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Figure 1: Are CNN-generated images hard to distinguish from real images? We show that a classifier trained to detect images generated

by only one CNN (ProGAN, far left) can detect those generated by many other models (remaining columns). Our code and models are

available at https://peterwang512.github.io/CNNDetection/.

Abstract

In this work we ask whether it is possible to create

a “universal” detector for telling apart real images from

these generated by a CNN, regardless of architecture or

dataset used. To test this, we collect a dataset consisting

of fake images generated by 11 different CNN-based im-

age generator models, chosen to span the space of com-

monly used architectures today (ProGAN, StyleGAN, Big-

GAN, CycleGAN, StarGAN, GauGAN, DeepFakes, cas-

caded refinement networks, implicit maximum likelihood es-

timation, second-order attention super-resolution, seeing-

in-the-dark). We demonstrate that, with careful pre- and

post-processing and data augmentation, a standard image

classifier trained on only one specific CNN generator (Pro-

GAN) is able to generalize surprisingly well to unseen ar-

chitectures, datasets, and training methods (including the

just released StyleGAN2 [21]). Our findings suggest the

intriguing possibility that today’s CNN-generated images

share some common systematic flaws, preventing them from

achieving realistic image synthesis.

1. Introduction

Recent rapid advances in deep image synthesis tech-

niques, such as Generative Adversarial Networks (GANs),

have generated a huge amount of public interest and con-

cern, as people worry that we are entering a world where it

will be impossible to tell which images are real and which

are fake [14]. This issue has started to play a significant role

in global politics; in one case a video of the president of

Gabon that was claimed by opposition to be fake was one

factor leading to a failed coup d’etat∗. Much of this con-

cern has been directed at specific manipulation techniques,

such as “deepfake”-style face replacement [2], and photo-

realistic synthetic humans [20]. However, these methods

represent only two instances of a broader set of techniques:

image synthesis via convolutional neural networks (CNNs).

Our goal in this work is to find a general image forensics

approach for detecting CNN-generated imagery.

Detecting whether an image was generated by a spe-

cific synthesis technique is relatively straightforward — just

train a classifier on a dataset consisting of real images and

images synthesized by the technique in question. However,

such an approach will likely be tied to the dataset used in

image generation (e.g. faces), and, due to dataset bias [35],

might not generalize when tested on new data (e.g. cars).

Even worse, the technique-specific detector is likely to soon

become ineffective as generation methods evolve and the

technique it was trained on becomes obsolete.

It is natural, therefore, to ask whether today’s CNN-

generated images contain common artifacts, e.g., some kind

of detectable CNN fingerprints, that would allow a classi-

fier to generalize to an entire family of generation meth-

ods, rather than a single one. Unfortunately, prior work

has reported generalization to be a significant problem for

∗https://www.motherjones.com/politics/2019/03/

deepfake-gabon-ali-bongo/
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image forensics approaches. For example, several recent

works [44, 12, 37] observe that that classifiers trained on

images produced by one GAN architecture perform poorly

when tested on others, and in many cases they also fail

to generalize when only the dataset (and not the architec-

ture or task) is changed [44]. This makes sense, as image

generation methods are highly varied: they use different

datasets, network architectures, loss functions, and image

pre-processing.

In this paper, we show that, contrary to this current un-

derstanding, classifiers trained to detect CNN-generated im-

ages can exhibit a surprising amount of generalization abil-

ity across datasets, architectures, and tasks. We follow con-

ventions and train our classifiers in a straightforward man-

ner, by generating a large number of fake images using a

single CNN model (we use ProGAN, a high-performing un-

conditional GAN model [19]), and train a binary classifier

to detect fakes, using the model’s real training images as

negative examples.

To evaluate our model, we create a new dataset of CNN-

generated images, the ForenSynths dataset, consisting of

synthesized images from 11 models, that range from from

unconditional image generation methods, such as Style-

GAN [20], to super-resolution methods [13], and deep-

fakes [33]. Each model is trained on a different image

dataset appropriate for its specific task. We have also

continued evaluating our detector on models that were re-

leased after our paper was originally written, finding that

it works out-of-the-box on the very recent unconditional

GAN, StyleGAN2 [21].

Underneath the apparent simplicity of this approach, we

have found that there are a number of subtle challenges

which we study through a set of experiments and a new

dataset of trained image generation models. We find that

data augmentation, in the form of common image post-

processing operations, is critical for generalization, even

when the target images are not post-processed themselves.

We also find that diversity of training images matters; large

datasets sampled from CNN synthesis methods lead to clas-

sifiers that outperform those trained on smaller datasets, to

a point. Finally, it is critical to examine the effect of post-

processing on the model’s generalization ability which of-

ten occur downstream of image creation (e.g., during stor-

age and distribution). We show that when the correct steps

are taken, classifiers are indeed robust to common opera-

tions such as JPEG compression, blurring, and resizing.

In summary, our main contributions are: 1) we show that

forensics models trained on CNN-generated images exhibit

a surprising amount of generalization to other CNN synthe-

sis methods; 2) we propose a new dataset and evaluation

metric for detecting CNN-generated images; 3) we exper-

imentally analyze the factors that account for cross-model

generalization.

2. Related work

Detecting CNN-based Manipulations Several recent

works have addressed the problem of detecting images gen-

erated by CNNs. Rössler et al. [33] evaluated methods

for detecting face manipulation techniques, including CNN-

based face and mouth replacement methods. While they

showed that simple classifiers could detect fakes generated

by the same model, they did not study generalization be-

tween models or datasets. Marra et al. [24] likewise showed

that simple classifiers can detect images created by an image

translation network [17], but did not consider cross-model

transfer.

Recently, Cozzolino et al. [12] found that forensics clas-

sifiers transferred poorly between models, often obtaining

near-chance performance. They propose a new represen-

tation learning method, based on autoencoders, to improve

transfer performance in zero- and low-shot training regimes

for a variety of generation methods. While their ultimate

goal is similar to ours, they take an orthogonal approach.

They focus on new learning methods for improving transfer

learning, and apply them to a diverse assortment of models

(including both CNN and non-CNN). In contrast, we em-

pirically study the performance of simple “baseline” clas-

sifiers under different training and testing conditions for

CNN-based image generation. Zhang et al. [44] finds that

classifiers generalize poorly between GAN models. They

propose a method called AutoGAN for generating images

that contain the upsampling artifacts common in GAN ar-

chitectures, and test it on two types of GANs. Other work

has proposed to detect GAN images using hand-crafted co-

occurrence features [26], or by anomaly detection models

built on pretrained face detectors [37]. Researchers have

also proposed methods for identifying which, of several,

known GANs generated a given image [25, 41].

Image forensics Researchers have proposed a variety of

methods for detecting more traditional manipulation tech-

niques, such as those made by image editing tools. Early

work focused on hand-crafted cues [14] such as com-

pression artifacts [3], resampling [31], or physical scene

constraints [27]. More recently, researchers have applied

learning-based methods to these problems [45, 16, 11, 32,

38]. This line of work has found, like us, that simple, su-

pervised classifiers are often effective at detecting manipu-

lations [45, 38].

Artifacts from CNN-based Generators Researchers

have shown, recently, that common CNN designs contain

artifacts that reduce their representational power. Much of

this work has focused on the way networks perform upam-

pling and downsampling. A well-known example of such

an artifact is the checkerboard artifact produced by decon-

volutional layers [28]. Azulay and Weiss [4] showed convo-

lutional networks ignore the classical sampling theorem and
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that strided convolutions therefore reduce translation invari-

ance, and Zhang [43] improved translation invariance by re-

ducing aliasing in these layers. Very recently, Bau et al. [5]

suggested that GANs have limited generation capacity, and

analyzed the image structures that a pretrained GAN is un-

able to produce.

3. A dataset of CNN-based generation models

To study the transferability of classifiers trained to detect

CNN-generated images, we collected a dataset of images

created from a variety of CNN models.

3.1. Generation models

Our dataset contains 11 synthesis models. We chose

methods that span a variety of CNN architectures, datasets,

and losses. All of these models have an upsampling-

convolutional structure (i.e. they generate images by a se-

ries convolution and upsampling operations) since this is by

far the most common design for generative CNNs. Exam-

ples of their synthesized images can be found in Figure 1.

The statistics of each dataset are listed in Table 1. Details of

the data collection process are provided in the supplemental

material.

GANs We include three state-of-the-art unconditional

GANs: ProGAN [19], StyleGAN [20], BigGAN [7], trained

on either the LSUN [40] or ImageNet [34] datasets. The

network structures and training procedures for these mod-

els contain significant differences. ProGAN and Style-

GAN train a different network for each category; StyleGAN

injects large, per-pixel noise into the model to introduce

high frequency detail. BigGAN has a monolithic, class-

conditional structure, is trained on very large batch sizes,

and uses self-attention layers [42, 39].

We also include three conditional GANs: the state-of-

the-art image-to-image translation method GauGAN [29],

and the popular unpaired image-to-image translation meth-

ods CycleGAN [48] and StarGAN [10].

Perceptual loss We consider models that directly opti-

mize a perceptual loss [18], with no adversarial training.

This includes Cascaded Refinement Networks (CRN) [9],

which synthesizes images in a coarse-to-fine manner,

and the recent Implicit Maximum Likelihood Estimation

(IMLE) conditional image translation model [23].

Low-level vision We include the Seeing In The Dark

(SITD) model [8], which approximates long-exposure pho-

tography under low light conditions from short-exposure

raw camera input using a high-resolution fully convo-

lutional network. We also use a state-of-the-art super-

resolution model, the Second Order Attention Network

(SAN) [13].

Family Method Image Source # Images

Unconditional
GAN

ProGAN [19] LSUN 8.0k

StyleGAN [20] LSUN 12.0k

BigGAN [7] ImageNet 4.0k

Conditional
GAN

CycleGAN [48] Style/object transfer 2.6k

StarGAN [10] CelebA 4.0k

GauGAN [29] COCO 10.0k

Perceptual

loss

CRN [9] GTA 12.8k

IMLE [23] GTA 12.8k

Low-level
vision

SITD [8] Raw camera 360

SAN [13] Standard SR benchmark 440

Deepfake FaceForensics++ [33] Videos of faces 5.4k

Table 1: Generation models. We evaluate forensic classifiers on

a variety of CNN-based image generation methods.

Deep fakes We also evaluate our model on the face re-

placement images provided in the FaceForensics++ bench-

mark of Rössler et al. [33], which used the publicly avail-

able faceswap tool [1]. While “deepfake” is often used

as a general term, we take inspiration from the convention

in [33] and refer to this specific model as DeepFake. This

model uses an autoencoder to generate faces, and images

undergo extensive post-processing steps, including Poisson

image blending [30] with real content. We note that our

main goal is to detect images directly output by CNN de-

coders, while DeepFake serves as an out-of-distribution test

case. Following [33], we use cropped faces.

3.2. Generating fake images

We collect images from the models, taking care to match

the pre-processing operations performed by each (e.g. re-

sizing and cropping). For each dataset, we collect fake im-

ages by generating them from the model without applying

additional post-processing (or we download the officially

released generated images if they are available). We collect

an equal number of real images from each method’s training

set. To make the distribution of the real and fake images as

close as possible, real images are pre-processed according

to the pipeline prescribed by each method.

Since 256×256 resolution is the most commonly shared

output size among most off-the-shelf image synthesis mod-

els (e.g., CycleGAN, StarGAN, ProGAN LSUN, GauGAN

COCO, IMLE, etc.), we used this resolution for our dataset.

For models that produce images at lower resolutions, (e.g.,

DeepFake), we rescale the images using bilinear interpo-

lation to 256 on the shorter side with the same aspect ra-

tio, and for models that produce images at higher resolu-

tion (e.g., ProGAN, StyleGAN, SAN, SITD), we keep the

images at the same resolution. Despite these cases being

slightly different from our training scheme, we observe that

our model is still able to detect fake images under these cat-

egories. For all datasets, we make our real/fake prediction

from 224 × 224 crops (random-crop at training time and

center-crop at testing time).
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Family Name

Training settings Individual test generators Total

Train Input
No.

Class
Augments Pro-

GAN
Style-

GAN

Big-

GAN

Cycle-

GAN
Star-
GAN

Gau-
GAN CRN IMLE SITD SAN

Deep-

Fake
mAP

Blur JPEG

Zhang

et al.
[44]

Cyc-Im CycleGAN RGB – 84.3 65.7 55.1 100. 99.2 79.9 74.5 90.6 67.8 82.9 53.2 77.6

Cyc-Spec CycleGAN Spec – 51.4 52.7 79.6 100. 100. 70.8 64.7 71.3 92.2 78.5 44.5 73.2

Auto-Im AutoGAN RGB – 73.8 60.1 46.1 99.9 100. 49.0 82.5 71.0 80.1 86.7 80.8 75.5

Auto-Spec AutoGAN Spec – 75.6 68.6 84.9 100. 100. 61.0 80.8 75.3 89.9 66.1 39.0 76.5

Ours

2-class ProGAN RGB 2 X X 98.8 78.3 66.4 88.7 87.3 87.4 94.0 97.3 85.2 52.9 58.1 81.3

4-class ProGAN RGB 4 X X 99.8 87.0 74.0 93.2 92.3 94.1 95.8 97.5 87.8 58.5 59.6 85.4

8-class ProGAN RGB 8 X X 99.9 94.2 78.9 94.3 91.9 95.4 98.9 99.4 91.2 58.6 63.8 87.9

16-class ProGAN RGB 16 X X 100. 98.2 87.7 96.4 95.5 98.1 99.0 99.7 95.3 63.1 71.9 91.4

No aug ProGAN RGB 20 100. 96.3 72.2 84.0 100. 67.0 93.5 90.3 96.2 93.6 98.2 90.1

Blur only ProGAN RGB 20 X 100. 99.0 82.5 90.1 100. 74.7 66.6 66.7 99.6 53.7 95.1 84.4

JPEG only ProGAN RGB 20 X 100. 99.0 87.8 93.2 91.8 97.5 99.0 99.5 88.7 78.1 88.1 93.0

Blur+JPEG (0.5) ProGAN RGB 20 X X 100. 98.5 88.2 96.8 95.4 98.1 98.9 99.5 92.7 63.9 66.3 90.8

Blur+JPEG (0.1) ProGAN RGB 20 † † 100. 99.6 84.5 93.5 98.2 89.5 98.2 98.4 97.2 70.5 89.0 92.6

Table 2: Cross-generator generalization results. We show the average precision (AP) of various classifiers from baseline Zhang et al. [44]

and ours, tested across 11 generators. Symbols X and † mean the augmentation is applied with 50% or 10% probability, respectively, at

training. Chance is 50% and best possible performance is 100%. When test generators are used in training, we show those results in

gray (as they are not testing generalization). Values in black show cross-generator generalization. Amongst those, the highest value is

highlighted in black. We show ablations with respect to fewer classes in ProGAN and by removing data augmentation. We report the mean

AP by averaging the AP scores over all datasets. Subsets are plotted in Figures 2, 3, 4 for comparison.

4. Detecting CNN-synthesized images

Are there common features or artifacts shared across

diverse CNN generators? To understand this, we study

whether it is possible to train a forensics classifier on images

from one model that generalize to those of many models.

4.1. Training classifiers

While all of these models are useful for evaluation, due

to limitations in dataset size, not all are well-suited to train-

ing a classifier. We take advantage of the fact that the un-

conditional GAN models in our dataset can synthesize ar-

bitrary numbers of images, and choose one specific model,

ProGAN [19] to train the detector on. The decision to use a

single model for training most closely resembles real world

detection problems, where the diversity or number of mod-

els to generalize on are unknown at training time. By select-

ing only a single model to train on, we are computing an up-

per bound on how challenging the task is — jointly training

on multiple models would make the generalization problem

easier. We chose ProGAN since it generates high quality

images and has a simple convolutional network structure.

We then create a large-scale dataset that consists solely

of ProGAN-generated images and real images. We use 20

models each trained on a different LSUN [40] object cat-

egory, and generate 36K train images and 200 validation

images, each with equal numbers of real and fake images

for each model. In total there are 720K images for train-

ing and 4K images for validation. To evaluate the choice

of the training dataset, we also include a model that is

trained solely on the BigGAN dataset. We also consider a

model that generates training images using the deep image

prior [36], rather than a GAN. The details for these models

are provided in the supplementary material.

The main idea of our experiments is to train a “real-or-

fake” classifier on this ProGAN dataset, and evaluate how

well the model generalizes to other CNN-synthesized im-

ages. For the choice of classifier, we use ResNet-50 [15]

pre-trained with ImageNet, and train it in a binary classifica-

tion setting. Details of the training procedure are provided

in the supplemental material.

Data augmentation During training, we simulate image

post-processing operations in a variety of ways. All of our

models are trained with images that are randomly left-right

flipped and cropped to 224 pixels. We evaluate several ad-

ditional augmentation variants: (1) No aug: no augmenta-

tion applied, (2) Gaussian blur: before cropping, with 50%

probability, images are blurred with σ ∼ Uniform[0, 3], (3)

JPEG: with 50% probability images are JPEG-ed by two

popular libraries, OpenCV [6] and the Python Imaging Li-

brary (PIL), with quality ∼ Uniform{30, 31, . . . , 100}, (4a)

Blur+JPEG (0.5): the image is possibly blurred and JPEG-

ed, each with 50% probability, (4b) Blur+JPEG (0.1): sim-

ilar to (4a), but with 10% probability.

Evaluation Following other recent forensics works [46,

16, 38], we evaluate our model’s performance on each

dataset using average precision (AP), since it is a threshold-

less, ranking-based score that is not sensitive to the base

rate of the real and fake images in the dataset. We com-

pute this score for each dataset separately, since we expect

it to be dependent on the semantic content of the photos as a

whole. To help interpret the threshold-less results, we also

conduct experiments on thresholding the model’s outputs

and computing accuracy, under the assumption that real and

fake images are equally likely to appear; the details are in

the supplemental material. During testing, each image is
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ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN CRN IMLE SITD SAN DeepFake
0
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100

AP

Chance
No aug.
Blur only
JPEG only
Blur+JPEG(0.5)
Blur+JPEG(0.1)

Figure 2: Effect of augmentation methods. All detectors are trained on ProGAN, and tested on other generators (AP shown). In general,

training with augmentation helps performance. Notable exceptions are super-resolution and DeepFake.

ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN CRN IMLE SITD SAN DeepFake
0

50

100

AP

Chance
2 classes
4 classes
8 classes
16 classes
20 classes

Figure 3: Effect of dataset diversity. All detectors are trained on ProGAN, and tested on other generators (AP shown). Training with

more classes improves performance. All runs use blur and JPEG augmentation with 50% probability.

ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN CRN IMLE SITD SAN DeepFake
0

50

100

AP

Chance
Zhang, Auto-Im
Zhang, Auto-Spec
Ours, Blur+JPEG(0.1)

Figure 4: Model comparison. Compared to Zhang et al. [44], we observe that for the most part, our models generalize better to other

architectures. Notable exceptions to this are CycleGAN (which is identical to the training architecture from [44]), StarGAN (where both

methods obtain close to 100. AP), and SAN (where applying data augmentation hurts performance).

center-cropped to 224×224 pixels without resizing in order

to match the post-processing pipeline used by models dur-

ing training. No data augmentation is included during test-

ing; instead, we conduct experiments on model robustness

under post-processing in Section 4.2.

4.2. Effect of data augmentation

In Table 2, we investigate the generalization ability of

training with different augmentation methods. We find that

using aggressive data augmentation (in the form of sim-

ulated post-processing) provides surprising generalization

capabilities, even when such perturbations are not used at

test time. Additionally, we observe that these models are

significantly more robust to post-processing (Figure 5).

Augmentation (usually) improves generalization To

begin, we first evaluate ProGAN-based classifier without

augmentation, shown in the “no aug” row. As in previous

work [33], we find that testing on held-out ProGAN images

works well (100.0 AP). We then test how well it general-

izes to other unconditional GANs. We find that it general-

izes extremely well to StyleGAN, which has a similar net-

work structure, but not as well to BigGAN. When adding

augmentations, the performance on BigGAN significantly

improves, 72.2 → 88.2. On conditional models (Cycle-

GAN, GauGAN, CRN, and IMLE), performance is simi-

larly improved, 84.0 → 96.8, 67.0 → 98.1, 93.5 → 98.9,

90.3 → 99.5, respectively.

Interestingly, there are two models, SAN and DeepFake,

where directly training on ProGAN without augmentation

performs strongly (93.6 and 98.2, respectively), but aug-

mentation hurts performance. As SAN is a super-resolution

model, only high-frequency components can differentiate

between real and fake images. Removing such cues at train-

ing time (e.g. by blurring) would therefore be likely to re-

duce performance. As explained in Section 3.1, DeepFake

serves as an out-of-distribution test case as images are not

generated by CNN architectures alone, but surprisingly our

model is able to generalize to this test case. However, it

remains challenging to identify clear reasons for the perfor-

mance deterioration when applying augmentations. Apply-

ing augmentation, but at reduced rate (Blur+JPEG (0.1)),

offers a good balance: DeepFake detection is comparable to

the no-augmentation case (89.0), while most other datasets

are significantly improved over no augmentation.
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Blur only
JPEG only
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Figure 5: Robustness. We show the effect of AP given test-time perturbation to (left) Gaussian blurring and (right) JPEG. We show

classifiers trained on ProGAN, with different augmentations applied during training. Note that in all cases and both perturbations, when

training without augmentation (red), performance degrades across all datasets when perturbations are added. In most cases, training

with both augmentations, performs best or near best. Notable exceptions are for super-resolution (where no augmentation is best), and

DeepFake, where training only with the perturbation used during testing, rather than both, performs best.

Augmentation improves robustness In many real-world

scenarios, images that we would like to evaluate have un-

dergone unknown post-processing operations, such as com-

pression and resizing. We investigated whether CNN-

generated images can still be detected, even after these post-

processing steps. To test this, we blurred (simulating re-

sampling) and JPEG-compressed the real and fake images

following the protocol in [38], and evaluated our ability to

detect them (Figure 5). On ProGAN (i.e. the case where

the test distribution matches the training), performance is

100% even when applying augmentation operations, indi-

cating that artifacts may not only be high-frequency, but

exist across frequency bands. In terms of cross-generator

generalization, the augmented model is most robust to post-

processing operations that are included in data augmenta-

tion, agreeing with observations from [33, 38, 41, 44].

However, we note that our model also gains robustness

from augmentation even when testing on out-of-distribution

CNN models.

4.3. Effect of data diversity

Next, we asked how the diversity of the real and fake

images in the training set affects a classifier’s generalization

ability.

Image diversity improves performance To study this,

we varied the number of classes in the dataset used to

train our real-or-fake classifier (Figure 3). Specifically, we

trained multiple classifiers, each one on a subset of the full

training dataset by excluded both real and fake images de-

rived from a specific set of LSUN classes. For all models

we use the same augmentation scheme as the Blur+JPEG

(0.5) model. We found that increasing the training set diver-

sity improves performance, but only up to a point. When the

number of classes used increases from 2 to 16, AP consis-

tently improves, but we see diminishing returns. Minimal

improvement is observed when increasing from 16 to 20

classes. This indicates that there may be a training dataset

that is “diverse enough” for practical generalization.

4.4. Comparison to other models

Next, we asked how our generalization performance

compares to other proposed forensic methods. We compare

our approach to Zhang et al. [44], which is a suite of classi-

fiers trained to detect artifacts generated by a common CNN

architecture, which is shared by many image synthesis tasks

such as CycleGAN and StarGAN. They introduced Auto-

GAN, an autoencoder based on CycleGAN’s generator that

simulates artifacts resembling that of CycleGAN images.

We considered four variations of pretrained models from
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Figure 6: Does our model’s confidence correlate with visual quality? We have found that for two models, BigGAN and StarGAN, the

images on the left (considered more real) tends to look better than the images on the right (considered more fake). However, this does not

seem to hold for the other models. More examples on each dataset are provided in the supplemental material.
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Figure 7: Frequency analysis on each dataset. We show the average spectra of each high-pass filtered image, for both the real and fake

images, similar to Zhang et al. [44]. We observe periodic patterns (dots or lines) in most of the synthetic images, while BigGAN and

ProGAN contains relatively few such artifacts.

Zhang et al. [44], each trained from one of the two image

sources (CycleGAN and AutoGAN), and one of the two im-

age representations (images and spectrum) respectively. All

four variants included JPEG and resize data augmentation

during training to improve the robustness of each model.

We found that our models generalized significantly better

to other architectures, except on CycleGAN (which is the

model architecture used by [44]), StarGAN (where both

methods obtain near 100.0 AP). The comparison results are

shown in Table 2 and Figure 4. We also include compar-

isons to other baseline models in the supplemental material.

4.5. New CNN models

We hope that as new deep synthesis models arrive, our

system will detect them out-of-the-box. One such an evalu-

ation scenario has naturally arisen, with the recent release of

StyleGAN2 [21], a state-of-the-art unconditional GAN ap-

pearing in these proceedings. The StyleGAN2 model makes

several changes to StyleGAN, including redesigned normal-

ization, multi-resolution, and regularization methods. In

Table 3, we test our detector on publicly available Style-

GAN2 generators. We used our Blur+JPEG (0.1) model

and tested on the LSUN car, cat, church, and horse variants.

Despite these changes, our technique performs at 99.1% AP.

These results reinforce the notion that training on today’s

generators can generalize well to future generators, given

that they use similar underlying building blocks.

4.6. Qualitative Analysis

To understand how the network is able to generalize to

unseen CNN models, we study what possible cues the clas-

sifier might be using by visualizing its ranking on the “fak-

eness” over the synthetic dataset. In addition, we analyze

the difference between the frequency responses of both real

and synthetic images across datasets.

“Fakeness” ranking by the model We study whether
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ProGAN StyleGAN StyleGAN2

AP 100. 99.6 99.1

Table 3: Out-of-the box evaluation on recently released Style-

GAN2 [21] model. We used our Blur+JPEG (0.1) model and

tested on StyleGAN2. We observed that our model generalizes to

detecting StyleGAN2 images. Numbers for ProGAN and Style-

GAN are included for comparison.

our model is learning subtle low-level features generated

by CNN architectures, or high-level features such as visual

quality. Taking the similar approach as previous image real-

ism works [22, 47], we rank synthesized images from each

dataset by the model’s prediction, and visualize images in

the 0th, 25th, 50th, 75th, 100th percentile of the “fakeness”

score from our model’s output.

In most datasets, we observe little noticeable correlation

between the model predictions and the visual quality of the

synthesized images. However, there is a weak correlation

in the BigGAN and StarGAN datasets; qualitative examples

are shown in Figure 6. As the “fakeness” scores are higher,

the images tend to contain more visible artifacts which dete-

riorate the visual quality. This implies that our model might

learn to capture perceptual realism under this task. How-

ever, since the correlation is not observed in other datasets,

it is more likely that the model learns features more towards

low-level CNN artifacts. Examples across all datasets are

provided in the supplemental material.

Artifacts of CNN image synthesis Inspired by Zhang et

al. [44], we visualize the average frequency spectra from

each dataset to study the artifacts generated by CNNs, as

shown in Figure 7. Following prior work, we perform

a simple form of high-pass filtering (subtracting the im-

age from its median blurred version) before calculating the

Fourier transform, as it provides a more informative visual-

ization [25]. For each dataset, we average over 2000 ran-

domly chosen images (or the entire set, if it is smaller).

We note that there are many interesting patterns visi-

ble in these visualizations. While the real image spectra

generally look alike (with minor variations due to differ-

ences in the datasets), there are distinct patterns visible in

images generated by different CNN models. Furthermore,

the repeated period patterns in these spectra may be consis-

tent with aliasing artifacts, a cue considered by [44]. In-

terestingly, the most effective unconditional GANs (Big-

GAN, ProGAN) contain relatively few such artifacts. Also,

DeepFake images does not contain obvious artifacts. We

note that DeepFake images have gone through various pre-

and post-processing, where the synthesized face region is

resized, blended, and compressed with MPEG. These op-

erations perturbs the low-level image statistic, which may

cause the frequency patterns to not emerge with this visual-

ization method.

5. Discussion

Despite the alarm that has been raised by the rapidly im-

proving quality of image synthesis methods, our results sug-

gest that today’s CNN-generated images retain detectable

fingerprints that distinguish them from real photos. This

allows forensic classifiers to generalize from one model to

another without extensive adaptation.

However, this does not mean that the current situation

will persist. Due to the difficulties in achieving Nash equi-

libria, none of the current GAN-based architectures are

optimized to convergence, i.e. the generator never wins

against the discriminator. Were this to change, we would

suddenly find ourselves in a situation when synthetic im-

ages are completely indistinguishable from real ones.

Even with the current techniques, there remain practi-

cal reasons for concern. First, even the best forensics de-

tector will have some trade-off between true detection and

false-positive rates. Since a malicious user is typically look-

ing to create a single fake image (rather than a distribu-

tion of fakes), they could simply hand-pick the fake image

which happens to pass the detection threshold. Second, ma-

licious use of fake imagery is likely be deployed on a social

media platform (Facebook, Twitter, YouTube, etc.), so the

data will undergo a number of often aggressive transforma-

tions (compression, resizing, re-sampling, etc.). While we

demonstrated robustness to some degree of JPEG compres-

sion, blurring, and resizing, much more work is needed to

evaluate how well the current detectors can cope with these

transformations in-the-wild. Finally, most documented in-

stances of effective deployment of visual fakes to date have

been using classic “shallow” methods, such as Photoshop.

We have experimented with running our detector on the

face-aware liquify dataset from [38], and found that our

method performs at chance on this data. This suggests that

shallow methods exhibit fundamentally different behavior

than deep methods, and should not be neglected.

We note that detecting fake images is just one small piece

of the puzzle of how to combat the threat of visual disinfor-

mation. Effective solutions will need to incorporate a wide

range of strategies, from technical to social to legal.
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