of n̂ and t̂ works well:

C(S) = α(S)
n

1

hw
‖∇n̂‖22 + α

(S)
t

1

hw
‖∇t̂‖22, (10)

where ‖∇n̂‖22 denotes summing all squared elements of the

spatial gradient of n̂ (and similarly for t̂). The weights α
(S)
n

and α
(S)
t control the amount of smoothness we require from

the surface normals and tangent vectors.

5.2. Multiscale Optimization

Instead of directly optimizing the per-pixel variables p
and q, we adopt the optimization scheme suggested by Bar-

ron and Malik in [2] and optimize a set of N components

{p(i)}N−1
i=0 , where p(i) has size h/2i × w/2i and corre-

sponds to the ith spatial scale. Per-pixel p can be written

p = G⊤
(

p(0) ◦ ... ◦ p(N−1)
)

with G a fixed matrix that

generates a Gaussian pyramid, and
(

p(0) ◦ ... ◦ p(N−1)
)

a

vector of the multiscale components. The same method is

also used for representing q.

In order to create the Gaussian pyramid we use a 2D

kernel k⊤ · k where k = m · 1
16 [1 4 6 4 1]. As noted

in [2], choosing m > 1 gives coarse scales a larger weight,

which helps in obtaining globally consistent normal maps.

We found that m = 1.4 works well in our experiments.

We found that the pyramid is critical to getting the right

surface normals. However, using a pyramid for the tangent
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Figure 5: Shape and texture results for synthetic images.

From left to right: surface normals of the true shape; in-

put image; output surface normals (with MAE); and sample

from output texture generator. Green inset squares show

patch sizes used by the unwarper.

vectors did not seem to improve our results. This is proba-

bly due to the fact that we do not require any global proper-

ties from the tangent vector field, yet we do want the normal

vector field to vary smoothly over the entire image, and for

it to correspond to a continuous surface.

When training W according to Equation 2, the parame-

ters being updated are the multiscale representations of the

normal vectors {p(i)}N−1
i=0 and {q(i)}N−1

i=0 , as well as the

spatial maps c and s representing the tangent vectors.

6. Experiments

We test our system on photographs as well as synthetic

images created with Blender.1 The same architecture and

parameters are used in every case. Our code and dataset are

available on the project page [1]. Additional results and an

ablation study testing the effect of each component of our

model are available in the supplement.

For each input image, the game is initialized with nearly-

frontal surface normals (p(i) and q(i) uniformly sampled

in [−5 · 10−5, 5 · 10−5]) and nearly horizontal tangents

(c and s respectively sampled uniformly in [0.9, 1.1] and

[−0.1, 0.1]). The weights of the generator and discrimina-

tor are initialized using the Xavier initialization [7].

All variables are optimized using Adam [15]. We al-

ternate between updating the generator and discriminator

weights for 20 iterations using a learning rate of 2·10−4 and

minibatch size of 25 and updating the shape parameters for

200 iterations, using a learning rate of 10−4 for the surface

normal parameters and 5·10−2 for the tangent vector param-

1http://www.blender.org, accessed 03/28/2020.

eters. We use generator output of size 192× 192 (M = 12)

and unwarper patch size selected randomly and indepen-

dently for each iteration from {96, 128, 160, 192}. We use

integrability and smoothness weights of α(I) = 107 and

α
(S)
n = α

(S)
t = 102. We run the game for 25000 iterations

which takes approximately 110 minutes for a 640× 640 in-

put image, using an NVIDIA Tesla V100 GPU.

We begin by testing the system on synthetic images.

The absence of shading, boundaries, or any other monoc-

ular shape cues makes these images appear quite unrealistic

(Figure 5) but they allow us to evaluate the texture cue in

isolation. We quantify the accuracy of the recovered shape

using mean angular error (MAE):

MAE(n̂, n̂(gt)) =
1

hw

h
∑

i=1

w
∑

j=1

| cos−1(n̂ij · n̂
(gt)
ij )|, (11)

where n̂ij and n̂
(gt)
ij are the estimated and ground-truth sur-

face normals at pixel (i, j). The results for three different

synthetic input images are shown in Figure 5, and the ac-

curacies for these textures and others, each averaged over

four different shapes, are summarized in Table 1. The full

visualizations are available in the supplement.

Overall we find that the system reliably recovers good

qualitative shape, even in cases where the unnatural,

texture-only rendering makes shape hard to perceive for hu-

man observers. Quantitatively, the accuracy of the recov-

ered shape is comparable in terms of MAE to that of mod-

ern shape from shading algorithms that, like us, do not use

boundaries (e.g. [21]). We see two main types of artifacts

in the output shape. In places where the true surface orien-

tation is close to fronto-parallel, our choice of regularizer

tends to create flattened explanations; and in some cases,

like the bottom of Figure 5, there are crease-like artifacts

caused by the algorithm getting trapped in a local minimum

and failing to properly resolve some of the 2-fold ambigui-

ties. Note that our system manages to extract shape even

when texture periodicity is very large relative to the un-

warper’s patch sizes, and even when the texture is entirely

aperiodic, as in the middle row of Figure 5. In terms of the

learned texture process (right column of Figure 5), we find

that it captures statistics over scales that are comparable or

smaller than the patch sizes, but not those at significantly

larger scales.

For comparison, Table 1 also includes the accuracy of

shapes recovered by previous shape from texture algorithms

based on isolated textons [16, 17] and stationarity [4].2

Some visual comparisons are shown in Figure 6. Station-

arity [4] works well for periodic textures but breaks for

general cyclostationary ones. Isolated textons [17] works

well for non-overlapping texture elements but breaks when

2Results for [16, 17] were obtained using our own implementation,

those for [4] used the original implementation published by the author.
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[4] 30.5 41.2 45.4 35.6 32.7 37.8 36.1 38.7 29.5 29.0 24.4

[17] - - 12.9 35.9 21.5 23.7 - 19.8 22.6 21.6 6.9

[16] 27.7 29.8 38.2 40.4 41.7 23.5 33.1 17.6 32.0 47.6 9.2

ours 15.2 16.8 12.6 15.0 18.6 17.4 19.5 17.1 14.0 20.1 14.9

Table 1: Shape accuracy (MAE, in degrees) of our and other

algorithms for various textures, including those of Figs. 5

& 6 and four additional ones. Each entry is average error

over four images with the same texture and four different

shapes (see supplement for complete visualizations). Miss-

ing entries for [17] are failures to identify a frontal textons.
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Figure 6: Comparison to two previous methods for shape

from texture, in each case including an image inspired by

the original paper. Left panel: the method based on station-

arity [4] recovers qualitative shape when the assumption is

valid but breaks for more general cyclostationary textures.

Right panel: Similarly, the method based on isolated tex-

tons [17] breaks when the textons are not well separated. In

contrast, ours approach works equally well across all four

images. The true shape is the sphere in top of Fig. 5.

they overlap. In contrast, our method performs equally well

across all of these texture types.

Figures 7 and 8 evaluate our system’s performance for

different texture scales and for more realistic synthetic im-

ages that contain other common visual phenomena. We find

that our system is quite robust to the presence of shading,

gloss, and visual clutter. We also find that it obtains good

shape estimates across a variety of different texture scales,

unless the texture scale is significantly larger than the un-

warper’s largest patch size (right of Figure 7).

Finally, Figures 1 and 4 show the output of our system

for some captured photographs. Our method succeeds in es-

timating shape across multiple textures and shapes, despite

the presence of significant shading and deviations from tex-

ture cyclostationarity. The book in the first row of Figure 1

is an especially challenging case: estimating vertical fore-

Figure 7: Shape accuracy for images with increasing tex-

ture scales. The true shape is the sphere in top of Fig. 5.

Figure 8: Shape accuracy for images with common non-

idealities. The corresponding ideal, texture-only image is in

the left column of Fig. 7, and here we show the same scene

rendered with (left to right): shading; shading and clutter;

shading and gloss; and shading, gloss, and clutter. The true

shape is the sphere in top of Fig. 5.

shortening is easy due to the white space between the lines,

but the horizontal statistics are not even approximately pe-

riodic. Furthermore, since the book is mainly foreshortened

horizontally, the horizontal statistics are the critical ones for

shape estimation, which our model seems to handle well.

7. Conclusion

We introduced a three-player game for processing an in-

put image into a 2.5D shape and a flat-texture synthesis

model. Compared to previous approaches to shape from

texture, it has the advantage of working for a much wider

variety of textures. It exhibits robustness in the presence

of clutter and other visual phenomena and is able to re-

cover qualitative shape from natural photographs that are

dominated by a single texture region. Our results suggest

that it is worth considering how multi-player games might

be used to address other types of intrinsic image tasks, and

how they might be combined with perceptual grouping for

higher-level vision tasks in real-world environments.
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