
3DV: 3D Dynamic Voxel for Action Recognition in Depth Video

Yancheng Wang1, Yang Xiao1†, Fu Xiong2, Wenxiang Jiang1, Zhiguo Cao1, Joey Tianyi Zhou3, and

Junsong Yuan4

1 National Key Laboratory of Science and Technology on Multispectral Information Processing, School

of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan

430074, China 2Megvii Research Nanjing, Megvii Technology, China
3 IHPC, A*STAR, Singapore 4CSE Department, State University of New York at Buffalo

yancheng wang, Yang Xiao@hust.edu.cn, xiongfu@megvii.com, wenx jiang, zgcao@hust.edu.cn,

zhouty@ihpc.a-star.edu.sg, jsyuan@buffalo.edu

Abstract

To facilitate depth-based 3D action recognition, 3D dy-

namic voxel (3DV) is proposed as a novel 3D motion rep-

resentation. With 3D space voxelization, the key idea of

3DV is to encode 3D motion information within depth video

into a regular voxel set (i.e., 3DV) compactly, via tempo-

ral rank pooling. Each available 3DV voxel intrinsical-

ly involves 3D spatial and motion feature jointly. 3DV is

then abstracted as a point set and input into PointNet++

for 3D action recognition, in the end-to-end learning way.

The intuition for transferring 3DV into the point set form is

that, PointNet++ is lightweight and effective for deep fea-

ture learning towards point set. Since 3DV may lose ap-

pearance clue, a multi-stream 3D action recognition man-

ner is also proposed to learn motion and appearance fea-

ture jointly. To extract richer temporal order information of

actions, we also divide the depth video into temporal splits

and encode this procedure in 3DV integrally. The exten-

sive experiments on 4 well-established benchmark dataset-

s demonstrate the superiority of our proposition. Impres-

sively, we acquire the accuracy of 82.4% and 93.5% on

NTU RGB+D 120 [13] with the cross-subject and cross-

setup test setting respectively. 3DV’s code is available at

https://github.com/3huo/3DV-Action.

1. Introduction

During the past decade, due to the emergence of low-cost

depth camera (e.g., Microsoft Kinect [52]) 3D action recog-

nition becomes an active research topic, with the wide-

range application scenarios of video surveillance, human-

machine interaction, etc [45, 46]. The state-of-the-art 3D

action recognition approaches can be generally categorized
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Figure 1. A live “Handshaking” 3DV example from NTU RGB+D

60 dataset [33]. 3DV motion value reveals the temporal order of

3D motion component. The later motion component is of higher

value, and vice verse. And, the local region of richer motion infor-

mation holds higher standard deviation on 3DV motion value.

into the depth-based [28, 17, 16, 36, 11, 51, 35, 34] and

skeleton-based groups [32, 48, 22, 10, 42, 46]. Since accu-

rate and robust 3D human pose estimation is still challeng-

ing [47, 21], we focus on depth-based avenue in this work.

Since human conducts actions in 3D space, capturing

3D motion pattern effectively and efficiently is crucial for

depth-based 3D action recognition. An intuitive way is to

calculate dense scene flow [1]. However this can be time

consuming [1], which may not be preferred by the practical

applications. Recently, dynamic image [3, 2] able to repre-

sent the motion information within RGB video compactly

has been introduced to depth domain for 3D action charac-

terization [42, 46]. It can compress RGB video into a sin-

gle image, while still maintaining the motion characteristics

well via temporal rank pooling [6, 5]. Thus dynamic image
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can fit deep CNN model [8] well for action categorization,

which is leveraged by CNN’s strong pattern representation

capacity. Nevertheless we argue that the ways of applying

dynamic image to 3D field in [42, 46] have not fully exploit-

ed 3D descriptive clue within depth video, although normal

vector [42] or multi-view projection [46] is applied. The

insight is that, both methods in [42, 46] finally encode 3D

motion information onto the 2D image plane to fit CNN.

Thus, they cannot well answer the question “Where does

the certain 3D motion pattern within human action appear

in 3D space? ” crucial for effective 3D action character-

ization due to the fact that human actions actually consists

of both motion patterns and compact spatial structure [29].

To address the concern above, we propose 3D dynamic

voxel (3DV) as a novel 3D motion representation for 3D ac-

tion representation. To extract 3DV, 3D space voxelization

is first executed. Each depth frame will be transformed into

a regular voxel set. And the appearance content within it can

be encoded by observing whether the yielded voxels have

been occupied or not [40], in a binary way. Then, temporal

rank pooling [6, 5] is executed towards all the binary voxel

sets to compress them into one single voxel set termed 3DV

particularly. Thus, 3D motion and spatial characteristics of

3D action can be encoded into 3DV jointly. To reveal this,

a live “Handshaking” 3DV example is provided in Fig. 1.

As shown, each available 3DV voxel possesses a motion

value able to reflect the temporal order of its correspond-

ing 3D motion component. Specifically, the later motion

component is of higher value, and vice verse. Meanwhile,

the local region of richer 3D motion information possesses

higher standard deviation on 3DV motion value (e.g., hand

region vs. head region). Meanwhile, 3DV voxel’s location

reveals the 3D position of its 3D motion component. Thus,

3DV’s spatial-motion representative ability can essentially

leverage 3D action characterization. To involve richer tem-

poral order information, we further divide depth video into

finer temporal splits. This is encoded in 3DV integrally by

fusing the motion values from all the temporal splits.

With 3DV, the upcoming question is how to choose the

adaptive deep learning model to conduct 3D action recog-

nition particularly. Towards voxel set, 3D CNN [20, 7, 21]

is often used for 3D visual pattern understanding, and also

applicable to 3DV. However, it is difficult to train due to the

large number of convolutional parameters. Inspired by the

recent success of the lightweighted deep learning models on

point set (e.g., PointNet++ [25]), we propose to transfer 3D-

V into the point set form as the input of PointNet++ to con-

duct 3D action recognition in end-to-end learning manner.

That is, each 3DV voxel will be abstract as a point char-

acterized by its 3D location index and motion value. Our

intuition is to alleviate the training difficulty and burden.

Although 3DV can reveal 3D motion information, it still

may lose appearance details as in Fig. 1. Since appearance

(a) Human-object interaction (b) Self-occlusion

Figure 2. 3D skeleton extraction failure cases in NTU RGB+D 60

dataset [13], due to human-object interaction and self-occlusion.

The depth frame and its RGB counterpart are shown jointly.

also plays vital role for action recognition [23, 37], only

using 3DV may weaken performance. To alleviate this, a

multi-stream deep learning model using PointNet++ is also

proposed to learn 3D motion and appearance feature jointly.

In particular, it consists of one motion stream and multiple

appearance streams. The input of motion stream is 3DV.

And, the inputs of appearance streams are the depth frames

sampled from the different temporal splits. They will also

be transformed into the point set form to fit PointNet++.

The experiments on 2 large-scale 3D action recognition

datasets (i.e., NTU RGB+D 120 [13] and 60 [33]), and 2

small-scale ones (i.e., N-UCLA [41] and UWA3DII [26])

verify 3DV’s superiority over the state-of-the-art manners.

The main contributions of this paper include:

• 3DV: a novel and compact 3D motion representative

manner for 3D action characterization;

• PointNet++ is applied to 3DV for 3D action recogni-

tion in end-to-end learning way, from point set perspective;

• A multi-stream deep learning model is proposed to

learn 3D motion and appearance feature jointly.

2. Related Works

3D action recognition. The existing 3D action recogni-

tion approaches generally falls into the depth-based [23, 23,

48, 22, 10, 42, 46] and skeleton-based groups [15, 17, 16,

36, 11, 51, 35, 34]. Recently the skeleton-based approaches

with RNN [15] and GCN [35] has drawn more attention, s-

ince using 3D skeleton can help to resist the impact of vari-

ations on scene, human attribute, imaging viewpoint, etc.

However, one critical issue should not be ignored. That is,

accurate and robust 3D human pose estimation is still not

trivial [47, 21]. To reveal this, we have checked the 3D

skeletons within NTU RGB+D 60 [13] carefully. Actually,

even under the constrained condition 3D skeleton extrac-

tion still may fail to work as in Fig. 2. Thus, currently for

the practical applications depth-based manner seems more

preferred and is what we concern.

Most of the paid efforts focus on proposing 3D action

representation manner to capture 3D spatial-temporal ap-

pearance or motion pattern. At the early stage, the hand-

crafted descriptions of bag of 3D points [12], depth mo-
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tion map (DMM) [49], Histogram of Oriented 4D Normals

(HON4D) [23], Super Normal Vector (SNV) [19] and bi-

nary range sample feature [19] are proposed from the d-

ifferent research perspectives. Recently CNN [8, 50] has

been introduced to this field [43, 44, 42, 46], and enhanced

performance remarkably. Under this paradigm, the depth

video will be compressed into one image using DMM [49]

or dynamic image [3, 2] to fit CNN. To better exploit 3D

descriptive clue, normal vector or multi-view projection is

applied additionally. However, they generally suffer from

2 main defects. First, as aforementioned DMM or dynam-

ic image cannot fully reveal 3D motion characteristics well.

Secondly, they tend to ignore appearance information.

Temporal rank pooling. To represent action, temporal

rank pooling [6, 5] is proposed to capture the frame-level

evolution characteristics within video. Its key idea is to

train a linear ranking machine towards the frames to arrange

them in chronological order. Then, the parameters of the

ranking machine can be used as the action representation.

By applying temporal rank pooling to the raw frame pixels,

dynamic image [3, 2] is proposed with strong motion repre-

sentative ability and adaptive to CNN. As aforementioned,

temporal rank pooling has recently been applied to 3D ac-

tion recognition [42, 46]. However, how to use it to fully

reveal 3D motion property still has not been deeply studied.

Deep learning on point set. Due to the irregularity of

3D point set, typical convolutional architectures (e.g., CN-

N [8]) cannot handle it well. To address this, deep learning

on point set draws the increasing attention. Among the paid

efforts, PointNet++ [25] is the representative one. It con-

tributes to ensure the permutation invariance of point sets,

and capture 3D local geometric clue. However, it has not

been applied to 3D action recognition yet.

Accordingly, 3DV is proposed to characterize 3D mo-

tion compactly, via temporal rank pooling. The adaptive

multi-stream deep learning model using PointNet++ is also

proposed to learn 3D motion and appearance feature jointly.

3. 3DV: A Novel Voxel Set based Compact 3D

Motion Representative Manner

Our research motivation on 3DV is to seek a compact

3D motion representative manner to characterize 3D action.

Accordingly, deep feature learning can be easily conduct-

ed on it. The proposition of 3DV can be regarded as the

essential effort for extending temporal rank pooling [6, 5]

originally for 2D video to 3D domain, to capture 3D mo-

tion pattern and spatial clue jointly. The main idea for 3DV

extraction is in Fig. 3. The depth frames will be first map in-

to point clouds to better reveal 3D characteristics. Then, 3D

voxelization is executed to further transform the disordered

point clouds into the regular voxel sets. Consequently, 3D

action appearance clue within the certain depth frame can

be described by judging whether the voxels have been oc-

Figure 3. The main idea for 3DV extraction via temporal rank

pooling, towards the 3D voxel sets transformed from depth frames.
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(b) 3D voxel set

Figure 4. The point cloud and its corresponding 3D voxel set sam-

pled from “Handshaking”.

cupied or not. Then temporal rank pooling is executed to the

yielded binary voxel sets to compress them into one voxel

set (i.e., 3DV), to reveal the 3D appearance evolution with-

in actions compactly. The resulting ranking machine pa-

rameters can actually characterize 3D motion pattern of the

corresponding 3DV voxels. In particular, each 3DV voxel

possesses a motion value (i.e., ranking machine parameter).

And, its 3D position can encode the spatial property of the

corresponding 3D motion pattern. Action proposal will also

be conducted to resist background.

3.1. Voxel-based 3D appearance representation

Projecting 3D data to 2D depth frame actually distorts

the real 3D shape [21]. To better represent 3D appearance

clue, we map the depth frame into point cloud. Neverthe-

less, one critical problem emerges. That is, temporal rank

pooling cannot be applied to the yielded point clouds direct-

ly, due to their disordered property [25] as in Fig. 4(a). To

address this, we propose to execute 3D voxelization towards

the point clouds. Then the 3D appearance information can

be described by observing whether the voxels have been oc-

cupied or not, disregarding the involved point number as

Vt (x, y, z) =

{
1, if Vt (x, y, z) is occupied

0, otherwise
, (1)

where Vt (x, y, z) indicates one certain voxel at the t-th

frame; (x, y, z) is the regular 3D position index. This actu-

ally holds 2 main profits. First, the yielded binary 3D voxel

sets are regular as in Fig. 4(b). Thus, temporal rank pooling
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(a) Bow (b) Sit down (c) Hugging (d) Pushing

Figure 5. The 3DV examples from NTU RGB+D 60 dataset [33].

can be applied to them for 3DV extraction. Meanwhile the

binary voxel-wise representation manner is of higher tol-

erance towards the intrinsic sparsity and density variability

problem [25] within point clouds, which essentially helps

to leverage generalization power.

3.2. 3DV extraction using temporal rank pooling

With the binary 3D appearance voxel sets above, tem-

poral rank pooling is executed to generate 3DV. A linear

temporal ranking score function will be defined for com-

pressing the voxel sets into one voxel set (i.e., 3DV).

Particularly, suppose Vi, . . . , VT indicate the binary 3D

appearance voxel sets, and Vi =
1
t
×
∑t

i Vi is their average

till time t. The ranking score function at time t is given by

S(t|w) =
〈
w, Vi

〉
, (2)

where w ∈ R
d is the ranking parameter vector. w is learned

from the depth video to reflect the ranking relationship a-

mong the frames. The criteria is that, the later frames are of

larger ranking scores as

q > t ⇒ S(q|w) > S(t|w). (3)

The learning procedure of w is formulated as a convex op-

timization problem using RankSVM [38] as

w∗ = argmin
w

λ

2
‖ w ‖2 +

2

T (T − 2)
×

∑

q>t

max {0, 1− S(q|w) + S(t|w)}.
(4)

Specifically, the first term is the often used regularizer for

SVM. And, the second is the hinge-loss for soft-counting

how many pairs q > t are incorrectly ranked, which does

not obey S(q|w) > S(t|w)+1. Optimizing Eqn. 4 can map

the 3D appearance voxel sets Vi, · · ·, VT to a single vector

w∗. Actually, w∗ encodes the dynamic evolution informa-

tion from all the frames. Spatially reordering w∗ from 1D to

3D in voxel form can construct 3DV for 3D action charac-

terization. Thus, each 3DV voxel can be jointly encoded by

the corresponding w∗ item as motion feature and its regular

3D position index (x, y, z) as spatial feature. Some more

3DV examples are shown in Fig. 5. We can intuitively ob-

serve that, 3DV can actually distinguish the different action-

s from motion perspective even human-object or human-

human interaction happens. Meanwhile to accelerate 3DV

Figure 6. Temporal split for 3DV extraction.

extraction for application, the approximated temporal rank

pooling [2] is used by us during implementation.

3.3. Temporal split

Applying temporal rank pooling to whole depth video

may vanish some fine temporal order information. To bet-

ter maintain motion details, we propose to execute temporal

split for 3DV. The depth video will be divided into T1 tem-

poral splits with the overlap ratio of 0.5, which is the same

as [46]. 3DV will extract from all the temporal splits and the

whole depth video simultaneously as in Fig. 6, to involve

the global and partial temporal 3D motion clues jointly.

3.4. Action proposal

Since background is generally not helpful for 3D action

characterization, action proposal is also conducted by us,

following [46] but with some minor modifications. First

YOLOv3-Tiny [30] is used for human detection instead of

Faster R-CNN [31], concerning running speed. Meanwhile,

human and background are separated by depth thresholding.

Particularly, depth value histogram is first extracted with the

discretization interval of 100 mm. The interval of highest

occurrence probability is then found. The threshold is em-

pirically set as its mediate value plus 200 mm. Then, 3DV

will be extracted only from action proposal’s 3D space.

4. Deep learning network on 3DV

After acquiring 3DV, the upcoming problem is how to

conduct deep learning on it to conduct feature learning

and 3D action type decision jointly. Since 3DV appears

in 3D voxel form, an intuitive way is to apply 3D CNN

to it as many 3D visual recognition methods [20, 7, 21]

does. Nevertheless 3D CNN is generally hard to train,

mainly due to its relatively large number of model param-

eters. Deep learning on point set (e.g., PointNet [24] and

PointNet++ [25]) is the recently emerged research avenue

to address the disordered characteristics of point set, with

promising performance and lightweight model size. In-

spired by this, we propose to apply PointNet++ to conduct
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Figure 7. The procedure of abstracting 3DV voxel V {x, y, z} into

3DV point P {x, y, z}.

deep learning on 3DV instead of 3D CNN concerning effec-

tiveness and efficiency jointly. To this end, 3DV will be ab-

stracted into point set form. To our knowledge, using Point-

Net++ to deal with voxel data has not been well studied be-

fore. Meanwhile since 3DV tends to loose some appearance

information as shown Fig. 4, a multi-stream deep learning

model based on PointNet++ is also proposed to learn ap-

pearance and motion feature for 3D action characterization.

4.1. Review on PointNet++

PointNet++ [25] is derived from PointNet [24], the pi-

oneer in deep learning on point set. PointNet is proposed

mainly to address the disordered problem within point

clouds. However, it cannot capture the local fine-grained

pattern well. PointNet++ alleviates this in a local-to-global

hierarchical learning manner. It declares 2 main contribu-

tions. First, it proposes to partition the set of points into

overlap local regions to better maintain local fine 3D visual

clue. Secondly, it uses PointNet recursively as the local fea-

ture learner. And, the local features will be further grouped

into larger units to reveal the global shape characteristics. In

summary, PointNet++ generally inherits the merits of Point-

Net but with stronger local fine-grained pattern descriptive

power. Compared with 3D CNN, PointNet++ is generally

of more light-weight model size and higher running speed.

Meanwhile, it tends to be easier to train.

The main intuitions for why we apply PointNet++ to 3D-

V lie into 3 folders. First, we do not want to trap in the train-

ing challenges of 3D CNN. Secondly, PointNet++ is good at

capturing local 3D visual pattern, which is beneficial for 3D

action recognition. That is, local 3D motion pattern actual-

ly plays vita role for good 3D action characterization, as the

hand region shown in Fig. 1 towards “Handshaking”. Last,

applying PointNet++ to 3DV is not a difficult task. What

we need to do is to abstract 3DV into the point set form,

which will be illustrated next.

4.2. Abstract 3DV into point set

Suppose the acquired 3DV for a depth video without

temporal split is of size H × W × D, each 3DV voxel

V (x, y, z) will possesses a global motion value mG given

G
m

1
T

m

Figure 8. PointNet++ based multi-stream network for 3DV to learn

motion and appearance feature jointly.

by temporal rank pooling as in Fig. 7 where (x, y, z) indi-

cates the 3D position index of V (x, y, z) within 3DV. To fit

PointNet++, V (x, y, z) is then abstracted as a 3DV point

P (x, y, z) with the descriptive feature of (x, y, z,mG).
Particularly, (x, y, z) denotes the 3D spatial feature and m

is the motion feature. Thus, the yielded P (x, y, z) is able

to represent the 3D motion pattern and corresponding spa-

tial information integrally. Since (x, y, z) and m are multi-

modular feature, feature normalization is executed to bal-

ance their effect towards PointNet++ training. Specifically,

m is linearly normalized into the range of [−0.5, 0.5]. To-

wards the spatial feature, y is first linearly normalized into

the range of [−0.5, 0.5]. Then x and z are re-scaled respec-

tively, according to their size ratio towards y. In this way,

the 3D geometric characteristics can be well maintained to

alleviate distortion. As illustrated in Sec. 3.3, temporal split

is executed in 3DV to involve multi-temporal motion infor-

mation. Thus, each 3DV point P (x, y, z) will correspond

to multiple global and local motion values. We propose to

concatenate all the motion values to describe 3D motion

pattern integrally. P (x, y, z) will be finally characterized

by the spatial-motion feature as

FP (x,y,z) = (

Spatial
︷ ︸︸ ︷
x, y, z

Motion
︷ ︸︸ ︷
mG,m1, ...mT1

) , (5)

where mG is the motion feature extracted from whole

video; mi denotes motion feature from the i-th temporal

split; and T1 is the number of temporal splits as in Sec. 3.3.

4.3. Multi-stream network

Since 3DV may lose fine appearance clue, a multi-stream

network using PointNet++ is proposed to learn motion and

appearance feature jointly, following the idea in [37] for

RGB video. As in Fig. 8, it consists of 1 motion stream and

multiple appearance streams. The input of motion stream is

the single 3DV point set from Sec. 4.2. For motion Point-

Net++ the 3DV points with all the motion features of 0 will

not be sampled. And, the inputs of appearance streams are
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the raw depth point sets sampled from T2 temporal splits

with action proposal. Particularly, they share the same ap-

pearance PointNet++. Motion and appearance feature is late

fused via concatenation at fully-connected layer.

5. Implementation details

3DV voxel is set of size 35mm×35mm×35mm. T1 and

T2 is set to 4 and 3 respectively, for multi-temporal motion

and appearance feature extraction. For PointNet++, farthest

point sampling is used on the centroids of local regions. The

sampled points are grouped with ball query. The group ra-

dius at the first and second level is set to 0.1 and 0.2 respec-

tively. Adam [9] is applied as the optimizer with batch size

of 32. Leaning rate begins with 0.001, and decays with a

rate of 0.5 every 10 epochs. Training will end when reach-

ing 70 epochs. During training, we perform data augmenta-

tion for 3DV points and raw depth points including random

rotation around Y and X axis, jittering and random points

dropout. Multi-stream network is implemented using Py-

Torch. Within each stream, PointNet++ will sample 2048

points for both of motion and appearance feature learning.

6. Experiments

6.1. Experimental setting

Dataset: NTU RGB+D 120 [13]. It is the most recently

emerged challenging 3D action recognition dataset, and al-

so of the largest size. Particularly, 114,480 RGB-D action

samples of 120 categories captured using Microsoft Kinect

v2 are involved in this dataset. These involved action sam-

ples are of large variation on subject, imaging viewpoint

and background. This imposes essential challenges to 3D

action recognition. The accuracy of the state-of-the-art ap-

proaches is not satisfactory (i.e., below 70%) both under the

cross-subject and cross-setup evaluation criteria.

Dataset: NTU RGB+D 60 [33]. It is the preliminary

version of NTU RGB+D 120. That is, 56,880 RGB-D

action samples of 60 categories captured using Microsoft

Kinect v2 are involved in this dataset. Before NTU RGB+D

120, it is the largest 3D action recognition dataset. Cross-

subject and cross-view evaluation criteria is used for test.

Dataset: N-UCLA [41]. Compared with NTU RGB+D

120 and NTU RGB+D 120, this is a relatively small-scale

3D action recognition dataset. It only contains 1475 action

samples of 10 action categories. These samples are captured

using Microsoft Kinect v1 from 3 different viewpoints, with

relatively higher imaging noise. Cross-view evaluation cri-

teria is used for test.

Dataset: UWA3DII [26]. This is also a small-scale 3D

action recognition dataset with only 1075 video samples

from 30 categories. One essential challenge of this dataset

is the limited number of training samples per action catego-

ry. And, the samples are captured using Microsoft Kinect

Table 1. Performance comparison on action recognition accuracy

(%) among different methods on NTU RGB+D 120 dataset.

Methods Cross-subject Cross-setup

Input: 3D Skeleton

NTU RGB+D 120 baseline [13] 55.7 57.9

GCA-LSTM [17] 58.3 59.3

FSNet [14] 59.9 62.4

Two stream attention LSTM [16] 61.2 63.3

Body Pose Evolution Map [18] 64.6 66.9

SkeleMotion [4] 67.7 66.9

Input: Depth maps

NTU RGB+D 120 baseline [13] 48.7 40.1

3DV-PointNet++ (ours) 82.4 93.5

Table 2. Performance comparison on action recognition accuracy

(%) among different methods on NTU RGB+D 60 dataset.

Methods Cross-subject Cross-view

Input: 3D Skeleton

SkeleMotion [4] 69.6 80.1

GCA-LSTM [17] 74.4 82.8

Two stream attention LSTM [16] 77.1 85.1

AGC-LSTM [36] 89.2 95.0

AS-GCN [11] 86.8 94.2

VA-fusion [51] 89.4 95.0

2s-AGCN [35] 88.5 95.1

DGNN [34] 89.9 96.1

Input: Depth maps

HON4D [23] 30.6 7.3

SNV [48] 31.8 13.6

HOG2 [22] 32.2 22.3

Li. [10] 68.1 83.4

Wang. [42] 87.1 84.2

MVDI [46] 84.6 87.3

3DV-PointNet++ (ours) 88.8 96.3

v1 with relatively high imaging noise.

Input data modality and evaluation metric. During

experiments, the input data of our proposed 3DV based 3D

action recognition method is only depth maps. We will not

use any other auxiliary information, such as skeleton, RGB

image, human mask, etc. The training / test sample splits

and testing setups on all the 4 datasets are strictly followed

for fair comparison. Classification accuracy on all the ac-

tion samples is reported for performance evaluation.

6.2. Comparison with state-of-the-art methods

NTU RGB+D 120: Our 3DV based approach is com-

pared with the state-of-the-art skeleton-based and depth-

based 3D action recognition methods [13, 17, 16, 18, 4] on

this dataset. The performance comparison is listed in Ta-

ble 1. We can observe observed that:

• It is indeed impressive that, our proposition achieves

the breaking-through results on this large-scale challenging

dataset both towards the cross-subject and cross-setup test

settings. Particularly we achieve 82.4% and 93.5% on these

2 settings respectively, which outperforms the state-of-the-

art manners by large margins (i.e., 14.7% at least on cross-

subject, and 26.6% at least on cross-setup). This essentially

verifies the superiority of our proposition;

• The performance of the other methods is poor. This

reveals the great challenges of NTU RGB+D 120 dataset;
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Table 3. Performance comparison on action recognition accuracy

(%) among different depth-based methods on N-UCLA dataset.

Methods Accuracy

HON4D [23] 39.9

SNV [48] 42.8

AOG [41] 53.6

HOPC [27] 80.0

MVDI [46] 84.2

3DV-PointNet++ (ours) 95.3

Table 4. Performance comparison on action recognition accuracy

(%) among different depth-based methods on UWA3DII dataset.

Methods Mean accuracy

HON4D [23] 28.9

SNV [48] 29.9

AOG [41] 26.7

HOPC [27] 52.2

MVDI [46] 68.1

3DV-PointNet++ (ours) 73.2

• Our method achieves better performance on cross-

setup case than cross-subject. This implies that, 3DV is

more sensitive to subject variation.

NTU RGB+D 60: The proposed method is compared

with the state-of-the-art approaches [17, 16, 36, 11, 51, 35,

34, 23, 48, 22, 10, 42, 46] on this dataset. The performance

comparison is listed in Table 2. We can see that:

• Our proposition still significantly outperforms all the

depth-based manners, both on the cross-subject and cross-

view test settings.

• On cross-view setting, the proposed method is also

superior to all the skeleton-based manners. And, it is on-

ly slightly inferior to DGNN [34] on cross-subject setting;

This reveals that, only using depth maps can still achieve

the promising performance.

• By comparing Table 1 and 2, we can find that the

performance of some methods (i.e., GCA-LSTM [17], T-

wo stream attention LSTM [16],) significantly drops. Con-

cerning the shared cross-subject setting, GCA-LSTM drops

16.1% and Two stream attention LSTM drops 15.9%. How-

ever, our manner only drops 6.4%. This demonstrates 3D-

V’s strong adaptability and robustness.

N-UCLA and UWA3DII: We compared the proposed

manner with the state-of-the-art depth-based approach-

es [23, 48, 41, 27, 46] on these 2 small-scale datasets. The

performance comparison is given in Table 3 and 4 respec-

tively. To save space, the average accuracy of the different

viewpoint combinations is reported on UWA3DII. It can be

summarized that:

• On these 2 small-scale datasets, the proposed approach

still consistently outperforms the other depth-based man-

ners. This demonstrates that, our proposition takes advan-

tages over both of the large-scale and small-scale test cases;

• 3DV does not perform well on UWA3DII, with the ac-

curacy of 73.2%. In our opinion, this may be caused by the

fact that the training sample amount per class is limited on

this dataset. Thus, deep learning cannot be well conducted.

Table 5. Effectiveness of 3DV motion feature on NTU RGB+D

120 dataset. Appearance stream is not used.

T1 3DV point feature Cross-subject Cross-setup

1 (x, y, z) 61.4 68.9

1 (x, y, z,mG) 75.1 87.4

Table 6. Effectiveness of temporal split for 3DV extraction on N-

TU RGB+D 120 dataset. Appearance stream is not used.

T1 3DV point feature Cross-subject Cross-setup

1 (x, y, z,mG) 75.1 87.4

2 (x, y, z,mG,m1,m2) 75.8 89.6

4 (x, y, z,mG,m1, . . . ,m4) 76.9 92.5

Table 7. Effectiveness of appearance stream on NTU RGB+D 60

and 120 dataset.
Dataset Input stream Cross-subject Cross-setup

NTU 120

3DV 76.9 92.5

Appearance 72.1 79.4

3DV+appearance 82.4 93.5

Cross-subject Cross-view

NTU 60

3DV 84.5 95.4

Appearance 80.1 85.1

3DV+appearance 88.8 96.3

Table 8. Effectiveness of action proposal on N-UCLA dataset.

Action proposal Accuracy

W/O 92.9

With 95.3

6.3. Ablation study

Effectiveness of 3DV motion feature: To verify this,

we choose to remove 3DV motion feature from the sam-

pled 3DV points within PointNet++ to observe the perfor-

mance change. The comparison results on NTU RGB+D

120 dataset are given in Table 5. We can see that, with-

out the motion feature 3DV’s performance will significantly

drop (i.e., 18.5% at most).

Effectiveness of temporal split for 3DV extraction:

Towards this, the temporal split number T1 is set to 1, 2, and

4 respectively on NTU RGB+D 120 dataset. The compari-

son results are listed in Table 6. Obviously, temporal split

can essentially leverage the performance in all test cases.

Effectiveness of appearance stream: This is verified on

NTU RGB+D 60 and 120 dataset simultaneously, as listed

in Table 7. We can observe that:

• The introduction of appearance stream can consistent-

ly enhance the performance of 3DV on these 2 datasets, to-

wards all the 3 test settings;

• 3DV stream significantly outperforms the appearance

stream consistently, especially on cross-setup and cross-

view settings. This verifies 3DV’s strong discriminative

power for 3D action characterization in motion way.

Effectiveness of Action proposal: The performance

comparison of our method with and without action propos-

al on N-UCLA dataset is listed in Table 8. Actually, action

proposal can help to enhance performance.

PointNet++ vs. 3D CNN: To verify the superiority of

PointNet++ for deep learning on 3DV, we compare it with
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Table 9. Comparison on performance and complexity between

PointNet++ and C3D on N-UCLA and NTU RGB+D 60 dataset.
Method Parameters FLOPs N-UCLA NTU RGB+D 60

C3D 29.2M 10.99G 64.5 85.0

PointNet++ 1.24M 1.24G 71.3 90.0

Table 10. Performance comparison among the different sampling

point numbers for 3DV, on NTU RGB+D 120 dataset.

Sampling point number Cross-subject Cross-view

512 74.9 89.0

1024 75.7 90.9

2048 76.9 92.5

Table 11. Performance comparison among the different 3DV voxel

sizes, on NTU RGB+D 120 dataset.
Voxel size (mm) Cross-subject Cross-view

25 × 25 × 25 75.9 92.0

35 × 35 × 35 76.9 92.5

50 × 50 × 50 76.0 91.6

75 × 75 × 75 74.1 90.4

3D CNN. particularly, the well-established 3D CNN model

(i.e., C3D [39]) for video classification is used with some

modification. That is, the number of C3D’s input channels

is reduced from 3 to 1. And, 3DV is extracted with the fixed

size of 50 × 50 × 50 grids as the input of C3D. Without

data augmentation and temporal split, the performance and

model complexity comparison on N-UCLA and NTU RG-

B+D 60 dataset (cross-view setting) is given in Table 9. We

can see that, PointNet++ essentially takes advantage both

on effectiveness and efficiency.

6.4. Parameter analysis

Sampling point number on 3DV: Before inputting 3DV

point set into PointNet++, farthest point sampling is execut-

ed first. To investigate the choice of sampling point number,

we compare the performance of 3DV stream with the dif-

ferent sampling point number values on NTU RGB+D 120

dataset. The results are listed in Table 10. That is, 2048 can

achieve the best performance on 3DV.

3DV voxel size: To investigate the choice of 3D vox-

el size, we compare the performance of 3DV stream with

the different 3DV voxel sizes on NTU RGB+D 120 dataset.

The results are listed in Table 11. Particularly, 35mm ×
35mm× 35mm is the optimal 3DV voxel size.

6.5. Other issues

Running time: On the platform with CPU: Intel(R) X-

eon(R) CPU E5-2690 v3 @ 2.6GHz (only using 1 core), and

GPU: 1 Nvidia RTX 2080Ti, 3DV’s overall online running

time is 2.768s/video as detailed in Table 12. Particularly,

100 samples with the average length of 97.6 frames are ran-

domly selected from NTU RGB+D 60 dataset for test.

Approximated temporal rank pooling: In our imple-

mentation, the approximated temporal rank pooling is used

for 3DV extraction due to its high running efficiency. We

compare it with the original one on N-UCLA data, using

Table 12. Item-wise time consumption of 3DV per video.
Unit Item Time (ms) Unit Item Time (ms)

GPU Human detection 231ms CPU 3DV Pointlization 88ms

CPU Point cloud voxelization 2107ms GPU PointNet++ forward 242ms

CPU Temporal rank pooling 100ms Overall 2768ms

Table 13. Performance comparison between the original and ap-

proximated temporal rank pooling for 3DV on N-UCLA dataset.

Temporal rank pooling methods Accuracy Time per sample

Original 95.8 1.12s

Approximated 95.3 0.10s

Figure 9. Some classification failure cases of 3DV. Ground-truth

action label is shown in black, and the prediction is in red.

CPU. As shown in Table 13, the approximated temporal

rank pooling runs much faster than the original one with

the similar performance.

3DV failure cases: Some classification failure cases of

3DV are shown in Fig. 9. We find that, the failures tend to

be caused by the tiny motion difference between the actions.

7. Conclusions

In this paper, 3DV is proposed as a novel and com-

pact 3D motion representation for 3D action recognition.

PointNet++ is applied to 3DV to conduct end-to-end feature

learning. Accordingly, a multi-stream PointNet++ based

network is also proposed to learn the 3D motion and depth

appearance feature jointly to better characterize 3D action-

s. The experiments on 4 challenging datasets demonstrate

the superiority of our proposition both for the large-scale

and small-scale test cases. How to further enhance 3DV’s

discriminative power is what we mainly concern about in

future, especially towards the tiny motion patterns.
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