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Abstract

Affinity graphs are widely used in deep architectures, in-

cluding graph convolutional neural networks and attention

networks. Thus far, the literature has focused on abstract-

ing features from such graphs, while the learning of the

affinities themselves has been overlooked. Here we pro-

pose a principled method to directly supervise the learning

of weights in affinity graphs, to exploit meaningful connec-

tions between entities in the data source. Applied to a visual

attention network [9], our affinity supervision improves re-

lationship recovery between objects, even without the use

of manually annotated relationship labels. We further show

that affinity learning between objects boosts scene catego-

rization performance and that the supervision of affinity can

also be applied to graphs built from mini-batches, for neu-

ral network training. In an image classification task we

demonstrate consistent improvement over the baseline, with

diverse network architectures and datasets.

1. Introduction

Recent advances in graph representation learning have

led to principled approaches for abstracting features from

such structures. In the context of deep learning, graph

convolutional neural networks (GCNs) have shown great

promise [3, 15]. The affinity graphs in GCNs, whose nodes

represent entities in the data source and whose edges repre-

sent pairwise affinity, are usually constructed from a prede-

fined metric space and are therefore fixed during the training

process [3, 15, 22, 29]. In related work, self-attention mech-

anisms [26] and graph attention networks [27] have been

proposed. Here, using pairwise weights between entities, a

fully connected affinity graph is used for feature aggrega-

tion. In contrast to the graphs in GCNs, the parametrized

edge weights change during the training of the graph atten-

tion module. More recent approaches also consider elab-

orate edge weight parametrization strategies [13, 18] to

further improve the flexibility of graph structure learning.

∗Corresponding author.

However, the learning of edge (attention) weights in the

graph is entirely supervised by a main objective loss, to im-

prove performance in a downstream task.

Whereas representation learning from affinity graphs has

demonstrated great success in various applications [9, 34,

30, 11, 10], little work has been done thus far to directly

supervise the learning of affinity weights. In the present

article, we propose to explicitly supervise the learning of

the affinity graph weights by introducing a notion of target

affinity mass, which is a collection of affinity weights that

need to be emphasized. We further propose to optimize a

novel loss function to increase the target affinity mass dur-

ing the training of a neural network, to benefit various visual

recognition tasks. Our affinity supervision method is gen-

eralizable and supports the flexible design of supervision

targets according to the needs of particular tasks. This fea-

ture is absent in related work, where the learning of affinity

graphs is either constrained by distance metrics [13] or is

dependent on the main objective loss [26, 27, 18].

With the proposed supervision of the learning of affinity

weights, a visual attention network [9] is able to compete

in a relationship proposal task with the present state-of-the-

art [33] without any explicit use of relationship labels. En-

abling relationship labels provides an additional 25% boost

over [33] in relative terms. This improved relationship re-

covery is particularly beneficial when applied to a scene

categorization task, since scenes are comprised of collec-

tions of distinct objects. We also explore the general idea

of affinity supervised mini-batch training of a neural net-

work, which is common to a vast number of computer vi-

sion and other applications. For image classification tasks

we demonstrate a consistent improvement over the baseline,

across multiple architectures and datasets. Our proposed

affinity supervision method leads to no computational over-

head, since we do not introduce additional parameters.

2. Related Work

2.1. Graph Convolutional Neural Networks

In GCNs layer-wise convolutional operations are applied

to abstract features in graph structures. Current approaches
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Figure 1: A comparison of recovered relationships on test

images, with no relationship annotations used during train-

ing. We show the reference object (blue box), regions with

which it learns relationships (orange boxes) and the rela-

tionship weights in red text (zoom in on the PDF). Left:

baseline visual attention networks [9] often recover rela-

tionships between a reference object and its immediate sur-

rounding context. Right: our proposed affinity supervision

better emphasizes potential relationships between distinct

and spatially separated objects.

build the affinity graph from a predefined input [3, 22, 29]

or embedding space [7, 26], following which features are

learned using graph based filtering in either the spatial or

spectral domain. Little work has been carried out so far to

directly learn the structure of the affinity graph itself. In

this article, we propose a generic method for supervising

the learning of pairwise affinities in such a graph, without

the need for additional ground truth annotations.

2.2. Visual Attention Networks

Attention mechanisms, first proposed in [26], have been

successfully applied to a diverse range of computer vision

tasks [9, 34, 30]. In the context of object detection [9], the

attention module uses learned pairwise attention weights

between region proposals, followed by per region feature

aggregation, to boost object detection. The learned attention

weights do not necessarily reflect relations between entities

in a typical scene. In fact, for a given reference object (re-

gion), Relation Networks [9] tend to predict high attention

weights with scaled or shifted bounding boxes surrounding

the same object instance (Figure 1).

A present limitation of visual attention networks is their

minimization of only the main objective loss during train-

ing [9, 34, 30], without any direct supervision of attention

between entities. Whereas attention based feature aggrega-

tion has been shown to boost performance for general vision

tasks [11, 10], the examples in Figure 1 provide evidence

that relationships between distinct entities may not be suf-

ficiently captured. In this paper we address this limitation

by directly supervising the learning of attention. An affinity

graph is first built from the pair-wise attention weights and

a novel target affinity mass loss is then applied to guide the

learning of attention between distinct objects, allowing the

recovery of more plausible relationships.

2.3. Mini­batch Training

The training of a neural network often requires working

with mini-batches of data, because typical datasets are too

large for present architectures to handle. The optimization

of mini-batch training is thus a research topic in its own

right. Much work has focused on improving the learning

strategies, going beyond stochastic gradient descent (SGD),

including [23, 5, 1, 14]. In addition, batch normalization

[12] has shown to improve the speed, performance, and

stability of mini-batch training, via the normalization of

each neuron’s output to form a unified Gaussian distribu-

tion across the mini-batch.

In the present article we show that our affinity supervi-

sion on a graph built from mini-batch features can benefit

the training of a neural network. By increasing the affinity

(similarity) between mini-batch entries that belong to the

same category, performance in image classification on a di-

verse set of benchmarks is consistently improved. We shall

discuss mini-batch affinity learning in more detail in Sec-

tion 5.

3. Affinity Graph Supervision

We now introduce our approach to supervising the

weights in an affinity graph. Later we shall cover two ap-

plications: affinity supervision on visual attention networks

(built on top of Relation Networks [9]) in Section 4 and

affinity supervision on a batch similarity graph in Section 5.

3.1. Affinity Graph

We assume that there are N entities generated by a fea-

ture embedding framework, for example, a region proposal

network (RPN) together with ROI pooling on a single image

[25], or a regular CNN applied over a batch of images. Let

f
i be the embedding feature for the i-th entity. We define

an affinity function A which computes an affinity weight

between a pair of entities m and entity n, as

ωmn = A(fm, fn). (1)

A specific form of this affinity function applied in attention

networks [9, 26] is reviewed in Section 4, and another sim-
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ple form of this affinity function applied in batch training is

defined in section 5.

We now build an affinity graph G whose vertices m rep-

resent entities in the data source with features Fin = {fm}
and whose edge weights {ωmn} represent pairwise affini-

ties between the vertices. We define the graph adjacency

matrix for this affinity graph as the N × N matrix W with

entries {ωmn}. We propose to supervise the learning of W
so that those matrix entries ωmn selected by a customized

supervision target matrix T will increase, thus gaining em-

phasis over the other entries.

3.2. Affinity Target T
We now explain the role of a supervision target matrix T

for affinity graph learning. In general, T ∈ R
N×N with

T [i, j] =

{

1 if (i, j) ∈ S
0 otherwise,

(2)

where S stands for a set of possible connections between

entities in the data source.

Target Affinity Mass We would like W to have higher

weights at those entries where T [i, j] = 1, to place empha-

sis on the entries that are selected by the supervision target.

We capture this via a notion of target affinity mass M of the

affinity graph, defined as

M =
∑

W̃ ⊙ T , (3)

where W̃ = softmax(W) is a matrix-wise softmax. A

study on affinity mass design is in our arXiv version [28].

3.3. Affinity Mass Loss LG

We propose to optimize the learning of the parameters θ

of a neural network to achieve

max
θ

M. (4)

Our aim is to devise a strategy to maximize M with an em-

pirically determined choice of loss form. There are sev-

eral loss forms that could be considered, including smooth

L1 loss, L2 loss, and a focal loss variant. Defining x =
1−M ∈ [0, 1], we define losses

L2(x) = x2 (5)

and

smoothL1
(x) =

{

x2 if |x| < 0.5

|x| − 0.25 otherwise.
(6)

The focal loss on M is a negative log likelihood loss,

weighted by the focal normalization term proposed in [19],

which is defined as

LG = Lfocal(M) = −(1−M)γ log(M). (7)

The focal term (1−M)γ [19] helps narrow the gap between

well converged affinity masses and those that are far from

convergence.

Empirically, we have found that the focal loss variant

gives the best results in practice, as described in the ablation

study reported in Section 6.4. The choice of the γ term

depends on the particular tasks, so we provide experiments

to justify our choices in Section 6.4.

3.4. Optimization and Convergence of LG

The minimization of the affinity mass loss LG places

greater emphasis on entries in W which correspond to

ground truth connections in S , through network train-

ing. However, when optimized in conjunction with a main

objective loss, which could be an object detection loss

Lmain = Ldet + Lrpn in visual attention networks or a

cross entropy loss Lmain = Lclass in mini-batch training, a

balance between Lmain and LG is required. The total loss

can be written as

L = Lmain + λLG. (8)

Empirically, we choose λ = 0.01 for visual attention net-

works and for mini-batch training, we choose λ = 0.1. Fig-

ure 5 demonstrates the convergence of the target mass, justi-

fying the effectiveness of using loss LG in the optimization

of equation 4.

4. Affinity in Attention Networks

We review the computation of attention weights in [26],

given a pair of nodes from the affinity graph defined in Sec-

tion 3.1. Let an entity node m consist of its feature embed-

ding, defined as fm. The collection of input features of all

the nodes then becomes Fin = {fm}. Consider node m as

a reference object with the attention weight ω̃mn indicating

its affinity to a surrounding entity node n. This affinity is

computed as a softmax activation over the scaled dot prod-

ucts ωmn defined as:

ω̃mn =
exp(ωmn)

∑

k exp(ω
mk)

, ωmn =
< WKf

m,WQf
n >√

dk
.

(9)

Both WK and WQ are matrices and so this linear trans-

formation projects the embedding features f
m and f

n into

metric spaces to measure how well they match. The fea-

ture dimension after projection is dk. With the above for-

mulation, the attention graph affinity matrix is defined as

W = {ωmn}. For a given reference entity node m, the at-

tention module also outputs a weighted aggregation of m’s

neighbouring nodes’ features, which is

f
m
out =

∑

n

ω̃mnfn. (10)

The set of feature outputs for all nodes is thus defined as

Fout = {fmout}. Additional details are provided in [26, 9].
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Figure 2: An overview of our affinity graph supervision in visual attention networks, in application to two tasks. The blue

dashed box surrounds the visual attention network backbone, implemented according to Relation Networks [9]. The purple

dashed box highlights our core component for affinity learning and for relation proposal generation. The green dashed box

surrounds the branch for scene categorization. An example affinity target is visualized in the bottom left corner, with solid

circles representing ground truth objects colored by their class. The dashed lines between pairs of solid circles give rise

to a value of 1 for the corresponding entry in matrix T . See the text in Section 4.1 for a detailed description. A detailed

illustration of the attention module is in the supplementary material of our arXiv version [28].

4.1. Affinity Target Design

For visual attention networks, we want our attention

weights to focus on relationships between objects from dif-

ferent categories, so for each entry T [a, b] of the supervision

target matrix T , we assign T [a, b] = 1 only when:

1. proposal a overlaps with ground truth object α’s

bounding box with intersection over union > 0.5.

2. proposal b overlaps with ground truth object β’s

bounding box with intersection over union > 0.5.

3. ground truth objects α and β are two different objects

coming from different classes.

Note that NO relation annotation is required to construct

such supervision target.

We choose to emphasize relationships between exem-

plars from different categories in the target matrix, because

this can provide additional contextual features in the atten-

tion aggregation (Equation 10) for certain tasks. Emphasiz-

ing relationships between objects within the same category

might be better suited to modeling co-occurrence. We pro-

vide a visualization of the affinity target and additional stud-

ies, in the supplementary material of our arXiv version [28].

We now discuss applications that could benefit from affin-

ity supervision of the attention weights: object detection,

relationship proposal generation, and scene categorization.

4.2. Object Detection and Relationship Proposals

In Figure 2 (part A to part B) we demonstrate the use

of attention networks for object detection and relationship

proposal generation. Here part A is identical to Relation

Networks [9]. The network is end-to-end trainable with

detection loss, RPN loss and the target affinity mass loss.

In addition to the ROI pooling features Fin ∈ RNobj×1024

from the Faster R-CNN backbone of [25], contextual fea-

tures Fout from attention aggregation are applied to boost

detection performance. The final feature descriptor for the

detection head is F + Fc, following [9]. In parallel, the

attention matrix output W ∈ RN×N is used to generate re-

lationship proposals by finding the top K weighted pairs in

the matrix.
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4.3. Scene Categorization

In Figure 2 (part A to part C) we demonstrate an ap-

plication of visual attention networks to scene categoriza-

tion. Since there are no bounding box annotations in most

scene recognition datasets, we adopt a visual attention net-

work (described in the previous section), pretrained on the

MSCOCO dataset, in conjunction with a new scene recog-

nition branch (part C in Figure 2), to perform scene recog-

nition. From the CNN backbone, we apply an additional

1× 1 convolution layer, followed by a global average pool-

ing to acquire the scene level feature descriptor Fs. The

attention module takes as input the object proposals’ visual

features Fin, and outputs the aggregation result as the scene

contextual feature Fc. The input to the scene classification

head thus becomes Fmeta = concat(Fs,Fc), and the class

scores are output. In order to maintain the learned relation-

ship weights from the pre-trained visual attention network,

which helps encode object relation context in the aggrega-

tion result Fout, we fix the parameters in part A (blue box),

but make all other layers in part C trainable.

5. Affinity in Mini-Batch Training

Moving beyond the specific problems of object detec-

tion, relationship proposal generation and scene categoriza-

tion, we now turn to a more general application of affinity

supervision, that of mini-batch training in neural networks.

Owing to the large size of most databases and limitations

in memory, virtually all deep learning models are trained

using mini-batches. We shall demonstrate that emphasizing

pairwise affinities between entities during training can boost

performance for a variety of image classification tasks.

5.1. Affinity Graph

We consider image classification over a batch of N im-

ages, processed by a convolutional neural network (CNN)

to generate feature representations. Using the notation in

Section 3, we denote the feature vectors of this batch of im-

ages as Fin = {f i}, where i ∈ 1...N is the image index

in the batch. We then build a batch affinity graph G whose

nodes represent images, and the edge ωmn ∈ W encode

pairwise feature similarity between node m and n.

Distance Metric. A straightforward L2 distance based

measure 1 can be applied to compute the edge weights as

ωmn = A(fm, fn) = −‖fm − fn‖2
2

2
. (11)

1More elaborate distance metrics could also be considered, but that is

beyond the focus of this article.

Batch Images
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𝑇
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Affinity Mass
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CNN & FC

Softmax

Affinity

Graph

☉

Batch Affinity ModuleCNN Backbone

Figure 3: An overview of our affinity graph supervision

in mini-batch training of a standard convolutional neural

network. Blue box: CNN backbone for image classifica-

tion. Purple box: Affinity supervision module for mini-

batch training. The colored tiles represent entries of the

affinity matrix W̃ and target T , where a darker color de-

notes a larger numerical value. Minimization of the affinity

mass loss aims to increase the value of the purple squares

representing entries in mass M (see equation 3).

5.2. Affinity Target Design

In the mini-batch training setting, we would like feature

representations from the same class to be closer to each

other in a metric space, with those from different classes

being spread apart. To this end, we build the affinity target

matrix T as follows. For each entry T [a, b] in the matrix,

we assign T [a, b] = 1 only when mini-batch node a and b

belong to the same category. Thus, the affinity target here

selects those entries in W which represent pairwise similar-

ity between images from the same class. During the opti-

mization of the affinity mass loss (defined in Section 3.3),

the network will increase the affinity value from the entries

in W selected by T , while suppressing the other ones. This

should in principle leads to improved representation learn-

ing and thus benefit the underlying classification task.

5.3. Overview of Approach

A schematic overview of our mini-batch affinity learn-

ing approach is presented in Figure 3. Given a batch of

N images, we first generate the feature representations Fin

8251



from a CNN followed by fully connected layers. We then

send Fin to an affinity graph module, which contains a pair-

wise distance metric computation followed by a matrix-

wise softmax activation, to acquire the affinity graph matrix

W̃ . Next, we built the affinity target matrix T from the im-

age category labels following Section 5.2. An element-wise

multiplication with W̃ is used to acquire the target affinity

mass M, which is used in computing the affinity mass loss.

During training, the network is optimized by both cross en-

tropy loss Lclass and the target affinity loss LG, using the

balancing scheme discussed in Section 3.4.

6. Experiments

6.1. Datasets

VOC07:, which is part of the PASCAL VOC detection

dataset [6], with 5k images in trainval and 5k in test set.

We used this trainval/test split for model ablation purposes.

MSCOCO: which consists of 80 object categories [20]. We

used 30k validation images for training. 5k “minival” im-

ages are used for testing, as a common practice [9].

Visual Genome: which is a large relationship understand-

ing benchmark [16], consisting of 150 object categories and

human annotated relationship labels between objects. We

used 70k images for training and 30k for testing, as in the

scene graph literature [32, 31].

MIT67: which is a scene categorization benchmark with

67 scene categories, with 80 training images and 20 test im-

ages in each category [24]. We used this official split.

CIFAR10/100: which is a popular benchmark dataset con-

taining 32 by 32 tiny images from 10 or 100 categories [17].

We used the official train/test split and we randomly sam-

pled 10% of train set to form a validation set.

Tiny Imagenet: which is a simplified version of the

ILSVRC 2012 image classification challenge [4] containing

200 classes [2] with 500 training images and 50 validation

images in each class. We used the official validation set as

the test set since the official test set is not publicly available.

For validation, we randomly sample 10% of the training set.

6.2. Network Training Details

Visual Attention Networks. We first train visual atten-

tion networks [9] end-to-end, using detection loss, RPN

loss and affinity mass loss (Figure 2 parts A and B). The

loss scale for affinity loss is chosen to be 0.01 as discussed

in Section 3.4. Upon convergence, the network can be di-

rectly applied for object detection and relationship proposal

tasks. For scene categorization, we first acquire a visual at-

tention network that is pretrained on the COCO dataset, and

then use the structural modification in Section 6.6 (Figure 2

parts A and C) to fine tune it on the MIT67 dataset. Unless

stated otherwise, all visual attention networks are based on

a ResNet101 [8] architecture, trained with a batch size of 2

(images), using a learning rate of 5e− 4 which is decreased

to 5e − 5 after 5 epochs. There are 8 epochs in total for

each training session. We apply stochastic gradient descent

(SGD) with momentum optimizer and set the momentum to

0.9. We evaluate the model at the end of 8 epochs on the

test set to report our results.

Mini-batch Affinity Supervision. We applied various

architectures including ResNet-20/56/110 for CIFAR and

ResNet-18/50/101 for tiny ImageNet, as described in [8].

The CIFAR networks are trained for 200 epochs with a

batch size of 128. We set the initial learning rate to 0.1

and reduce it by a factor of 10 at epochs 100 and 150, re-

spectively. The tiny ImageNet networks are trained for 90

epochs with a batch size of 128, an initial learning rate of

0.1, and a factor of 10 reduction at epochs 30 and 60. For

all experiments in mini-batch affinity supervision, the SGD

optimizer with momentum is applied, with the weight de-

cay and momentum set to 5e− 4 and 0.9. For data augmen-

tation during training, we have applied random horizontal

flipping. 2 During training we save the best performing

model on validation set, and report its test set performance.

6.3. Tasks and Metrics

We evaluate affinity graph supervision on the following

tasks, using the associated performance metrics.

Relationship Proposal Generation. We evaluate the

learned relationships on the Visual Genome dataset, using

a recall metric which measures the percentage of ground

truth relations that are covered in the predicted top K rela-

tionship list, which is consistent with [33, 32, 31].

Classification. For the MIT67, CIFAR10/100 and Tiny Im-

ageNet evaluation, we use classification accuracy.

Object Detection. For completeness we also evaluate ob-

ject detection on VOC07, using mAP (mean average preci-

sion) as the evaluation metric [6, 20]. Additional detection

results on MSCOCO are in the supplementary material.

6.4. Ablation Study on Loss Functions

We first carry out ablation studies to examine different

loss functions for optimizing the target affinity mass M as

well as varying focal terms r, as introduced in Section 3.3.

The results in Table 1 show that focal loss is in general bet-

ter than smooth L1 and L2 losses, when supervising the tar-

get mass. In our experiments on visual attention networks,

we therefore apply focal loss with γ = 2, which empirically

gives the best performance in terms of recovering relation-

ships while still maintaining a good performance in detec-

tion task. The results in Table 1 serve solely to determine

the best loss configuration. Here we do not claim improve-

2For the CIFAR datasets, we also applied 4-pixel padding, followed by

32× 32 random cropping after horizontal flipping, following [8].
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VOC07 Ablation F-RCNN [25] RelNet [9] smooth L1 L2 γ = 0 γ = 2 γ = 5

mAP@all (%) 47.0 47.7 ± 0.1 48.0 ± 0.1 47.7 ± 0.2 47.9 ± 0.2 48.2 ± 0.1 48.6 ± 0.1

mAP@0.5 (%) 78.2 79.3 ± 0.2 79.6 ± 0.2 79.7 ± 0.2 79.4 ± 0.1 79.9 ± 0.2 80.0 ± 0.2

recall@5k (%) - 43.5 60.3 ± 0.3 64.6 ± 0.5 62.1 ± 0.3 69.9 ± 0.3 66.8 ± 0.2

Table 1: An ablation study on loss functions comparing against the baseline faster RCNN [25] and Relation Networks [9],

using the VOC07 database. The results are reported as percentages (%) averaged over 3 runs. The relationship recall metric

is also reported with ground truth relation labels constructed as described in Section 4.1, using only object class labels.

MIT67 CNN CNN CNN + ROIs CNN + Attn CNN + Attn + LG

Pretraining Imgnet Imgnet+COCO Imgnet+COCO Imgnet+COCO Imgnet+COCO

Features FS FS FS ,max(Fin) FS ,FC FS ,FC

Accuracy (%) 75.1 76.8 78.0 ± 0.3 77.1 ± 0.2 80.2 ± 0.3

Table 2: MIT67 Scene Categorization Results, averaged over 3 runs. A visual attention network with affinity supervision

gives the best result (the boldfaced entry), with an improvement over a non-affinity supervised version (4-th column) and the

baseline methods (columns 1 to 3). See the text in Section 6.6 for details. Fs, Fc and Fin are described in Section 4.3.

ment on detection tasks. The results of additional tests using

ablated models are in the arXiv version of this article [28].

6.5. Relationship Proposal Task

Figure 4 compares the relationships recovered on the Vi-

sual Genome dataset, by a visual attention network “base-

line” model (similar to [9]), our affinity supervised network

with affinity targets built using only object class labels “aff-

sup-obj” (see Section 4.1), and an affinity target built from

human annotated ground truth relation labels “aff-sup-rel”.

We also include the reported recall metric from Relationship

Proposal Networks [33], a state of the art level one-stage

relationship learning network with strong supervision, us-

ing ground truth relationship annotations. Our affinity mass

loss does not require potentially costly human annotated re-

lationship labels for learning (only object class labels were

used) and but matches the present state-of-the-art [33] (the

blue curve in Figure 4) in performance. When supervised

with a target built from the ground truth relation labels in-

stead of the object labels, we outperform relation proposal

networks (by 25% in relative terms for all K thresholds)

with this recall metric (the red curve).

6.6. Scene Categorization Task

For scene categorization we adopt the base visual atten-

tion network (Figure 2, part A), and add an additional scene

task branch (Figure 2, part C) to fine tune it on MIT67, as

discussed in Section 4.3. Table 2 shows the results of ap-

plying this model to the MIT67 dataset. We refer to the

baseline CNN as “CNN” (first column), which is an Ima-

geNet pretrained ResNet101 model directly applied to an

image classification task. In the second column, we first ac-

quire a COCO pretrained visual attention network (Figure

2, part A), and fine tune it using only the scene level fea-

ture FS (Figure 2, part C). In the third column, for the same

Figure 4: The percentage of the true relations that are in the

top K retrieved relations, with varying K, in a relation pro-

posal task. We compare a baseline network (black), Rela-

tion Proposal Networks [33] (blue), our affinity supervision

using object class labels (but no explicit relations) (orange)

and our affinity supervision with ground truth relation labels

(red). We match the state of the art with no ground truth re-

lation labels used (the overlapping blue and orange curves)

and improve on it by a large margin (25% in relative terms)

when ground truth relations are used.

COCO pretrained visual attention network, we concatenate

object proposals’ ROI pooling features with FS to serve as

meta scene level descriptor. In the fourth and fifth columns,

we apply the full scene architecture in Figure 2 part C, but

with a visual attention network that is pretrained without

and with (supervised) target affinity loss, respectively. The

affinity supervised case (fifth column) demonstrates a non-

trivial improvement over the baseline (first to third columns)

and also significantly outperforms the unsupervised case
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Figure 5: An ablation study on mini-batch affinity supervision, with the evaluation metric on a test set over epochs (horizontal

axis), with the best result highlighted with a red dashed box. Left Plots: classification error rates and target mass with varying

focal loss’ γ parameter. Right Plots: error rates and target mass with varying loss balancing factor λ (defined in section 3.4).

Figure 6: Left: t-SNE plot of learned feature representa-

tions for a baseline ResNet20 network on CIFAR10 dataset.

Right: t-SNE plot for affinity supervised ResNet20 network.

CIFAR-10 ResNet 20 ResNet 56 ResNet 110

base CNN 91.34 ± 0.27 92.24 ± 0.48 92.64 ± 0.59

Affinity Sup 92.03 ± 0.21 92.90 ± 0.35 93.42 ± 0.38

CIFAR-100 ResNet 20 ResNet 56 ResNet 110

base CNN 66.51 ± 0.46 68.36 ± 0.68 69.12 ± 0.63

Affinity Sup 67.27 ± 0.31 69.79 ± 0.59 70.5 ± 0.60

Tiny Imagenet ResNet 18 ResNet 50 ResNet 101

base CNN 48.35 ± 0.27 49.86 ± 0.80 50.72 ± 0.82

Affinity Sup 49.30 ± 0.21 51.04 ± 0.68 51.82 ± 0.71

Table 3: Batch Affinity Supervision results. Numbers are

classification accuracy in percentages. CIFAR results are

reported over 10 runs and tiny ImageNet over 5 runs.

(fourth column). The attention weights learned solely by

minimizing detection loss do not generalize well to a scene

task, whereas those learned by affinity supervision can.

6.7. Mini­Batch Affinity Supervision

We conducted a model ablation study on the γ and λ pa-

rameters introduced in Section 3 (summarized in Figure 5)

and subsequently chose γ = 4 and λ = 0.1 for our experi-

ments, based on the associated error rates.

Convergence of Target Mass. We plot results showing

convergence of the target affinity mass during learning in

Figure 5. There is a drastic improvement over the baseline

target mass convergence, when affinity supervision is en-

abled. The chosen λ = 0.1 empirically provides acceptable

convergence rates (right-most in Figure 5).

Feature Separation Between Classes. A comparison of t-

SNE [21] plots on learned feature representations from 1)

baseline CNN and 2) a CNN supervised with affinity mass

loss is presented in Figure 6. Note that the feature separa-

tion between different classes is better in our case.

Results. We now summarize the results for mini-batch

affinity learning on CIFAR10, CIFAR100 and TinyIma-

geNet in Table 3. Overall, we observe a consistent improve-

ment over the baseline, when using the affinity supervision

in mini-batch training. For datasets with a large number of

categories, such as CIFAR100 (100-classes) and tiny Im-

ageNet (200-classes), the performance gain is above 1%.

Affinity supervision does not introduce any additional net-

work layers or parameters beyond the construction of the

N × N affinity matrix and its loss. Hence, training time

with affinity supervision is very close to that of the baseline

CNN.

7. Conclusion

We have addressed the overlooked problem of directly

supervising the learning of affinity graph weights for deep

models in computer vision. Our main methodological con-

tribution is the introduction of a novel target affinity mass,

and its optimization using an affinity mass loss, which leads

to demonstrable improvements in relationship retrieval. We

have also shown that the improved recovery of relationships

between objects boosts scene categorization performance.

Finally, we have explored a more general problem, which

is the supervision of affinity in mini-batches. Here, in di-

verse visual recognition problems, we see improvements

once again. Given that our affinity supervision approach

introduces no additional parameters or layers in the neural

network, it adds little computational overhead to the base-

line architecture. Hence it shows promise for affinity based

training in other computer vision applications as well.
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