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Abstract

Scene understanding has been of high interest in com-

puter vision. It encompasses not only identifying objects in

a scene, but also their relationships within the given context.

With this goal, a recent line of works tackles 3D seman-

tic segmentation and scene layout prediction. In our work

we focus on scene graphs, a data structure that organizes

the entities of a scene in a graph, where objects are nodes

and their relationships modeled as edges. We leverage in-

ference on scene graphs as a way to carry out 3D scene

understanding, mapping objects and their relationships. In

particular, we propose a learned method that regresses a

scene graph from the point cloud of a scene. Our novel ar-

chitecture is based on PointNet and Graph Convolutional

Networks (GCN). In addition, we introduce 3DSSG, a semi-

automatically generated dataset, that contains semantically

rich scene graphs of 3D scenes. We show the application

of our method in a domain-agnostic retrieval task, where

graphs serve as an intermediate representation for 3D-3D

and 2D-3D matching.

1. Introduction

3D scene understanding relates to the perception and in-

terpretation of a scene from 3D data, with a focus on its

semantic and geometric nature, which includes not only rec-

ognizing and localizing the objects present in the 3D space

therein, but also their context and relationships. This thor-

ough understanding is of high interest for various applica-

tions such as robotic navigation, augmented and virtual real-

ity. Current 3D scene understanding works include percep-

tion tasks such as instance segmentation [12, 21, 44, 50],

semantic segmentation [34, 36, 5, 38] as well as 3D object

detection and classification [40, 34, 35, 54]. While these

works mostly focus on object semantics, their context and

relationships are primarily used to improve the per-object

class accuracy.

Scene understanding from images has recently explored

the use of scene graphs to aid understanding object re-

lationships in addition to characterizing objects individu-
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Figure 1. Overview Given a class-agnostic instance segmentation

of a 3D scene (left) our graph prediction network infers a semantic

scene graph G (right) from a point cloud.

ally. Before that, scene graphs have been used in com-

puter graphics to arrange spatial representations of a graph-

ical scene, where nodes commonly represent scene entities

(object instances), while the edges represent relative trans-

formations between two nodes. This is a flexible represen-

tation of a scene which encompasses also complex spatial

relations and operation grouping. Some of these concepts

where successively adapted or extended in computer vision

datasets, such as support structures [32], semantic relation-

ships and attributes [19] and hierarchical mapping of scene

entities [3]. Scene graphs have been shown to be relevant,

for instance, for partial [46] and full matching [17] in image

search, as well as image generation [16].

In 3D, scene graphs have only recently gained more pop-

ularity [3]. In this work, we want to focus on the seman-

tic aspects of 3D scene graphs as well as their potential.

Our goal is to obtain dense graphs with labeled instances

(nodes), semantically meaningful relationships (edges) such

as lying on or same as and attributes including color,

shape or affordances (see Fig. 1). These resemble the scene

graph representation of [17], associated with images. We

believe semantic scene graphs are especially important in

3D since a) they are a compact representation, that describes

a (potentially large) 3D scene, b) they are robust towards

small scene changes and noise and c) they close the gap

between different domains, such as text or images. These

properties make them suitable for cross domain tasks such

as 2D-3D Scene Retrieval or VQA.
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We believe that the capability of regressing the scene

graph of a given 3D scene can be a fundamental piece for

3D scene understanding, as a way to learn and represent

object relationships and contextual information of an envi-

ronment. For this purpose, we propose a learned method,

based on PointNet [34] and Graph Convolutional Networks

(GCNs) [18], to predict 3D semantic graphs. Given a class-

agnostic instance segmentation of a 3D point cloud, we

jointly infer a 3D scene graph composed of nodes (scene

components) and edges (their relationships). For this pur-

pose, we introduce a 3D semantic scene graph dataset that

features detailed semantics in the nodes (instances) includ-

ing attributes and edges (relationships), which will be pub-

licly released1. Generating 3D semantic scene graphs from

real-world scans is particularly challenging due to miss-

ing data and clutter and the complexity of the relation-

ships between objects. For instance, two chairs that are of

the same style could have very different appearances,

while a jacket lying on one of them might occlude most

of its visible surface. While our method outperforms the

baseline, it operates end-to-end and is able to predict mul-

tiple relationships per edges. We further show how – in a

cross-domain scenario – scene graphs serve as a common

encoding between 3D and 2D in a scene retrieval task in

changing conditions. Given a single image the task is to find

the matching 3D model from a pool of scans. Scene graphs

suit particularly well because they are inherently robust to-

wards dynamic environments, which manifest illumination

changes and (non-)rigid changes introduced by human ac-

tivity. In summary, we explore the prediction and applica-

tion of semantic scene graphs in 3D indoor environments

with the following contributions:

• We present 3DSSG, a large scale 3D dataset that ex-

tends 3RScan [45] with semantic scene graph annota-

tions, containing relationships, attributes and class hi-

erarchies. Interestingly, 2D scene graphs can be ob-

tained by rendering the 3D graphs, which results in

363k graph-image pairs.

• We propose the first learned method that generates a

semantic scene graph from a 3D point cloud.

• We show how 3D semantic scene graphs can be used

in cross-domain retrieval, specifically 2D-3D scene re-

trieval of changing indoor environments.

2. Related Work

Semantic Scene Graphs with Images. Johnson et al.

[17] introduced scene graphs – motivated by image retrieval

– as a representation that semantically describes an image,

1https://3DSSG.github.io

where each node is an object while edges represent interac-

tions between them. Additionally, the object nodes con-

tain attributes that describe object properties. Later, Vi-

sual Genome [19], a large scale dataset with scene graph

annotations on images, gave rise to a line of deep learn-

ing based advances on scene graph prediction from im-

ages [48, 11, 37, 51, 25, 49, 24, 33]. These methods pro-

pose diverse strategies for graph estimation and processing,

such as message passing [48], graph convolutional networks

(GCN) [49], permutation invariant architectures [11] and at-

tention mechanisms [37]. Most of these methods rely on an

object detector to extract node- and edge-specific features

prior to the graph computation [48, 49, 24]. Recent works

explore the reverse problem of using scene graphs to gener-

ate new images [16] or manipulate existing images [6].

3D Understanding: From Objects to Relationships.

An active research area within 3D scene understanding fo-

cuses on 3D semantic segmentation [34, 4, 36, 7, 38, 12] and

object detection and classification [41, 34, 35, 52]. These

works mostly focus on object semantics and context is only

used to improve object class accuracy. Holistic scene un-

derstanding [40] on the other side predicts not only object

semantics, but also the scene layout and sometimes even

the camera pose [13]. Scene context is often represented

through a hierarchical tree, where the leaves are typically

objects and the intermediate nodes group the objects in

scene components or functional entities. A line of works use

probabilistic grammar to parse scenes [28, 53] or control

scene synthesis [15]. Shi et al. [39] show that the object de-

tection task benefits from joint prediction of the hierarchical

context. GRAINS [23] explore hierarchical graphs to syn-

thesize diverse 3D scenes, using a recursive VAE that gen-

erates a layout, followed by object retrieval. In a 3D from

single image scenario, Kulkarni et al. [20] consider relative

3D poses between objects (as edges), which are shown to

outperform neighbour-agnostic 6D pose estimation.

Another line of works incorporate graphs structures for

object-level understanding, rather than entire scenes. Te et

al. [43] use a Graph CNN for semantic segmentation of ob-

ject parts. StructureNet [31] represent the latent space of an

object as a hierarchical graph of composing parts, with the

goal of generating plausible shapes. However, all of these

works are either focused on object parts, or do not consider

semantic relationships that go beyond generic edges (with-

out semantic labels) or relative transformations. In the con-

text of semantic scene graphs on synthetic data, Fisher et

al. [9] use graph kernels for 3D scene comparison, based

on support and spatial relationships. Ma et al. [30] parse

natural language into semantic scene graphs, considering

pairwise and group relationships, to progressively retrieve

sub-scenes for 3D synthesis.

Only recently the community started to explore seman-
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Figure 2. Scene graph representation in 3DSSG including hierarchical class labels c and attributes A per node, as well as relationship

triplets between nodes.

tic relationships in 3D and on real world data. Armeni et

al. [3] present a hierarchical mapping of 3D models of large

spaces in four layers: camera, object, room and building.

While they feature smaller graphs (see Tbl. 1) their focus is

not on semantically meaningful inter-instance relationships

such as support. Moreover, the absence of changing scenes,

does not enable the proposed 3D scene retrieval task.

3D Scene Retrieval Many image-based 3D retrieval

works focus on retrieving 3D CAD models from RGB im-

ages: IM2CAD generates a 3D scene from a single image

by detecting the objects, estimating the room layout and re-

trieving a corresponding CAD model for each bounding box

[14]. Pix3D on the other hand propose a dataset for sin-

gle image 3D shape modeling based on highly accurate 3D

model alignments in the 2D images [42]. Liu et al. show im-

proved 2D-3D model retrieval by simulating local context

to generate false occlusion [27]. The SHREC benchmark

[1, 2], enables 2D-3D retrieval of diverse scenes (beach,

bedroom or castle), while [30] and [9] operate on indoor

environments but also only focus on synthetic data rather

than real 3D reconstructions.

3. 3D Semantic Scene Graphs

With this work, we release 3DSSG which provides 3D

semantic scene graphs for 3RScan [45], a large scale, real-

world dataset which features 1482 3D reconstructions of

478 naturally changing indoor environments. A semantic

scene graph G in 3DSSG, is a set of tuples (N ,R) be-

tween nodes N and edges R (see Fig. 2). Nodes rep-

resent specific 3D object instances in a 3D scan. In con-

trast to previous works [19, 3, 4, 45], our nodes are not

* We compare against the 3D scene graph dataset on the tiny Gibson

split, the most recent release at the time of the submission

assigned a single object category C only, but instead are

defined by a hierarchy of classes c = (c1, ..., cd) where

c ∈ Cd, and d can vary. Additionally to these object

categories each node has a set of attributes A that de-

scribe the visual and physical appearance of the object in-

stance. A special subset of the attributes are affordances

[47]. We consider them particularly important since we

deal with changing environments. The edges in our graphs

define semantic relationships (predicates) between the

nodes such as standing on, hanging on, more

comfortable than, same material. To obtain

the data in 3DSSG we combine semantic annotations with

geometric data and additional human verification to ensure

high quality graphs. In summary, our dataset features 1482

scene graphs with 48k object nodes and 544k edges. An in-

teresting feature of 3D scene graphs is that they can easily

be rendered to 2D. Given a 3D model and a camera pose,

one can filter the graph nodes and edges that are present

in that image. Support and attribute comparison relations

remain the same, while directional relationships (left,

right, behind, front) must be updated automati-

cally for the new viewpoint. Given the 363k RGB-D images

with camera poses of 3RScan, this results in 363k 2D scene

graphs. A comparison of our dataset with the only other

real 3D semantic scene graph dataset, namely Armeni et al.

[3] is listed in Tbl. 1. More information and statistics about

3DSSG are provided in the supplementary. In the follow-

ing a detailed description of the different entities of our 3D

semantic scene graphs are given.

Table 1. Semantic 3D scene graph comparision.

dataset size instances classes obj. rel.

Armeni et al. [3]* 35 buildings 3k 28 4

727 rooms

3DSSG (Ours) 1482 scans 48k 534 40

478 scenes
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3.1. Nodes

The nodes in our graph are per definition 3D object in-

stances, and each instance is assigned to a 3D scene. Each

instance is defined by a class hierarchy where the class of

order 1, c1, in c is the corresponding annotated label. The

subsequent class labels are acquired by recursively parsing

the lexical definition for hypernyms of c1 using WordNet

[8]. The definition “chair with a support on each side

for arms” gives us cn+1 = chair as a hypernym for

cn = armchair. Lexical ambiguities result in multiple

interpretations of a class label (lexeme); therefore a selec-

tion step is required to get only a single definition per class

that is most likely in an indoor setting. Given the fact that

the 1.5k 3D reconstructions feature 534 different class la-

bels, 534 lexical descriptions and their corresponding class

hierarchy are provided. Fig. 3 visualizes the lexical rela-

tionships on a small subset of classes. A more complete

graph can be found in the supplementary.

armchair chair

ottoman stool

coffee table table

desk

seatsofa

cabinet

furniture furnishing

pillow

cushion padding

artifact

Figure 3. Simplified graphical visualization of the lexical relation-

ships on a small subset of classes

3.2. Attributes

Attributes are semantic labels that describe object in-

stances. This includes static and dynamic properties, as well

as affordances. Due to the large number of object instances

and the desired semantic diversity of the attributes, an effi-

cient extraction and annotation design is crucial. In the fol-

lowing we define the different types of attributes and their

acquisition.

Static Properties include visual object features such as

the color, size, shape or texture but also physical proper-

ties e.g. the (non-)rigidity. Geometric data and class la-

bels are utilized to identify the relative size of the ob-

ject in comparison with other objects of the same cat-

egory. Since some features are class specific, we as-

sign them on the class level. An example is an auto-

matic attribute extraction from the lexical descriptions e.g.

a ball is spherical. The remaining, more complex, at-

tributes such as the material (wooden, metal), shape

(rectangular, L-shaped) or the texture (color or

pattern) are instance specific and manually annotated by ex-

pert annotators with an interface that was specifically de-

signed for this purpose. We annotate static attributes in the

reference scan and copy to each rescan, since they are not

subject of change.

Dynamic Properties are particularly important object at-

tributes, which we refer to as states, such as open /

closed, full / empty or on / off. We define a

state category to be class specific, while its current condi-

tion is a matter of instance and therefore also annotated with

the aforementioned interface, together with generic static

properties. Since state properties of objects can change over

time specific instances in the rescans are separately anno-

tated.

Affordances Following previous works [10, 47, 3] we de-

fine affordances as interaction possibilities or object func-

tionalities of nodes of a specific object class e.g. a seat

is for sitting. We however condition them with their

state attribute: only a closed door can be opened.

This is particularly interesting since our 3D scans are from

changing scenes. These changes often involve state changes

caused by human interaction (see examples in the supple-

mentary material). Overall, 3DSSG features 93 different at-

tributes on approx. 21k object instances and 48k attributes

in total.

3.3. Relationships

3DSSG has a rich set of relationships classifiable into a)

spatial / proximity relationships b) support relations and c)

comparative relationships.

Support Relationships Support relationships indicate the

supporting structures of a scene [32]. By definition, an in-

stance can have multiple supports; walls are by default sup-

ported by the floor and the floor is the only instance that,

by definition, does not have any support. Automatically ex-

tracting support relationships is quite challenging due to the

noisy and partial nature of real 3D scans. For each ob-

ject in the scene, we consider neighbouring instances in

a small radius (e.g. 5cm) support candidates. These sup-

port candidates then undergo a verification procedure to a)

eliminate incorrect supports and b) complete missing can-

didates. Remaining class-to-class (e.g. bottle-table)

support pairs are then annotated with a so called semantic

support (e.g. standing, lying) and then specified for

each instance in the dataset.

Proximity Relationships Proximity relationships de-

scribe the spatial relationships (e.g. next to, in

front of) with respect to a reference view. To limit
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redundancy, we only compute proximity relationships be-

tween the nodes that share a support parent. A bottle on

a table therefore has no proximity relationship with a chair

but the supporting table does, since the proximity relation-

ship of the bottle can automatically be derived from its sup-

port parent.

Comparative Relationships The last group of rela-

tionships are derived from comparison of attributes, e.g.

bigger than, darker than, cleaner than,

same shape as. We use aforementioned attributes, see

Section 3.2, to generate these.

4. Graph Prediction

Given the point set P of a scene s and the class-agnostic

instance segmentation M, the goal of the Scene Graph

Prediction Network (SGPN) is to generate a graph G =
(N ,R), describing the objects in the scene N as well

as their relationships R, Fig. 4. We base our learning

method in a common principle in scene graph prediction

[29, 48, 49], which involves extraction of visual features for

every node φn and edge φr. We use two PointNet [34] ar-

chitectures for the extraction of φn and φr, which we dub

namely ObjPointNet and RelPointNet. For a scene s, we

extract the point set of every instance i separately, masked

with M
Pi = {δmki ⊙ pk}k=1,|P| (1)

where δ represents the Kronecker delta 2, p,m are instances

of P,M and | · | is the cardinality of P , i.e. the number of

points. Each of the individual point sets Pi is the input to

ObjPointNet .

Additionally, we extract a point set for every pair of

nodes i and j, using the union of the respective 3D bound-

ing boxes B

Pij = {pk|pk ∈ (Bi ∪ Bj)}k=1,|P|. (2)

The input to RelPointNet is a point set Pij , concatenated

with the respective mask Mij , which is one if the point

corresponds to object i, two if the point corresponds to ob-

ject j and zero otherwise. Preserving the orientation of the

edge context Pij is important to infer proximity relation-

ships like left or right. Therefore, we disable rota-

tional augmentation. We normalize the center of the object

and edge point clouds, before feeding them to the respec-

tive networks. We arrange the extracted features in a graph

structure, in the form of relationship triples (subject,

predicate, object), where φn occupy subject / ob-

ject units, while edge features φr occupy the predicate units.

We employ a Graph Convolutional Network (GCN) [18],

similar to [16], to process the acquired triples. As scenes

2δij = 1 ⇐⇒ i = j

come with diverse complexities, we want the GCN to al-

low flexibility in the number of input nodes. Each message-

passing layer l of the GCN consists of two steps. First, each

triplet ij is fed in an MLP g1(·) for information propagation

(ψ
(l)
s,ij , φ

(l+1)
p,ij , ψ

(l)
o,ij) = g1(φ

(l)
s,ij , φ

(l)
p,ij , φ

(l)
s,ij) (3)

where ψ represent the processed features, s indicates sub-

ject, o indicates object, and p predicate. Second, for a cer-

tain node, in an aggregation step, the signals coming from

all the valid connections of that node (either as a subject or

an object) are averaged together

ρ
(l)
i =

1

|Ri,s|+ |Ri,o|

(

∑

j∈Rs

ψ
(l)
s,ij +

∑

j∈Ro

ψ
(l)
o,ji

)

(4)

where | · | denotes cardinality and Rs and Ro are the set

of connections of the node as subject and as objects respec-

tively. The resulting node feature is fed in another MLP

g2(·). Inspired by [22], we adapt a residual connection to

overcome potential Laplacian smoothing on graphs and ob-

tain the final node feature as

φ
(l+1)
i = φ

(l)
i + g2(ρ

(l)
i ). (5)

The final features φ
(l+1)
s,ij , φ

(l+1)
p,ij , φ

(l+1)
o,ij are then processed

by the next convolutional layer l, in the same fashion. After

each layer l, the node visibility is propagated to a further

neighbour level. Hence, the number of layers equals the

order of relations that the model can capture.

The last part of the GCN consists of two MLPs for the

prediction of the node and predicate classes.

Losses We train our model end-to-end, optimizing an ob-

ject classification loss Lobj as well as a predicate classifica-

tion loss Lpred

Ltotal = λobjLobj + Lpred (6)

where λobj is a weighting factor. We assume that, realisti-

cally, for a certain object pair there are multiple valid rela-

tionships that describe their interaction. For instance, in Fig.

1, a chair can be front of another chair, while simultane-

ously having the same appearance (same as). Therefore,

we formulate Lpred as per-class binary cross entropy. This

way, it is judged independently whether an edge should be

assigned a certain label (e.g. standing on) or none. To

deal with class imbalance, for both loss terms we use a focal

loss [26]

L = −αt(1− pt)
γ log pt (7)

where pt represents the logits of a prediction and γ is a

hyper-parameter. αt is the normalized inverse frequency for

the multi-class loss (Lobj) and a fixed edge / no-edge factor

for the per-class loss (Lpred).

Implementation details are provided in the supplement.

3965



G
C
N

RelPointNet

Fully-Connected Graph of Features

ObjPointNet

Input: Point set of a scene Output: 3D Scene Graph 

...

guitar

floor

pillow

couch

...
none

n
o

n
e

ly
in

g 
o

n

standing on

standing on

right of
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Figure 5. Cross Domain 2D-3D Scene Retrieval: scene graphs

are used in our cross-domain scene retrieval task to close the do-

main gap between 2D images, 3D scenes and other modalities

We introduce a new cross-domain task named image

based 3D scene retrieval in changing indoor environments

which is about identifying the 3D scene from a list of scans

given a single 2D image with potential global and local

changes (see Fig. 5). This is particularly challenging since

it involves a) multiple domains (2D images and 3D mod-

els) and b) scene changes (moving objects, changing illu-

mination). For the evaluation we select semantically rich

2D images from the rescan sequences in 3RScan [45]. Due

to the domain gap between 2D images and 3D we propose

carrying out this novel retrieval task through scene graphs –

which are by definition more stable towards scene changes

– and serve as a shared domain between 2D and 3D. Such

an approach also allows to retrieve 3D scenes from any in-

put domain from which a scene graph can be generated e.g.

natural language or 3D directly. We show how different

similarity metrics can be used to successfully find the cor-

rect 3D scene using not only object semantics but also the

scene context in form of semantically meaningful relation-

ships between object instances. Computing the similarity

between graphs is a NP-complete problem, so instead of

matching graphs directly via their graph edit distance we

first transform our scene graphs into multisets containing

node classes and their (semantic) edges / tuples. Please note

that these potentially have repetition of elements. To get the

similarity of of two graphs, a similarity scores τ is applied

on the corresponding multisets s(G) respectively. For our

tests we explore two different similarity functions: Jaccard

τJ(A,B), eq. 8 and Szymkiewicz-Simpson τS(A,B), eq.

9.

τJ(A,B) =
|A ∩B|

|A ∪B|
(8)

τS(A,B) =
|A ∩B|

min(|A|, |B|)
(9)

While the Jaccard coefficient is a widely used metric, the

Szymkiewicz-Simpson coefficient can provide more mean-

ingful similarity scores especially when the two sets A and

B have very different sizes which is often the case in a 2D-

3D scenario. When matching two graphs G and G′ we com-

bine the similarity metric of the object semantics, generic

node edges E as well as semantic relationships R and ob-

tain
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Figure 6. Qualitative results of our scene graph prediction model (best viewed in the digital file). Green: correctly predicted edges,

blue: missing ground truth, red: miss-classified edges, gray: wrongly predicted as none when GT is a valid relationship.

f(Ĝ, Ĝ′) =
1

|Ĝ|

|Ĝ|
∑

i=1

τ(s(Ĝ(i)), s(Ĝ′(i)))3 (10)

where τ is either the Jaccard or Szymkiewicz-Simpson

coefficient and Ĝ is defined as the augmented graph Ĝ =
(N , E ,R) where E are binary edges. Interestingly, one can

use our retrieval method to find rooms that fullfill certain

requirements such as the available of objects e.g. meeting

room with a TV, whiteboard but could also include af-

fordances: sitting for 20 people.

6. Evaluation

In the following, we first report results of our 3D graph

prediction by comparing it against a relationship prediction

baseline, inspired by [29], on our newly created 3DSSG-

dataset. We re-implemented and adapted their method to

work with 3D data. The baseline extracts node and edge

features from an image, which we translate to PointNet fea-

tures in 3D, similar to our network. The edge and node

features are passed directly, namely to a predicate and ob-

ject classifier. For evaluation we use the same train and test

splits as originally proposed by [45]. We validate the ef-

fectiveness of our multi predicate classifier and GCN in our

proposed network in an ablation study. In the second sec-

tion, we evaluate different graph matching functions in 2D-

3D as well as 3D-3D retrieval by matching changed scenes.

3we define fS and fJ to use τS and τJ respectively.

6.1. Semantic Scene Graph Prediction

Here, we report the results of our scene graph predic-

tion task. Following previous works [48] we first separately

evaluate the predicate (relationship) prediction in isolation

from the object classes. The overall scene graph predic-

tion performance is evaluated jointly where the relationship

as well as the object categories are to be predicted given

a set of localized objects. Since our method predicts the

relationship as well as the object categories independently

from another, we obtain an ordered list of triplet classi-

fication scores by multiplying the respective scores [49].

Similarly to the predicate prediction, the performance of

the object categories is reported. We adopt the recall met-

ric used in [29] to evaluate most confident (subject,

predicate, object) triplets against the ground-truth

in a top-n manner. Tbl. 2 shows that we outperform the

baseline in graph related metrics, while being on par in ob-

ject classification. Additionally, as expected, the multiple

predicate prediction model leads to a higher predicate accu-

racy, which we attribute to the inherent ambiguity in a sin-

gle classification problem, when multiple outputs are plau-

sible. Moreover, we compare two versions of our model, in

which the object classification is performed a) directly on

the PointNet features φn and b) to the output of the GCN.

We observe a slight improvement in the object and predi-

cate accuracy for the former. Fig. 6 illustrates the predicted

scene graphs. In all edges and nodes we show the predic-

tions together with the ground truth in brackets. More ex-

amples can be found in the supplement.
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Table 2. Evaluation of the scene graph prediction task on 3DSSG. We present triples prediction, object classification as well as predicate

prediction accuracy.

Relationship Prediction Object Class Prediction Predicate Prediction

Method R@50 R@100 R@5 R@10 R@3 R@5

➀ Relation Prediction Baseline 0.39 0.45 0.66 0.77 0.62 0.88

Single Predicate, ObjCls from PointNet Features 0.37 0.43 0.68 0.78 0.42 0.58

➁ Multi Predicate, ObjCls from PointNet Features 0.40 0.66 0.68 0.78 0.89 0.93

Multi Predicate, ObjCls from GCN Features 0.30 0.60 0.60 0.73 0.79 0.91

6.2. Scene Retrieval

Tbl. 3 and 4 report two scene retrieval tasks. The goal is

to match either a single 2D image (Tbl. 4) or a 3D rescan

of an indoor scene (Tbl. 3) with the most similar instance

from a pool of 3D reference scans from the validation set

of 3RScan. We compute the scene graph similarity between

each rescan (2D or 3D) and the target reference scans. We

then order the matches by their similarity and report the

top-n metric, i.e. the percentage of the true positive assign-

ments, placed in the top-n matches from our algorithm. In

our experiment, we either use ground truth or predictions

for the query and source graphs (see Graph-column in Tbl.

3 and 4). To measure the effect of the different similarity

functions, decoupled from the graph prediction accuracy,

we first evaluate τJ(A,B) and τS(A,B) using ground truth

graphs. Since the size of image and 3D scene graphs are

significantly different, using the Szymkiewicz-Simpson co-

efficient in 2D-3D matching leads to better results while the

performance of the Jaccard coefficient is on par or better

in the 3D-3D scenario. We observe that adding semantic

relationships to the graph matching improves the scene re-

trieval. The results also confirm that our predicted graphs

➁ achieve higher matching accuracy compared to the base-

line model ➀. Note that for the purpose of this experiment,

predicted 2D graphs are obtained by rendering the predicted

3D graphs as described in Section 3.

Table 3. Evaluation: 3D-3D scene retrieval of changing 3D rescans

to reference 3D scans in 3RScan.

Graph Top-1 Top-3 Top-5

τS(s(N3D), s(N3D)) GT 0.86 0.99 1.00

fS(G3D,G3D) GT 0.96 1.00 1.00

τJ(s(N3D), s(N3D)) GT 0.89 0.95 0.95

fJ(G3D,G3D) GT 0.95 0.96 0.98

τJ(s(N3D), s(N3D)) ➀ 0.15 0.40 0.45

fJ(G3D,G3D) ➀ 0.29 0.50 0.59

τJ(s(N3D), s(N3D)) ➁ 0.32 0.46 0.50

fJ(G3D,G3D) ➁ 0.34 0.51 0.56

Table 4. Evaluation: 2D-3D scene retrieval of changing rescans to

reference 3D scans in 3RScan.

Graph Top-1 Top-3 Top-5

τJ(s(N2D), s(N3D)) GT 0.49 0.75 0.84

τS(s(N2D), s(N3D)) GT 0.98 0.99 1.00

fJ(G2D,G3D) GT 0.55 0.85 0.86

fS(G2D,G3D) GT 1.00 1.00 1.00

τS(s(N2D), s(N3D)) ➀ 0.17 0.36 0.42

fS(G2D,G3D) ➀ 0.10 0.25 0.32

τS(s(N2D), s(N3D)) ➁ 0.17 0.36 0.41

fS(G2D,G3D) ➁ 0.13 0.38 0.42

7. Conclusion

In this work, we explore 3D semantic scene graphs. We

release 3DSSG a 3D scene graph dataset with semantically

rich relationships based on 3RScan [45]. We use our data

to train a graph prediction network for 3D scenes that is

able to estimate not only object semantics but also relation-

ships between objects. Further, we show the usefulness of

graphs in 3D scenes by applying it to a new cross-domain

task called image based 3D scene retrieval in changing in-

door environments. This shows how semantic scene graphs

are useful to bridge the domain gap between 2D-3D; open-

ing doors for new applications such as text-3D scene re-

trieval or VQA. We further believe that scene graphs (and

their changes) could potentially help to better reason about

human activities in changing indoor environments.
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