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Abstract

In this paper, we propose a binarized neural network

learning method called BiDet for efficient object detec-

tion. Conventional network binarization methods directly

quantize the weights and activations in one-stage or two-

stage detectors with constrained representational capacity,

so that the information redundancy in the networks causes

numerous false positives and degrades the performance sig-

nificantly. On the contrary, our BiDet fully utilizes the rep-

resentational capacity of the binary neural networks for ob-

ject detection by redundancy removal, through which the

detection precision is enhanced with alleviated false posi-

tives. Specifically, we generalize the information bottleneck

(IB) principle to object detection, where the amount of in-

formation in the high-level feature maps is constrained and

the mutual information between the feature maps and object

detection is maximized. Meanwhile, we learn sparse ob-

ject priors so that the posteriors are concentrated on infor-

mative detection prediction with false positive elimination.

Extensive experiments on the PASCAL VOC and COCO

datasets show that our method outperforms the state-of-the-

art binary neural networks by a sizable margin.1

1. Introduction

Convolutional neural network (CNN) based object de-

tectors [7, 10, 22, 24, 32] have achieved state-of-the-art per-

formance due to the strong discriminative power and gener-

alization ability. However, the CNN based detection meth-

ods require massive computation and storage resources to

achieve ideal performance, which limits their deployment

on mobile devices. Therefore, it is desirable to develop de-

tectors with lightweight architectures and few parameters.

To reduce the complexity of deep neural networks,

∗Corresponding author
1Code: https://github.com/ZiweiWangTHU/BiDet.git

Figure 1. An example of the predicted objects with the binarized

SSD detector on PASCAL VOC. (a) and (b) demonstrate the detec-

tion results via Xnor-Net and the proposed BiDet, where the false

positives are significantly reduced in our method. (c) and (d) re-

veal the information plane dynamics for the training set and test set

respectively, where the horizontal axis means the mutual informa-

tion between the high-level feature map and input and the vertical

axis represents the mutual information between the object and the

feature map. Compared with Xnor-Net, our method removes the

redundant information and fully utilizes the network capacity to

achieve higher performance. (best viewed in color).

several model compression methods have been proposed

including pruning [12, 27, 45], low-rank decomposition

[16, 20, 28], quantization [9, 19, 41], knowledge distilla-

tion [3, 40, 42], architecture design [29, 34, 44] and ar-

chitecture search [37, 43]. Among these methods, network

quantization reduces the bitwidth of the network parameters

and activations for efficient inference. In the extreme cases,

binarizing weights and activations of neural networks de-

creases the storage and computation cost by 32× and 64×
respectively. However, deploying binary neural networks

with constrained representational capacity in object detec-

tion causes numerous false positives due to the information

redundancy in the networks.
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In this paper, we present a BiDet method to learn bina-

rized neural networks including the backbone part and the

detection part for efficient object detection. Unlike existing

methods which directly binarize the weights and activations

in one-stage or two-stage detectors, our method fully uti-

lizes the representational capacity of the binary neural net-

works for object detection via redundancy removal, so that

the detection precision is enhanced with false positive elim-

ination. More specifically, we impose the information bot-

tleneck (IB) principle on binarized object detector learning,

where we simultaneously limit the amount of information in

high-level feature maps and maximize the mutual informa-

tion between object detection and the learned feature maps.

Meanwhile, the learned sparse object priors are utilized in

IB, so that the posteriors are enforced to be concentrated

on informative prediction and the uninformative false pos-

itives are eliminated. Figure 1 (a) and (b) show an exam-

ple of predicted positives obtained by Xnor-Net [30] and

our BiDet respectively, where the false positives are signif-

icantly reduced in the latter. Figure 1 (c) and (d) depict the

information plane dynamics for the training and test sets

respectively, where our BiDet removes the information re-

dundancy and fully utilizes the representational power of

the networks. Extensive experiments on the PASCAL VOC

[6] and COCO [23] datasets show that our BiDet outper-

forms the state-of-the-art binary neural networks in object

detection across various architectures. Moreover, BiDet can

be integrated with other compact object detectors to acquire

faster speedup and less storage. Our contributions include:

• To the best of our knowledge, we propose the first bi-

narized networks containing the backbone and detection

parts for efficient object detection.

• We employ the IB principle for redundancy removal to

fully utilize the capacity of binary neural networks and

learn the sparse object priors to concentrate posteriors on

informative detection prediction, so that the detection ac-

curacy is enhanced with false positive elimination.

• We evaluate the proposed BiDet on the PASCAL VOC

and the large scale COCO datasets for comprehensive

comparison with state-of-the-art binary neural networks

in object detection.

2. Related Work

Network Quantization: Network quantization has been

widely studied in recent years due to its efficiency in storage

and computation. Existing methods can be divided into two

categories: neural networks with weights and activations in

one bit or multiple bits. Binary neural networks reduce the

model complexity significantly due to the extremely high

compression ratio. Hubara et al. [14] and Rastegari et al.

[30] binarized both weights and activations in neural net-

works and replaced the multiply-accumulation with xnor

and bitcount operations, where straight-through estimators

were applied to relax the non-differentiable sign function

for back-propagation. Liu et al. [25] added extra short-

cut between consecutive convolutional blocks to strengthen

the representational capacity of the network. They also

used custom gradients to optimize the non-differentiable

networks. Binary neural networks perform poorly on dif-

ficult tasks such as object detection due to the low represen-

tational capacity, multi-bit quantization strategies have been

proposed with wider bitwidth. Jacob et al. [15] presented an

8-bit quantized model for inference in object detection and

their method can be integrated with efficient architectures.

Wei et al. [42] applied the knowledge distillation to learn

8-bit neural networks in small size from large full-precision

models. Li et al. [19] proposed fully quantized neural net-

works in four bits with hardware-friendly implementation.

Meanwhile, the instabilities during training were overcome

by the presented techniques. Nevertheless, multi-bit neu-

ral networks still suffer from heavy storage and computa-

tion cost. Directly applying binary neural networks with

constrained representational power in object detection leads

to numerous false positives and significantly degrades the

performance due to the information redundancy in the net-

works.

Object Detection: Object detection has aroused com-

prehensive interest in computer vision due to its wide ap-

plication. Modern CNN based detectors are categorized

into two-stage and one-stage detectors. In the former, R-

CNN [8] was among the earliest CNN-based detectors with

the pipeline of bounding box regression and classification.

Progressive improvements were proposed for better effi-

ciency and effectiveness. Fast R-CNN [7] presented the

ROIpooling in the detection framework to achieve better

accuracy and faster inference. Faster R-CNN [32] pro-

posed the Region Proposal Networks to effectively gener-

ate region proposals instead of hand-crafted ones. FPN [21]

introduced top-down architectures with lateral connections

and the multi-scale features to integrate low-level and high-

level features. In the latter regard, SSD [24] and YOLO

[31] directly predicted the bounding box and the class with-

out region proposal generation, so that real-time inference

was achieved on GPUs with competitive accuracy. Reti-

naNet [22] proposed the focal loss to solve the problem of

foreground-background class imbalance. However, CNN

based detectors suffer from heavy storage and computa-

tional cost so that their deployment is limited.

Information Bottleneck: The information bottleneck

(IB) principle was first proposed by [38] with the goal of

extracting relevant information of the input with respect to

the task, so that the IB principle are widely applied in com-

pression. The IB principle enforces the mutual informa-
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Figure 2. The pipeline of the information bottleneck based detectors, which consist of the backbone part and the detection part. The solid

line represents the forward propagation in the network, while the dashed line means sampling from a parameterized distribution Φ. The

high-level feature map F is sampled from the distribution parameterized by the backbone network. The one-stage and two-stage detector

framework can be both employed in the detection part of our BiDet. For the one-stage detectors, the head network parameterizes the

distribution of object classes and location. For two-stage detectors, Region Proposal Networks (RPN) parameterize the prior distribution

of location and the posteriors are parameterized by the refining networks. (best viewed in color).

tion between the input and learned features to be minimized

while simultaneously maximizing the mutual information

between the features and groundtruth of the tasks. Louizos

et al. [26] and Ullrich et al. [39] utilized the Minimal De-

scription Length (MDL) principle that is equivalent to IB

to stochastically quantize deep neural networks. Moreover,

they used the sparse horseshoe and Gaussian mixture pri-

ors for weight learning in order to reduce the quantization

errors. Dai et al. [5] pruned individual neurons via varia-

tional IB so that redundancy between adjacent layers was

minimized by aggregating useful information in a subset of

neurons. Despite the network compression, IB is also uti-

lized in compact feature learning. Amjad et al. [1] proposed

stochastic deep neural networks where IB could be utilized

to learn efficient representations for classification. Shen et

al. [35] imposed IB on existing hash models to generate

effective binary representations so that the data semantics

were fully utilized. In this paper, we extend the IB princi-

ple to squeeze the redundancy in binary detection networks,

so that the false positives are alleviated and the detection

precision is significantly enhanced.

3. Approach

In this section, we first extend the IB principle that

removes the information redundancy to object detection.

Then we present the details of learning the sparse object

priors for object detection, which concentrate posteriors on

informative prediction with false positive elimination. Fi-

nally, we propose the efficient binarized object detectors.

3.1. Information Bottleneck for Object Detection

The information bottleneck (IB) principle directly relates

to compression with the best hypothesis that the data misfit

and the model complexity should simultaneously be min-

imized, so that the redundant information irrelevant to the

task is exclusive in the compressed model and the capacity

of the lightweight model is fully utilized. The task of ob-

ject detection can be regarded as a Markov process with the

following Markov chain:

X → F → L,C (1)

where X means the input images and F stands for the high-

level feature maps output by the backbone part. C and L

represent the predicted classes and location of the objects

respectively. According to the Markov chain, the objective

of the IB principle is written as follows:

min
φb,φd

I(X;F )− βI(F ;C,L) (2)

where φb and φd are the parameters of the backbone and

the detection part respectively. I(X;Y ) means the mutual

information between two random variables X and Y . Min-

imizing the mutual information between the images and the

high-level feature maps constrains the amount of informa-

tion that the detector extracts, and maximizing the mutual

information between the high-level feature maps and object

detection enforces the detector to preserve more informa-

tion related to the task. As a result, the redundant infor-

mation irrelevant to object detection is removed. Figure 2

shows the pipeline for information bottleneck based detec-

tors, the IB principle can be imposed on the conventional

one-stage and two-stage detectors. We rewrite the first term

of (2) according to the definition of mutual information:

I(X;F ) = Ex∼p(x)Ef∼p(f |x) log
p(f |x)

p(f)
(3)

where x and f are the specific input images and the cor-

responding high-level feature maps. p(x) and p(f) are the
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Figure 3. The detected objects and the corresponding confidence

score (a) before and (b) after optimizing (6). The contrast of con-

fidence score among different detected objects is significantly en-

larged by minimizing alternate objective. As the NMS eliminates

the positives with confidence score lower than the threshold, the

sparse object priors are acquired and the posteriors are enforced to

be concentrated on informative prediction. (best viewed in color).

prior distribution of x and f respectively, and E represents

the expectation. p(f |x) is the posterior distribution of the

high-level feature map conditioned on the input. We pa-

rameterize p(f |x) by the backbone due to its intractability,

where evidence-lower-bound (ELBO) minimization is ap-

plied for relaxation. To estimate I(X;F ), we sample the

training set to obtain the image x and sample the distribu-

tion parameterized by the backbone to acquire the corre-

sponding high-level feature map f .

The location and classification of objects based on the

high-level feature map are independent, as the bounding

box location and the classification probability are obtained

via different network branches in the detection part. The

mutual information in the second term of (2) is factorized:

I(F ;C,L) = I(F ;C) + I(F ;L) (4)

Similar to (3), we rewrite the mutual information between

the high-level feature maps and the classes as follows:

I(F ;C) = Ef∼p(f |x)Ec∼p(c|f) log
p(c|f)

p(c)
(5)

where c is the object class labels including the background

class. p(c) and p(c|f) are the prior class distribution and

posterior class distribution when given the feature maps re-

spectively. Same as the calculation of (3), we employ the

classification branch networks in the detection part to pa-

rameterize the distribution. Meanwhile, we divide the im-

ages to blocks for multiple object detection. For one-stage

detectors such as SSD [24], we project the high-level feature

map cells to the raw image to obtain the block partition. For

two-stage detectors such as Faster R-CNN [32], we scale

the ROI to the original image for block split. c ∈ Z
1×b rep-

resents the object class in b blocks of the image. We define

ci as the ith element of c, which demonstrates the class of

the object whose center is in the ith block of the image. The

class of a block is assigned to background if the block does

not contain the center of any groundtruth objects.

As the localization contains shift parameters and scale

parameters for anchors, we rewrite the mutual information

between the object location and high-level feature maps:

I(F ;L) = Ef∼p(f |x)El1∼p(l1|f)El2∼p(l2|f) log
p(l1|f)p(l2|f)

p(l1)p(l2)

where l1 ∈ R
2×b represents the horizontal and vertical

shift offset of the anchors in b blocks of the image, and

l2 ∈ R
2×b means the height and width scale offset of the an-

chors. For the anchor whose center (x, y) is in the jth block

with height h and width w, the offset changes the bound-

ing box in the following way: (x, y) → (x, y) + l1,j and

(h,w) → (h,w) · exp(l2,j), where l1,j and l2,j represent

the jth column of l1 and l2. The priors and the posteriors

of shift offset conditioned on the feature maps are denoted

as p(l1) and p(l1|f) respectively. Similarly, the scaling off-

set has the prior and the posteriors given feature maps p(l2)
and p(l2|f). We leverage the localization branch networks

in the detection part for distribution parameterization.

3.2. Learning Sparse Object Priors

Since the feature maps are binarized in BiDet, we utilize

the binomial distribution with equal probability as the priors

for each element of the high-level feature map f . We as-

sign the priors for object localization in the following form:

p(l1,j) = N(µ0
1,j ,Σ

0
1,j) and p(l2,j) = N(µ0

2,j ,Σ
0
2,j),

where N(µ,Σ) means the Gaussian distribution with mean

µ and covariance matrix Σ. For one-stage detectors, the ob-

ject localization priors p(l1,j) and p(l2,j) are hypothesized

to be the two-dimensional standard normal distribution. For

two-stage detectors, Region Proposal Networks (RPN) out-

put the parameters of the Gaussian priors.

As numerous false positives emerge in the binary detec-

tion networks, learning sparse object priors for detection

part enforces the posteriors to be concentrated on infor-

mative detection prediction with false positive elimination.

The priors for object classification is defined as follows:

p(ci) = IMi
· cat(

1

n+ 1
· 1n+1) + (1− IMi

) · cat([1,0n])

where Ix is the indicator function with I1 = 1 and I0 =
0, and Mi is the ith element of the block mask M ∈
{0, 1}1×b. cat(K) means the categorical distribution with

the parameter K. 1
n and 0

n are the all-one and zero vec-

tors in n dimensions respectively, where n is the number of

class. The multinomial distribution with equal probability
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is utilized for the class prior in the ith block if Mi equals

to one. Otherwise, the categorical distribution with the

probability 1 for background and zero probability for other

classes is leveraged for the prior class distribution. When

Mi equals to zero, the detection part definitely predicts the

background for object classification in the ith block accord-

ing to (5). In order to obtain sparse priors for object clas-

sification with fewer predicted positives, we minimize the

L1 norm of the block mask M . We propose an alternative

way to optimize M due to the non-differentiability, where

the objective is written as follows:

min
si

−
1

m

m∑

i=1

si log si (6)

where m = ||M ||1 represents the number of detected

foreground objects in the image, and si is the normalized

confidence score for the ith predicted foreground object

with
∑m

i=1 si = 1. As shown in Figure 3, minimizing

(6) increases the contrast of confidence score among dif-

ferent predicted objects, and predicted objects with low

confidence score are assigned to be negative by the non-

maximum suppression (NMS) algorithms. Therefore, the

block mask becomes sparser with fewer predicted objects,

and the posteriors are concentrated on informative predic-

tion with uninformative false positive elimination.

3.3. Efficient Binarized Object Detectors

In this section, we first briefly introduce neural networks

with binary weights and activations, and then detail the

learning objectives of our BiDet. Let W l
r be the real-

valued weights and Al
r be the full-precision activations of

the lth layer in a given L-layer detection model. During

the forward propagation, the weights and activations are

binarized via the sign function: W l
b = sign(W l

r) and

Al
b = sign(W l

r ⊙Al
b). sign means the element-wise sign

function which maps the number larger than zero to one

and otherwise to minus one, and ⊙ indicates the element-

wise binary product consisting of xnor and bitcount oper-

ations. Due to the non-differentiability of the sign func-

tion, straight-through estimator (STE) is employed to cal-

culate the approximate gradients and update the real-valued

weights in the back-propagation stage. The learning objec-

tives for the proposed BiDet is written as follows:

min J = J1 + J2

= (
∑

t,s

log
p(fst|x)

p(fst)
− β

b∑

i=1

log
p(ci|f)p(l1,i|f)p(l2,i|f)

p(ci)p(l1,i)p(l2,i)
)

− γ ·
1

m

m∑

i=1

si log si (7)

where γ is a hyperparameter that balances the importance

of false positive elimination. The posterior distribution

p(ci|f) is hypothesized to be the categorical distribution

cat(Ki), where Ki ∈ R
1×(n+1) is the parameter and

n is the number of classes. We assume the posterior of

the shift and scale offset follows the Gaussian distribution:

p(l1,j |f) = N(µ1,j ,Σ1,j) and p(l2,j |f) = N(µ2,j ,Σ2,j).
The posteriors of the element in the sth row and tth col-

umn of binary high-level feature maps p(fst|x) is assigned

to binomial distribution cat([pts, 1− pts]), where pts is the

probability for fst to be one. All the posterior distribution is

parameterized by the neural networks. J1 represents for the

information bottleneck employed in object detection, which

aims to remove information redundancy and fully utilize the

representational power of the binary neural networks. The

goal of J2 is to enforce the object priors to be sparse so that

the posteriors are encouraged to be concentrated on infor-

mative prediction with false positive elimination.

In the learning objective, p(fst) in the binomial distri-

bution is a constant. Meanwhile, the sparse object clas-

sification priors are imposed via J2 so that p(ci) is also

regarded as a constant. For one-stage detectors, constant

p(l1,i) and p(l2,i) follows standard normal distribution. For

two-stage detectors, p(l1,i) and p(l2,i) are parameterized by

RPN, which is learned by the objective function. The last

layer of the backbone that outputs the parameters of the bi-

nary high-level feature maps is real-valued in training for

Monte-Carlo sampling and is binarzed with the sign func-

tion during inference. Meanwhile, the layers that output

the parameters for object class and location distribution re-

main real-valued for accurate detection. During inference,

we drop the network branch of covariance matrix for loca-

tion offset, and assign all location prediction with the mean

value to accelerate computation. Moreover, the prediction

of object classes is set to that with the maximum probability

to avoid time-consuming stochastic sampling in inference.

4. Experiments

In this section, we conducted comprehensive experi-

ments to evaluate our proposed method on two datasets for

object detection: PASCAL VOC [6] and COCO [23]. We

first describe the implementation details of our BiDet, and

then we validate the effectiveness of IB and sparse object

priors for binarized object detectors by ablation study. Fi-

nally, we compare our method with state-of-the-art binary

neural networks in the task of object detection to demon-

strate superiority of the proposed BiDet.

4.1. Datasets and Implementation Details

We first introduce the datasets that we carried out exper-

iments on and data preprocessing techniques:

PASCAL VOC: The PASCAL VOC dataset contains

natural images from 20 different classes. We trained our

model on the VOC 2007 and VOC 2012 trainval sets which

consist of around 16k images, and we evaluated our method
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on VOC 2007 test set including about 5k images. Follow-

ing [6], we used the mean average precision (mAP) as the

evaluation criterion.

COCO: The COCO dataset consists of images from 80

different categories. We conducted experiments on the 2014

COCO object detection track. We trained our model with

the combination of 80k images from the training set and

35k images sampled from validation set (trainval35k [2])

and tested our method on the remaining 5k images in the

validation set (minival [2]). Following the standard COCO

evaluation metric [23], we report the average precision (AP)

for IoU ∈ [0.5 : 0.05 : 0.95] denoted as mAP@[.5, .95]. We

also report AP50, AP75 as well as APs, APm and APl to

further analyze our method.

We trained our BiDet with the SSD300 [24] and Faster

R-CNN [32] detection framework whose backbone were

VGG16 [36] and ResNet-18 [11] respectively. Following

the implementation of binary neural networks in [14], we

remained the first and last layer in the detection networks

real-valued. We used the data augmentation techniques in

[24] and [32] when training our BiDet with SSD300 and

Faster R-CNN detection frameworks respectively.

In most cases, the backbone network was pre-trained on

ImageNet [33] in the task of image classification. Then we

jointly finetuned the backbone part and trained the detection

part for the object detection task. The batchsize was as-

signed to be 32, and the Adam optimizer [17] was applied.

The learning rate started from 0.001 and decayed twice by

multiplying 0.1 at the 6th and 10th epoch out of 12 epochs.

Hyperparamters β and γ were set as 10 and 0.2 respectively.

4.2. Ablation Study

Since the IB principle removes the redundant informa-

tion in binarized object detectors and the learned sparse ob-

ject priors concentrate the posteriors on informative predic-

tion with false positive alleviation, the detection accuracy

is enhanced significantly. To verify the effectiveness of the

IB principle and the learned sparse priors, we conducted the

ablation study to evaluate our BiDet w.r.t. the hyperparam-

eter β and γ in the objective function. We adopted the SSD

detection framework with VGG16 backbone for our BiDet

on the PASCAL VOC dataset. We report the mAP, the mu-

tual information between high-level feature maps and the

object detection I(F ;L,C), the number of false positives

and the number of false negatives with respect to β and γ

in Figure 4 (a), (b), (c) and (d) respectively. Based on the

results, we observe the influence of the IB principle and the

learned sparse object priors as follows.

By observing Figure 4 (a) and (b), we conclude that mAP

and I(F ;L,C) are positively correlated as they demon-

strate the detection performance and the amount of related

information respectively. Medium β provides the optimal

trade-off between the amount of extracted information and

Figure 4. Ablation study w.r.t. hyperparameters β and γ, where

the variety of (a) mAP, (b) the mutual information between high-

level feature maps and the object detection I(F ;L,C) , (c) the

number of false positives and (d) the number of false negatives are

demonstrated. (best viewed in color).

the related information so that the representational capac-

ity of the binary object detectors is fully utilized with re-

dundancy removal. Small β fails to leverage the represen-

tational power of the networks as the amount of extracted

information is limited by regularizing the high-level fea-

ture maps, while large β enforces the networks to learn re-

dundant information which leads to significant over-fitting.

Meanwhile, medium γ offers optimal sparse object priors

that enforces the posteriors to concentrate on most informa-

tive prediction. Small γ is not capable of sparsifying the

predicted objects, and large γ disables the posteriors to rep-

resent informative objects with excessive sparsity.

By comparing the variety of false positives and false neg-

atives w.r.t. β and γ, we know that medium β decreases

false positives most significantly and changing β does not

varies the number of false negatives notably, which means

that the redundancy removal only alleviates the uninforma-

tive false positives while remains the informative true posi-

tives unchanged. Meanwhile, small γ fails to constrain the

false positives and large γ clearly increases the false nega-

tives, which both degrades the performance significantly.

4.3. Comparison with the Stateoftheart Methods

In this section, we compare the proposed BiDet with the

state-of-the-art binary neural networks including BNN [4],

Xnor-Net [30] and Bi-Real-Net [25] in the task of object de-

tection on the PASCAL VOC and COCO datasets. For ref-

erence, we report the detection performance of the multi-bit

quantized networks containing DoReFa-Net [46] and TWN

[18] and the lightweight networks MobileNetV1 [13].
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Table 1. Comparison of parameter size, FLOPs and mAP (%) with the state-of-the-art binary neural networks in both one-stage and two-

stage detection frameworks on PASCAL VOC. The detector with the real-valued and multi-bit backbone is given for reference. BiDet (SC)

means the proposed method with extra shortcut for the architectures.

Framework Input Backbone Quantization W/A (bit) #Params MFLOPs mAP

SSD300 300× 300

VGG16
− 32/32

100.28MB 31, 750 72.4

MobileNetV1 30.07MB 1, 150 68.0

VGG16

TWN 2/32 24.54MB 8, 531 67.8

DoReFa-Net 4/4 29.58MB 4, 661 69.2

BNN

1/1

22.06MB 1, 275 42.0

Xnor-Net 22.16MB 1, 279 50.2

BiDet 22.06MB 1, 275 52.4

Bi-Real-Net
1/1

21.88MB 1, 277 63.8

BiDet (SC) 21.88MB 1, 277 66.0

MobileNetV1
Xnor-Net

1/1
22.48MB 836 48.9

BiDet 22.48MB 836 51.2

Faster R-CNN 600× 1000 ResNet-18

− 32/32 47.35MB 36, 013 74.5

TWN 2/32 3.83MB 9, 196 69.9

DoReFa-Net 4/4 6.73MB 4, 694 71.0

BNN

1/1

2.38MB 779 35.6

Xnor-Net 2.48MB 783 48.4

BiDet 2.38MB 779 50.0

Bi-Real-Net
1/1

2.39MB 781 58.2

BiDet (SC) 2.39MB 781 59.5

Table 2. Comparison of mAP@[.5, .95] (%), AP with different IOU threshold and AP for objects in various sizes with state-of-the-art

binarized object detectors in SSD300 and Faster R-CNN detection framework on COCO, where the performance of real-valued and multi-

bit detectors is reported for reference. BiDet (SC) means the proposed method with extra shortcut for the architectures.

Framework Input Backbone Quantization mAP@[.5, .95] AP50 AP75 (%) APs APm APl

SSD300 300× 300 VGG16

− 23.2 41.2 23.4 5.3 23.2 39.6

TWN 16.9 33.0 15.8 5.0 16.9 27.2

DoReFa-Net 19.5 35.0 19.6 5.1 20.5 32.8

BNN 6.2 15.9 3.8 2.4 10.0 9.9

Xnor-Net 8.1 19.5 5.6 2.6 8.3 13.3

BiDet 9.8 22.5 7.2 3.1 10.8 16.1

Bi-Real-Net 11.2 26.0 8.3 3.1 12.0 18.3

BiDet (SC) 13.2 28.3 10.5 5.1 14.3 20.5

Faster R-CNN 600× 1000 ResNet-18

− 26.0 44.8 27.2 10.0 28.9 39.7

TWN 19.7 35.3 19.7 5.1 20.7 33.3

DoReFa-Net 22.9 38.6 23.7 8.0 24.9 36.3

BNN 5.6 14.3 2.6 2.0 8.5 9.3

Xnor-Net 10.4 21.6 8.8 2.7 11.8 15.9

BiDet 12.1 24.8 10.1 4.1 13.5 17.7

Bi-Real-Net 14.4 29.0 13.4 3.7 15.4 24.1

BiDet (SC) 15.7 31.0 14.4 4.9 16.7 25.4

Results on PASCAL VOC: Table 1 illustrates the com-

parison of computation complexity, storage cost and the

mAP across different quantization methods and detection

frameworks. Our BiDet significantly accelerates the com-

putation and saves the storage by 24.90× and 4.55× with

the SSD300 detector and 46.23× and 19.81× with the

Faster R-CNN detector. The efficiency is enhanced more

notably in the Faster R-CNN detector, as there are multiple

real-valued output layers of the head networks in SSD300

for multi-scale feature extraction.

Compared with the state-of-the-art binary neural net-

works, the proposed BiDet improves the mAP of Xnor-Net

by 2.2% and 1.6% with SSD300 and Faster R-CNN frame-

works respectively with fewer FLOPs and the number of

parameters than Xnor-Net. As demonstrated in [25], adding

extra shortcut between consecutive convolutional layers can

further enhance the representational power of the binary

neural networks, we also employ architecture with addi-

tional skip connection to evaluate our BiDet in networks

with stronger capacity. Due to the information redundancy,
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Figure 5. Qualitative results on PASCAL VOC. Images in the top row shows the object predicted by Xnor-Net, while the images with the

objects detected by our BiDet are displayed in the bottom row. The proposed BiDet removes the information redundancy to fully utilize

the network capacity, and learns the sparse object priors to eliminate false positives (best viewed in color).

the performance of Bi-Real-Net with constrained network

capacity is degraded significantly compared with their full-

precision counterparts in both one-stage and two-stage de-

tection frameworks. On the contrary, our BiDet imposes the

IB principle on learning binary neural networks for object

detection and fully utilizes the network capacity with redun-

dancy removal. As a result, the proposed BiDet increases

the mAP of Bi-Real-Net by 2.2% and 1.3% in SSD300

and Faster R-CNN detectors respectively without additional

computational and storage cost. Figure 5 shows the quali-

tative results of Xnor-Net and our BiDet in the SSD300 de-

tection framework with VGG16, where the proposed BiDet

significantly alleviates the false positives.

Due to the different pipelines in one-stage and two-stage

detectors, the mAP gained from the proposed BiDet with

Faster R-CNN is less than SSD300. As analyzed in [22],

one-stage detectors face the severe positive-negative class

imbalance problem which two-stage detectors are free of,

so that one-stage detectors are usually more vulnerable to

false positives. Therefore, one-stage object detection frame-

work obtains more benefits from the proposed BiDet, which

learns the sparse object priors to concentrate the posteriors

on informative prediction with false positive elimination.

Moreover, our BiDet can be integrated with other ef-

ficient networks in object detection for further computa-

tion speedup and storage saving. We employ our BiDet

as a plug-and-play module in SSD detector with the Mo-

bileNetV1 network and saves the computational and storage

cost by 1.47× and 1.38× respectively. Compared with the

detectors that directly binarize weights and activations in

MobileNetV1 with Xnor-Net, BiDet improves the mAP by

a sizable margin, which depicts the effectiveness of redun-

dancy removal for networks with extremely low capacity.

Results on COCO: The COCO dataset is much more

challenging for object detection than PASCAL VOC due

to the high diversity and large scale. Table 2 demonstrates

mAP, AP with different IOU threshold and AP of objects

in various sizes. Compared with the state-of-the-art binary

neural networks Xnor-Net, our BiDet improves the mAP

by 1.7% and 1.7% in SSD300 and Faster R-CNN detection

framework respectively due to the information redundancy

removal. Moreover, the proposed BiDet also enhances the

binary one-stage and two-stage detectors with extra short-

cut by 2.0% and 1.3% on mAP. Comparing with the base-

line methods of network quantization, our method achieves

better performance in the AP with different IOU threshold

and AP for objects in different sizes, which demonstrates

the universality in different application settings.

5. Conclusion

In this paper, we have proposed a binarized neural net-

work learning method called BiDet for efficient object de-

tection. The presented BiDet removes the redundant infor-

mation via information bottleneck principle to fully utilize

the representational capacity of the networks and enforces

the posteriors to be concentrated on informative prediction

for false positive elimination, through which the detection

precision is significantly enhanced. Extensive experiments

depict the superiority of BiDet in object detection compared

with the state-of-the-art binary neural networks.
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