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Abstract

In this paper, we propose a single-shot instance segmen-

tation method, which is simple, fast and accurate. There

are two main challenges for one-stage instance segmen-

tation: object instances differentiation and pixel-wise fea-

ture alignment. Accordingly, we decompose the instance

segmentation into two parallel subtasks: Local Shape pre-

diction that separates instances even in overlapping con-

ditions, and Global Saliency generation that segments the

whole image in a pixel-to-pixel manner. The outputs of

the two branches are assembled to form the final instance

masks. To realize that, the local shape information is

adopted from the representation of object center points. To-

tally trained from scratch and without any bells and whis-

tles, the proposed CenterMask achieves 34.5 mask AP with

a speed of 12.3 fps, using a single-model with single-scale

training/testing on the challenging COCO dataset. The ac-

curacy is higher than all other one-stage instance segmen-

tation methods except the 5 times slower TensorMask, which

shows the effectiveness of CenterMask. Besides, our method

can be easily embedded to other one-stage object detectors

such as FCOS and performs well, showing the generation

of CenterMask.

1. Introduction

Instance segmentation [11] is a fundamental and chal-

lenging computer vision task, which requires to locate, clas-

sify, and segment each instance in the image. Therefore,

it has both the characters of object detection and semantic

segmentation. State-of-the-art instance segmentation meth-

ods [12, 21, 14] are mostly built on the advances of two-

stage object detectors [9, 8, 26]. Despite the popular trend

of one-stage object detection [13, 25, 22, 17, 27, 30], only

a few works[1, 2, 28, 7] are focusing on one-stage instance

segmentation. In this work, we aim to design a simple one-

stage and anchor-box free instance segmentation model.

Instance segmentation is much harder than object detec-

tion because the shapes of instances are more flexible than

the two-dimensional bounding boxes. There are two main
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Figure 1: Illustration of CenterMask. The Local Shape

branch separates objects locally and the Global Saliency

Map realizes pixel-wise segmentation of the whole image.

Then the coarse but instance-aware local shape and the pre-

cise but instance-unaware global saliency map are assem-

bled to form the final instance mask.

challenges for one-stage instance segmentation: (1) how to

differentiate object instances, especially when they are in

the same category. Some methods [3, 1] extract the global

features of the image firstly then post-process them to sep-

arate different instances, but these methods struggle when

objects overlap. (2) how to preserve pixel-wise location

information. State-of-the-art methods represent masks as

structured 4D tensors [2] or contour of fixed points [28], but

still facing the pixel misalignment problem, which makes

the masks coarse at the boundary. TensorMask [2] designs

complex pixel align operations to fix this problem, which

makes the network even slower than the two-stage counter-

parts.

To address these issues, we propose to break up the mask
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Figure 2: Results of CenterMask on COCO test set images. These results are based on Hourglass-104 backbone, achieving

a mask AP of 34.5 and running at 12.3 fps. Our method differentiates objects well in overlapping conditions with precise

masks.

representation into two parallel components: (1) a Local

Shape representation that predicts a coarse mask for each

local area, which can separate different instances automat-

ically. (2) a Global Saliency Map that segment the whole

image, which can provide saliency details, and realize pixel-

wise alignment. To realize that, the local shape information

is extracted from the point representation at object centers.

Modeling object as its center point is motivated by the one-

stage CenterNet [30] detector, thus we call our method Cen-

terMask.

The illustration of the proposed CenterMask is shown in

Figure 1. Given an input image, the object center point loca-

tions are predicted following a keypoint estimation pipeline.

Then the feature representation at the center point is ex-

tracted to form the local shape, which is represented by a

coarse mask that separates the object from close ones. In

the meantime, the fully convolutional backbone produces a

global saliency map of the whole image, which separates

the foreground from the background at pixel level. Finally,

the coarse but instance-aware local shapes and the precise

but instance-unaware global saliency map are assembled to

form the final instance masks.

To demonstrate the robustness of CenterMask and ana-

lyze the effects of its core factors, extensive ablation ex-

periments are conducted and the performance of multiple

basic instantiations are compared. Visualization shows that

the CenterMask with only Local Shape branch can sepa-

rate objects well, and the model with only Global Seliency

branch performs good enough in objects-non-overlapping

situations. In complex and objects-overlapping situations,

combination of these two branches differentiates instances

and realizes pixel-wise segmentation simultaneously. Re-

sults of CenterMask on COCO [20] test set images are

shown in Figure 2.

In summary, the main contributions of this paper are as

follows:

• An anchor-box free and one-stage instance segmenta-

tion method is proposed, which is simple, fast and ac-

curate. Totally trained from scratch and without any

bells and whistles, the proposed CenterMask achieves

34.5 mask AP with a speed of 12.3 fps on the challeng-

ing COCO, showing the good speed-accuracy trade-

off. Besides, the method can be easily embedded to

other one-stage object detectors such as FCOS[27] and

performs well, showing the generation of CenterMask.

• The Local Shape representation of object masks is pro-

posed to differentiate instances in the anchor-box free

condition. Using the representation of object center

points, the Local Shape branch predicts coarse masks

and separate objects effectively even in the overlapping

situations.

• The Global Saliency Map is proposed to realize pixel-

wise feature alignment naturally. Different from pre-

vious feature align operations for instance segmenta-

tion, this module is simpler, faster, and more precise.

The Global Saliency generation acts similar to seman-

tic segmentation [23], and hope this work can motivate

one-stage panoptic segmentation [16] in the future.

2. Related Work

Two-stage Instance Segmentation: Two-stage instance

segmentation method often follows the detect-then-segment

paradigm, which first performs bounding box detection and

then classifies the pixels in the bounding box area to obtain

the final mask. Mask R-CNN [12] extends the successful

Faster R-CNN [26] detector by adding a mask segmenta-

tion branch on each Region of Interest area. To preserve the

exact spatial locations, it introduces the RoIAlign module

to fix the pixel misalignment problem. PANet [21] aims to

improve the information propagation of Mask R-CNN by

introducing bottom-up path augmentation, adaptive feature

pooling, and fully-connected fusion. Mask Scoring R-CNN

[14] proposes a mask scoring module instead of the classi-
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Figure 3: Overall pipeline of CenterMask. There are five heads after the backbone network. The outputs of the heads are

with the same height (H) and width (W) but different channels. C is the number of categories, and S2 is the size of shape

vector. The Heatmap and Offset heads predict the center point locations. The Shape and Size heads predict the Local Shapes

at the corresponding locations. The Saliency head predicts a Global Saliency Map. The Local Shape and cropped Saliency

Map are multiplied to form the final mask for each instance. For visualization convenience, the whole segmentation pipeline

for only two instances is shown in the figure, and the Global Saliency Map is visualized in the class-agnostic form.

fication score to evaluate the mask, which can improve the

quality of the segmented mask.

Although two-stage instance segmentation methods

achieve state-of-the-art performance, these models are of-

ten complicated and slow. Advances of one-stage object de-

tection motivate us to develop faster and simpler one-stage

instance segmentation methods.

One-stage Instance Segmentation: State-of-the-art

one-stage instance segmentation methods can be roughly

divided into two categories: global-area-based and local-

area-based approaches. Global-area-based methods first

generate intermediate and shared feature maps based on the

whole image, then assemble the extracted features to form

the final masks for each instance.

InstanceFCN [3] utilizes FCN [23] to generate multi-

ple instance-sensitive score maps which contain the rela-

tive positions to objects instances, then applies an assem-

bling module to output object instances. YOLACT [1] gen-

erates multiple prototype masks of the global image, then

utilizes per-instance mask coefficients to produce the in-

stance level mask. Global-area-based methods can main-

tain the pixel-to-pixel alignment which makes masks pre-

cise, but performs worse when objects overlap. In contrast

to these methods, local-area-based methods output instance

masks on each local region directly. PolarMask [28] repre-

sents mask in its contour form and utilizes rays from the

center to describe the contour, but the polygon surrounded

by the contour can not depict the mask precisely and can

not describe objects that have holes in the center. Tensor-

Mask [2] utilizes structured 4D tensors to represent masks

over a spatial domain, it also introduces aligned represen-

tation and tensor bipyramid to recover spatial details, but

these align operations make the network even slower than

the two-stage Mask R-CNN [12].

Different from the above approaches, CenterMask con-

tains both a Global Saliency generation branch and a Local

Shape prediction branch, and integrates them to preserve

pixel alignment and separate objects simultaneously.

3. CenterMask

The goal of this paper is to build a one-stage instance

segmentation method. One-stage means that there is no

pre-defined Region-of-Interests (RoIs) for mask prediction,

which requires to locate, classify, and segment objects si-

multaneously. To realize that, we break the instance seg-

mentation into two simple and parallel sub-tasks, and as-

semble the results of them to form the final masks. The

first branch predicts coarse shape from the center point rep-

resentation of each object, which can constrain the local

area for each object and differentiate instances naturally.
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Figure 4: Architecture of the shape head and size head

for Local Shape prediction. P represents the feature maps

extracted by the backbone network. H and W represents the

height and width of the head outputs. The channel size of

the shape head is SxS, and the channels of the size head is

2, with h and w being the predicted height and width for the

object at the point.

The second branch predicts a saliency map of the whole

image, which realizes precise segmentation and preserves

exact spatial locations. In the end, the mask for each in-

stance is constructed by multiplying the outputs of the two

branches.

3.1. Local Shape Prediction

To differentiate instances at different locations, we

choose to model the masks from their center points. The

center point is defined as the center of the surrounding

bounding box for each object. A natural thought is to rep-

resent it by the extracted image feature at the center point

location, but a fixed-size image feature can not represent

masks in various sizes. To address this issue, we decom-

pose the object mask into two components: the mask size

and the mask shape. The size for each mask can be repre-

sented by the object height and width, and the shape can be

described by a 2D binary array of fixed size.

The above two components can be predicted in parallel

using fixed-size representations of the center points. The

architecture of the two heads is shown in Figure 4. P rep-

resents the image features extracted by the backbone net-

work. Let Fshape ∈ R
H×W×S2

be the output of the Lo-

cal Shape head, with H and W represent the height and

width of the whole map, and S2 represents the number of

output channels for this head. The output of the Size head

Fsize ∈ R
H×W×2 is in the same height and width, with a

channel size of two.

For a center point (x, y) at the feature map, the shape

feature at this location is extracted by Fshape(x, y). The

shape vector is in the size of 1×1×S2, and then be reshaped

to a 2D shape array of size S×S. The size prediction of the

center point is Fsize(x, y), with the height and width being

h and w. The above 2D shape array is then resized to the

size of h× w to form the final local shape prediction.

For convenience, the Local Shape Prediction branch is

used to refer to the combination of the shape and size heads.

This branch produces masks from local point representa-

tion, and predicts a local area for each object, which makes

it suitable for instance differentiation.

3.2. Global Saliency Generation

Although the Local Shape branch generates a mask for

each instance, it is not enough for precise segmentation. As

the fixed-size shape vector can only predict a coarse mask,

resizing and warping it to the object size losses spatial de-

tails, which is a common problem for instance segmenta-

tion. Instead of relying on complex pixel calibration mech-

anism [12, 2], we design a simpler and faster approach.

Motivated by semantic segmentation [23] which makes

pixel-wise predictions on the whole image, we propose to

predict a Global Saliency Map to realize pixel level feature

alignment. The Map aims to represent the salience of each

pixel in the whole image, i.e., whether the pixel belonging

to an object area or not.

Utilizing the fully convolutional backbone, the Global

Saliency branch performs the segmentation on the whole

image in parallel with the existing Local Shape branch. Dif-

ferent from semantic segmentation methods which utilize

softmax function to realize pixel-wise competition among

object classes, our approach uses sigmoid function to per-

form binary classification. The Global Saliency Map can

be class-agnostic or class-specific. In the class-agnostic set-

ting, only one binary map is produced to indicate whether

the pixels belonging to the foreground or not. For the class-

specific setting, the head produces a binary mask for each

object category.

An example of Global Saliency Map is shown in the top

of Figure 3, using the class-agnostic setting for visualiza-

tion convenience. As can be seen in the figure, the map

highlights the pixels that have saliency, and achieves pixel-

wise alignment with the input image.

3.3. Mask Assembly

In the end, the Local Shapes and Global Saliency Map

are assembled together to form the final instance masks.

The Local Shape predicts the coarse area for each instance,

and the cropped Saliency Map realizes precise segmenta-

tion in the coarse area. Let Lk ∈ R
h×w represent the Local

Shape for one object, and Gk ∈ R
h×w be the correspond-

ing cropped Saliency Map. They are in the same size of the

predicted height and width.

To construct the final mask, we firstly transform their

values to the range of (0,1) using the sigmoid function, then

calculate the Hadamard product of the two matrices:

Mk = σ(Lk)⊙ σ(Gk) (1)

There is no separate loss for the Local Shape and Global

9316



Saliency branch, instead, all supervision comes from the

loss function of the assembled mask. Let Tk denote the

corresponding ground truth mask, the loss function of the

final masks is :

Lmask =
1

N

N
∑

k=1

Bce(Mk, Tk) (2)

where Bce represents the pixel-wise binary cross entropy,

and N is the number of objects.

3.4. Overall pipeline of CenterMask

The overall architecture of CenterMask is shown in Fig-

ure 3. The Heatmap head is utilized to predict the positions

and categories for center points, following a typical key-

point estimation[24] pipeline. Each channel of the output

is a heatmap for the corresponding category. Obtaining the

center points requires to search the peaks for each heatmap,

which are defined as the local maximums within a window.

The Offset head is utilized to recover the discretization error

caused by the output stride.

Given the predicted center points, the Local Shapes for

these points are calculated by the outputs of the Shape head

and the Size head at the corresponding locations, following

the approach in Section 3.1. The Saliency head produces

the Global Saliency Map. In the class-agnostic setting, the

output channel number is 1, the Saliency map for each in-

stance is obtained by cropping it with the predicted loca-

tion and size. In the class-specific setting, the channel of

the corresponding predicted category is cropped. The final

masks are constructed by assembling the Local Shapes and

the Saliency Map.

Loss function: The overall loss function is composed of

four losses: the center point loss, the offset loss, the size

loss, and the mask loss. The center point loss is defined

in the same way as the Hourglass network [24], let Ŷijc

be the score at the location (i,j) for class c in the predicted

heatmaps, and Y be the “ground-truth” heatmap. The loss

function is a pixel-wise logistic regression modified by the

focal loss [19]:

Lp =
−1

N

∑

ijc

{

(1− Ŷijc)
α log (Ŷijc) if Yijc = 1

(1− Yijc)
β(Ŷijc)

α log (1− Ŷijc) otherwise

(3)

where N is the number of center points in the image, α

and β are the hyper-parameters of the focal loss; The off-

set loss and size loss follow the same setting of CenterNet

[30], which utilize L1 loss to penalize the distance. Let Ô

represent the predicted offset, p represent the ground truth

center point, and R represents the output stride, then the

low-resolution equivalent of p is p̃ = ⌊ p
R
⌋, therefore the

offset loss is:

Loff =
1

N

∑

p

∣

∣

∣
Ôp̃ − (

p

R
− p̃)

∣

∣

∣
(4)

Let the true object size be Sk = (h,w), the predicted size

be Ŝk = (ĥ, ŵ), then the size loss is:

Lsize =
1

N

N
∑

k=1

∣

∣

∣
Ŝk − Sk

∣

∣

∣
(5)

The overall training objective is the combination of the four

losses:

Lseg = λpLp+λoffLoff+λsizeLsize+λmaskLmask (6)

where the mask loss is defined in Equation 2, λp, λoff ,

λsize and λmask are the coefficients of the four losses re-

spectively.

3.5. Implementation Details

Train: Two backbone networks are involved to evaluate

the performance of CenterMask: Hourglass-104 [24] and

DLA-34 [29]. S equals 32 for the shape vector. λp, λoff

and λsize, λmask are set to 1,1,0.1,1 for the loss function.

The input resolution is fixed with 512 × 512. All models

are trained from scratch, using Adam [15] to optimize the

overall objects. The models are trained for 130 epochs, with

an initial learning rate of 2.5e-4 and dropped 10× at 100

and 120 epoch. As our approach directly makes use of the

same hyper-parameters of CenterNet [30], we argue that the

performance of CenterMask can be improved further if the

hyper-parameters are optimized for it correspondingly.

Inference: During testing, no data augmentation and no

NMS is utilized, only returning the top-100 scoring points

with the corresponding masks. The binary threshold for the

mask is 0.4.

4. Experiments

The performance of the proposed CenterMask is eval-

uated on the MS COCO instance segmentation benchmark

[20]. The model is trained on the 115k trainval35k im-

ages and tested on the 5k minival images. Final results

are evaluated on 20k test-dev.

4.1. Ablation Study

A number of ablation experiments are performed to ana-

lyze CenterMask. Results are shown in Table 1.

Shape size Selection: Firstly, the sensitivity of our ap-

proach to the size of the Local Shape representation is ana-

lyzed in Table 1a. Larger shape size brings more gains, but

the difference is not large, indicating that the Local Shape

representation is robust to the feature size. When S equals

32, the performance saturates, therefore we use the number

as the default Shape size.

Backbone Architecture: Results of CenterMask with

different backbones are shown in Table 1b. The large Hour-

glass brings about 1.4 gains compared with the smaller
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S AP AP50 AP75 APS APM APL

24 32.0 52.8 33.8 14.0 36.3 48.5

32 32.5 53.6 33.9 14.3 36.3 48.7

48 32.5 53.4 34.1 13.8 36.6 49.0

(a) Size of Shape: Larger shape size brings more gains. Perfor-

mance saturates when S equals 32. Results are based on DLA-34.

Backbone AP AP50 AP75 APS APM APL FPS

DLA-34 32.5 53.6 33.9 14.3 36.3 48.7 25.2

Hourglass-104 33.9 55.6 35.5 16.1 37.8 49.2 12.3

(b) Backbone Architecture: FPS represents frame-per-second.

The Hourglass-104 backbone brings 1.4 gains compared with

DLA-34, but its speed is more than 2 times slower.

Shape AP AP50 AP75 APS APM APL

w/o 21.7 44.7 18.3 9.8 24.0 31.8

w 31.5 53.7 32.4 15.1 35.5 45.5

(c) Local Shape branch: Comparison of CenterMask with or

without Local Shape branch.

Saliency AP AP50 AP75 APS APM APL

w/o 26.5 51.8 24.5 12.7 29.8 38.2

w 31.5 53.7 32.4 15.1 35.5 45.5

(d) Global Saliency branch: Comparison of CenterMask with or

without Global Saliency branch.

AP AP50 AP75 APS APM APL

Class-Agnostic 31.5 53.7 32.4 15.1 35.5 45.5

Class-Specific 33.9 55.6 35.5 16.1 37.8 49.2

(e) Class-Agnostic vs. Class-Specific: Comparison of the class-

agnostic and class-specific setting of Global Saliency branch.

AP AP50 AP75 APS APM APL

w/o 33.9 55.6 35.5 16.1 37.8 49.2

w 34.4 55.8 36.2 16.1 38.3 50.2

(f) Direct Saliency supervision: Comparison of CenterMask with

or without direct Saliency supervision.

Table 1: Ablation experiments of CenterMask. All models are trained on trainval35k and tested on minival, using

the Hourglass-104 backbone unless otherwise noted.

g

(a) Results of CenterMask in Shape-only set-

ting. The Local Shape branch seperates instances

with coarse masks.

(b) Results of CenterMask in Saliency-only set-

ting. The Global Saliency branch performs well

when there are no overlap between objects.

compare

(c) Comparison of CenterMask results in challenging conditions. Images form left

to right are generated by: Shape-only, Saliency-only and the combination of the two

branches.

Figure 5: Images generated by CenterMask in different settings. The Saliency branch is in class-agnostic setting for this

experiment.
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Method Backbone Resolution FPS AP AP50 AP75 APS APM APL

two-stage

MNC [4] ResNet-101-C4 - 2.78 24.6 44.3 24.8 4.7 25.9 43.6

FCIS [18] ResNet-101-C5-dilated multi-scale 4.17 29.2 49.5 - 7.1 31.3 50.0

Mask R-CNN [12] ResNeXt-101-FPN 800×1333 8.3 37.1 60.0 39.4 16.9 39.9 53.5

one-stage

ExtremeNet [31] Hourglass-104 512×512 3.1 18.9 44.5 13.7 10.4 20.4 28.3

TensorMask [2] ResNet-101-FPN 800×1333 2.63 37.3 59.5 39.5 17.5 39.3 51.6

YOLACT [1] ResNet-101-FPN 700×700 23.6 31.2 50.6 32.8 12.1 33.3 47.1

YOLACT-550 [1] ResNet-101-FPN 550×550 33.5 29.8 48.5 31.2 9.9 31.3 47.7

PolarMask [28] ResNeXt-101-FPN 768×1280 10.9 32.9 55.4 33.8 15.5 35.1 46.3

CenterMask DLA-34 512×512 25.2 33.1 53.8 34.9 13.4 35.7 48.8

CenterMask Hourglass-104 512×512 12.3 34.5 56.1 36.3 16.3 37.4 48.4

Table 2: Instance segmentation mask AP on COCO test-dev. Resolution represents the image size of training. We

show single scale testing for most models. Frame-per-second (FPS) were measured on the same machine whenever possible.

A dash indicates the data is not available.

DLA-34 [29]. The model with DLA-34 [29] backbone re-

alizes 32.5 mAP with 25.2 FPS, achieving a good speed-

accuracy trade-off.

Local Shape branch: The comparison of CenterMask

with or without Local Shape branch is shown in Table 1c,

with Saliency branch in class-agnostic setting. The Shape

branch brings about 10 gains. Moreover, CenterMask with

only the Shape branch achieves 26.5 AP (as shown in the

first row of Table 1d), images generated by this model are

shown in Figure 5a. Each image contains multiple objects

with dense overlaps, the Shape branch can separate them

well with coarse masks. The above results illustrate the ef-

fectiveness of the proposed Local Shape branch.

Global Saliency branch: The comparison of Center-

Mask with or without Global Saliency branch is shown in

Table 1d, introduction of the Saliency branch improves 5

points, compared with model with only Local Shape branch.

We also conduct visualization to CenterMask with only

Saliency branch. As shown in Figure 5b, there is no overlap

between objects in these images. The Saliency branch per-

forms good enough for this kind of situation by predicting

precise mask for each instance, indicating the effectiveness

of this branch for pixel-wise alignment.

Moreover, the two settings of the Global Saliency branch

are compared in Table 1e. The class-specific setting

achieves 2.4 points higher than the class-agnostic counter-

part, showing that the class-specific setting can help sepa-

rate instances from different categories better.

For the class-specific version of Global Saliency branch,

a binary cross-entropy loss is added to supervise the branch

directly besides the mask loss Eq. (2). The comparison of

CenterMask with or without the new loss is shown in Ta-

ble 1f, direct supervision brings 0.5 points.

Combination of Local Shape and Global Saliency:

Although the Saliency branch performs well in non-

overlapping situations, it can not handle more complex im-

ages. We conduct the comparison of Shape-only, Saliency-

only and the Combination of both in challenging conditions

of instance segmentation. As shown in Figure 5c, objects

overlap exists in these images. In the first column, the

Shape branch separates different instances well, but the pre-

dicted masks are coarse. In the second column, the Saliency

branch realizes precise segmentation but fails in the over-

lapping situations, which results in obvious artifacts on the

overlapping area. CenterMask with both branches inher-

its their merits and avoid their weakness. As shown in the

last column, overlapped objects are separated well and seg-

mented precisely simultaneously, illustrating the effective-

ness of our proposed model.

4.2. Comparison with state­of­the­art

In this section, we compare CenterMask with the state-

of-the-art instance segmentation methods on the COCO[20]

test-dev set.

As a one-stage instance segmentation method, our model

follows a simple setting to perform the comparison: totally

trained from scratch without pre-trained weights[6] for the

backbone, using a single model with single-scale training

and testing, and inference without any NMS.

As shown in Table 2, two models achieve higher AP

than our method: the two-stage Mask R-CNN and the one-

stage TensorMask, but their speed is 4 fps and 5 times

slower than our largest model respectively. We think the

gaps arise from the complicated and time-consuming fea-

ture align operations. Compared with the most accurate

model of YOLACT [1], CenterMask with DLA-34 back-

bone achieves a higher AP with a faster speed. Com-

pared with PolarMask [28], CenterMask with hourglass-

104 backbone is 1.6 point higher with a faster speed.

Figure 6 shows the visualization of the results generated
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Mask R-CNN YOLACT PolarMask OursOriginal

(a)

(b)
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Figure 6: Visualization comparison of three different instance segmentation methods. From left to right are the results

of : Original image, Mask R-CNN, YOLACT, PolarMask, and our method on COCO minival images.

by the state-of-the-art models, only comparing the ones that

have released code. Mask R-CNN [12] detects objects well,

but there are still artifacts in the masks, such as the heads

of the two people in (a), we suppose it is caused by feature

pooling. The YOLACT [1] segments instance precisely, but

misses object in (d) and fails in some overlapping situations,

such as the two legs in (c). The PolarMask can separate

different instances, but its mask is not precise due to the

polygon mask representation. Our CenterMask can separate

overlapping objects well and segment masks precisely.

4.3. CenterMask on FCOS Detector

Besides CenterNet[30], the proposed Local Shape and

Global Saliency branches can be embedded into other off-

the-shelf detection models easily. FCOS[27], which is one

of the state-of-the-art one stage object detectors, is utilized

to perform the experiment. The performance of Center-

Mask built on FCOS with different backbones are shown

in Table 3, with the training followings the same setting of

Mask R-CNN[12]. With the same backbone of ResNeXt-

101-FPN, CenterMask-FCOS achieves 3.8 points higher

than PolarMask[28] in Table 2, and the best model achieves

38.5 mAP on COCO test-dev, showing the generalization of

CenterMask.

To show the superiority of CenterMask on precise seg-

mentation, we evaluate the model on the higher-quality

LVIS annotations. The results are shown in Table 4. Based

on the same backbone, the CenterMask-FCOS achieves bet-

ter performance than Mask R-CNN.

Backbone AP AP50 AP75 APS APM APL

ResNet-101-FPN 36.1 58.7 38.0 16.5 38.4 51.2

ResNeXt-101-FPN 36.7 59.3 38.8 17.4 38.7 51.4

ResNet-101-FPN-DCN 37.6 60.4 39.8 17.3 39.8 53.4

ResNeXt-101-FPN-DCN 38.5 61.5 41.0 18.7 40.5 54.8

Table 3: Performance of CenterMask-FCOS on COCO

test-dev. DCN represents deformable convolution[5].

Model Backbone AP

Mask R-CNN[12] ResNet-101-FPN 36.0

CenterMask-FCOS ResNet-101-FPN 40.0

Table 4: Performance of CenterMask-FCOS on

LVIS[10]. The AP of Mask R-CNN comes from the origi-

nal LVIS paper.

5. Conclusion

In this paper, we propose a single shot and anchor-box

free instance segmentation method, which is simple, fast

and accurate. The mask prediction is decoupled into two

critical modules: the Local Shape branch to separate differ-

ent instances effectively and the Global Saliency branch to

realize precise segmentation pixel-wisely. Extensive abla-

tion experiments and visualization images show the effec-

tiveness of the proposed CenterMask. We hope our work

can help ease more instance-level recognition tasks.
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