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Abstract

We propose a novel top-down approach that tackles the

problem of multi-person human pose estimation and track-

ing in videos. In contrast to existing top-down approaches,

our method is not limited by the performance of its person

detector and can predict the poses of person instances not

localized. It achieves this capability by propagating known

person locations forward and backward in time and search-

ing for poses in those regions. Our approach consists of

three components: (i) a Clip Tracking Network that per-

forms body joint detection and tracking simultaneously on

small video clips; (ii) a Video Tracking Pipeline that merges

the fixed-length tracklets produced by the Clip Tracking

Network to arbitrary length tracks; and (iii) a Spatial-

Temporal Merging procedure that refines the joint locations

based on spatial and temporal smoothing terms. Thanks to

the precision of our Clip Tracking Network and our merg-

ing procedure, our approach produces very accurate joint

predictions and can fix common mistakes on hard scenar-

ios like heavily entangled people. Our approach achieves

state-of-the-art results on both joint detection and tracking,

on both the PoseTrack 2017 and 2018 datasets, and against

all top-down and bottom-down approaches.

1. Introduction

Multi-person human pose tracking is the dual-task of de-

tecting the body joints of all the people in all video frames

and linking them correctly over time. The ability to de-

tect body joints has improved considerably in the last sev-

eral years [4, 5, 7, 14, 16, 21, 22, 24, 30, 33] thanks in

part to the availability of large scale public image datasets

like MPII [4] and MS COCO [19]. These approaches can

be mostly classified into two categories, depending on how

they operate: bottom-up approaches [4, 5, 16, 21, 24, 33]

first detect individual body joints and then group them into

people; while top-down approaches [7, 14, 30] first detect

every person in an image and then predict each person’s

body joints within their bounding box location.

Largely thanks to advancements in object class detec-

tion [9, 14, 28], top-down approaches [30] have achieved

Figure 1: Top-down approaches like HRNet rely heavily on the

performance of their person detector, which sometimes fails on

highly occluded people (frames 47, 60), and occasionally make

mistakes on highly entangled people (frame 67). Our approach

overcomes these limitations by propagating bounding boxes over

time (drawn with dotted lines) and by predicting multiple pose hy-

pothesis for each person and smartly selecting the best one.

better pose estimation performance on images than bottom-

up methods. By taking advantage of robust person detec-

tors, these approaches can focus on the task of joint detec-

tion within bounding box regions, and not have to deal with

large scale variations and the problem of grouping joints

into people that bottom-up methods do. Despite these pos-

itive results on image datasets, top-down methods do not

perform as well on videos and were recently outperformed

by a bottom-up approach [25]. We attribute this to the fact

that detecting people bounding boxes in videos is a much

harder task than on images. While images often capture

people “posing”, videos inherently contain atypical types of

occlusion, viewpoints, motion blur and poses that make ob-

ject detectors occasionally fail (e.g., in fig. 1a, the detector

is not able to localize the highly occluded person instances

in the first two frames).

We propose a novel top-down approach that overcomes

these problems and enables us to reap the benefits of top

down methods for multi-person pose estimation in videos.

We detect person bounding boxes on each frame and then
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propagate these to their neighbours. Our intuition is that if

a person is present at a specific location in a frame, they

should still be at approximately that location in the neigh-

bouring frames, even when the detector fails to find them.

In detail, given a localized person bounding box, we crop a

spatial-temporal tube from the video centered at that frame

and location. Then, we feed this tube to a novel Clip Track-

ing Network that estimates the locations of all the body

joints of that person in all the frames of the tube. To solve

this task, our Clip Tracking Network performs body joint

detection and tracking simultaneously. This has two bene-

fits: (i) by solving these tasks jointly, our network can bet-

ter deal with unique poses and occlusions, and (ii) it can

compensate for missed detections by predicting joints in all

frames of the spatial-temporal tube, even for frames where

the person was not detected. To construct this Clip Tracking

Network, we extend the state-of-the-art High-Resolution

Network (HRNet) [30] architecture to the task of tracking,

using 3D convolutions that are carefully designed to help

learn the temporal correspondence between joints.

The Clip Tracking Network operates on fixed length

video clips and produces multi-person pose tracklets. We

combine these tracklets into pose tracks for arbitrary length

videos in our Video Tracking pipeline, by first generating

temporally overlapping tracklets and then associating and

merging the pose detections in frames where the tracklets

overlap. When merging tracklets into tracks, we use the

multiple pose detections in each frame in a novel consensus-

based Spatio-temporal merging procedure to estimate the

optimal location of each joint. This procedure favours hy-

potheses that are spatially close to each other and that are

temporally smooth. This combination is able to correct mis-

takes on highly entangled people, leading to more accurate

predictions, as in frame 67 of fig. 1: while [30] wrongly

selects the yellow player’s left knee as the prediction for

the green player’s right knee (1a), our procedure is able to

correct this mistake and predict the correct location (1b).

When compared to the literature, our approach achieves

state-of-the-art results for both body joint detection

and tracking, on the PoseTrack 2017 and 2018 video

datasets [3], not only against top-down approaches, but also

against bottom-up ones. The improvement is consistent and

often significant; for example, error on body joint detection

reduces by 28% PoseTrack 2017 and error on body joint

tracking by 9% on PoseTrack 2018. Furthermore, we also

present an extensive ablation study of our approach, where

we validate its components and our hyperparameter choices.

The rest of the paper is organized as follows: in sec. 2

we present our related work; then, in sec. 3 we present

our three contributions: (i) our novel clip tracking network

(sec. 3.1), (ii) our tracking pipeline (sec. 3.2) and (iii) our

spatial-temporal merging procedure (sec. 3.3). Finally, we

present our experiments in sec. 4 and conclude in sec. 5.

2. Related Work

2.1. Human pose estimation in images

Recent human pose estimation methods can be classi-

fied into bottom-up and top-down approaches, depending

on how they operate. Bottom-up approaches [5, 16, 21, 24]

first detect individual body joints and then group them into

people. On the other hand, top-down approaches [7, 14,

23, 30], first detect people bounding boxes and then pre-

dict their joint locations within each region. Top-down ap-

proaches have the advantage of not needing any joint group-

ing and because the input images they operate on are crops

from detectors, they do not have to be robust to large scale

variations. However, top-down approaches suffer from the

limitations of the person detector: when it fails (i.e., a per-

son is not localized), the joints on that person cannot be

recovered. Bottom-up approaches do not have this reliance

on a detector and they can predict any joint; however they

suffer from the difficult tasks of joint detection across large

scale variations and joints grouping. In this work we try to

take the best of both words and propose a novel top-down

approach for videos that recovers from the detector’s misses

by exploring and propagating information temporally.

We build upon the HRNet of Sun et al. [30]. This was

originally proposed for human pose estimation, achieving

state-of-the-art results in images. Recently, it was then

modified to achieve state-of-the-art results on other vision

tasks, like object detection [31] and semantic segmenta-

tion [32]. In this paper we show how to extend HRNet to

human pose estimation and tracking in videos.

2.2. Human pose estimation and tracking in videos

Given the image approaches just introduced, it is natural

to extend them to multi-person pose tracking in videos by

running them on each frame independently and then linking

these predictions over time. Along these lines, bottom-up

methods [17, 25] build spatial-temporal graphs between the

detected joints. Raaj et al. [25] did so by extending the spa-

tial Affinity Field image work of Cao et al. [5] to Spatio-

Temporal Affinity Fields (STAF), while Jin et al. [17] ex-

tended the spatial Associative Embedding image work of

Newell et al. [21] to Spatio-Temporal Embedding.

On the other hand, top-down methods [13, 34] build

temporal graphs between person bounding boxes, which

are usually simpler to solve. SimpleBaseline [34] first run

a person detector on each frame independently and then

linked its detections in a graph, where the temporal sim-

ilarity was defined using expensive optical flow. Detect-

and-Track [13] instead used a 3D Mask R-CNN approach

to detect the joints of a person in a short video clip and then

used a lightweight tracker to link consecutive clips together

by comparing the location of the detected bounding boxes.

Like [13], our approach also runs inference on short clips in
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a single forward pass, but it brings many advantages over it:

(i) as most top-down approaches, [13] is limited by its de-

tector’s accuracy and it cannot recover from its misses; in-

stead, we propose to propagate detected bounding boxes to

neighbouring frames and look for missed people in those re-

gions. (ii) [13] runs on non-overlapping clips and performs

tracking based on person bounding boxes only; instead, we

run on overlapping clips and use multiple joint hypothesis in

a novel tracking system, that leads to more accurate predic-

tions. (iii) [13] employs fully 3D convolutional networks,

while we show that 3D filters on only part of a network is

already sufficient to teach the network to track.

3. Methodology

At a high level, our method works by first detecting all

candidate persons in the center frame of each video clip (i.e.

the keyframe) and then estimating their poses forward and

backward in time. Then, it merges poses from different clips

in time and space, producing any arbitrary length tracks.

More in details, our approach consist of three major com-

ponents: Cut, Sew and Polish. Given a video, we first cut

it into overlapping clips and then run a person detector on

their keyframes. For each person bounding box detected in

a keyframe, a spatial-temporal tube is cut out at the bound-

ing box location over the corresponding clip. Given this

tube as input, our Clip Tracking Network both estimates

the pose of the central person in the keyframe, and tracks his

pose across the whole video clip (sec. 3.1, fig. 2). We call

these tracklets. Next, our Video Tracking Pipeline works

as a tailor to sew these tracklets together based on poses in

overlapping frames (sec. 3.2, fig. 3). We call these multi-

ple poses for the same person in same frame hypotheses.

Finally, Spatial-Temporal merging polishes these predic-

tions using these hypotheses in an optimization algorithm

that selects the more spatially and temporally consistent lo-

cation for each joint (sec. 3.3, fig. 4). In the next three sec-

tions we present these three components in details.

3.1. Clip Tracking Network

Our Clip Tracking Network performs both pose estima-

tion and tracking simultaneously, on a short video clip. Its

architecture builds upon the successful HRNet architecture

of Sun et al. [30]. In the next paragraph we summarize the

original HRNet design and in the following one we explain

how to extend it to tracking.

HRNet for human pose estimation in images. Given an

image, this top-down approach runs a person detector on

it, which outputs a list of axis-aligned bounding boxes, one

for each localized person. Each of these boxes is indepen-

dently cropped and fed into HRNet, which consists of four

stages of four parallel subnetworks trained to localize all

body joints of only the central person in the crop.

The output of HRNet is a set of heatmaps, one for each

body joint. Each pixel of these heatmaps indicates the like-

lihood of “containing” a joint. As other approaches in the

literature [5, 7, 14, 16, 21, 24], the network is trained using

a mean squared error loss function, between the predicted

heatmap Hpred and the ground-truth heatmap Hgt:

L =
1

KWH

K∑

k

W∑

i

H∑

j

∥
∥
∥H

pred
ijk −H

gt
ijk

∥
∥
∥

2

2

, (1)

where K is the number of body joints (keypoints) and i, j

the pixel coordinates. Hgt are generated by convolving a

2D Gaussian filter on the annotated location of each joint.

3D HRNet for video pose estimation and tracking.

Our approach operates on short video clips: C =

{F t−δ, ...,F t, ...,F t+δ}. First, it runs a person detector on

the center frame F t and obtains a list of person bounding

boxes Bt
= {βt

1, ..., β
t
n} (fig. 2a). Then, for each bound-

ing box βt
p, it creates a tube Tβt

p
by cropping the box region

from all frames in the clip C: Tβt
p
= {F t−δ

βt
p

, ...,F t
βt
p
, ...,F t+δ

βt
p

}

(fig. 2b). Next, it feeds this tube to our video HRNet, which

outputs a tracklet containing all the poses of person p in

all the frames of the tube: Pβt
p

= {ρt−δ

βt
p
, ..., ρtβt

p
, ..., ρt+δ

βt
p
}

(fig. 2c). Importantly, all the poses in Pβt
p

need to belong

to the same person, even when this becomes occluded or

moves out of the tube frame (in which case the network

should not output any prediction, even if other people are

present). This is a difficult task, which requires the network

to both learn to predict the location of the joints of the pose

and track them through time.

In order to help the network tackle this challenge, we do

two things: (i) to account for fast moving people, we enlarge

each bounding box by 25% along both dimensions prior to

creating a tube; and (ii) to allow the network to associate

people between frames, we inflate the 2D convolutions in

the first two stages of HRNet to 3D to help the network

learn to track. Specifically, in the first stage we use 3×1×1,

1×3×3 and 1×1×1 filters, while in the second stage we use

3×3×3 filters. After this second stage the network has a

receptive field that is temporally large enough to observe

the whole tube, learn the person’s appearance and his/her

movements within it. Note how our method is similar in

spirit to what Jin et al. [17] proposed with their temporal

associative embedding, but it is learnt automatically by the

network without the need of additional constraints. Finally,

we train our video HRNet with the same mean squared loss

of eq. 1, but now computed over all the frames in the clip C:

L =
1

|C|KWH

|C|
∑

f

K∑

k

W∑

i

H∑

j

∥
∥
∥H

pred
ijkf −H

gt
ijkf

∥
∥
∥

2

2

(2)
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Figure 2: Clip Tracking Network. First, (a) our approach runs a person detector on the keyframe of a short video clip. Then, (b) for

each detected person it creates a tube by cropping the region within his/her bounding box from all the frames in the clip. Next, (c) each

tube is independently fed into our Clip Tracking Network (3D HRNet), which outputs pose estimates for the same person (the one originally

detected in the keyframe) in all the frames of the tube. Finally, (d) we reproject the predicted poses on the original images to show how the

model can correctly predict poses in all the frames of the clip, by only detecting people in the keyframe.

3.2. Video Tracking Pipeline

Our Clip Tracking Network outputs a tracklet Pβt
p

for

each person p localized at βp. However, p may exist be-

yond the length of Pβt
p

and the duty of our Video Tracking

pipeline is to merge tracklets that belong to the same person,

thus enabling pose estimation and tracking on any arbitrary

length video (fig. 3). Our pipeline merges two fixed-length

tracklets if their predicted poses on overlapping frames are

similar (e.g., in fig. 3, Pβ2
1

and Pβ4
1

overlap on frames 2-4).

We generate these overlapping tracklets by running

our Clip Tracking Network on clips of length |C| from

keyframes sampled every S (stepsize) frames with S < |C|.

We model the problem of merging tracklets that belong

to the same person as a bipartite graph based energy mini-

mization problem, which we solve using the Hungarian al-

gorithm [18]. As a similarity function between two over-

lapping tracklets, we compute Object Keypoint Similarity

(OKS) [19, 27] between their poses (reprojected on the orig-

inal coordinate space, fig. 2d) on their overlapping frames.

For example, in fig. 3 tracklets Pβ6
3

and Pβ8
1

are computed on

tubes generated from keyframes 6 and 10 respectively and

of length |C| = 5. Under these settings, these tracklets both

predict poses for frames 6, 7 and 8 and their similarity is

computed as the average OKS over these three frames. On

the other hand, tracklets Pβ6
3

and Pβ2
2

only overlap on frame

4 and as such their similarity is computed as the OKS on

that single frame. Finally, we take the negative value of this

OKS similarity for our minimization problem.

Note how this formulation is able to overcome the limita-

tion that top-down approaches usually suffer from: missed

bounding box detections. Thanks to our propagation of

person detections from keyframes to their neighbouring

frames (fig. 2b), we are able to obtain joints predictons even

for those frames with missed detections. For example, in

fig. 3 the person detector failed to localize the green per-

son in keyframe 4, but by propagating the detections from

keyframes 2 and 6 we are able to obtain a pose estimate for

frame 4 as well. In addition, we are also able to link these

correctly, thanks to the overlap between these two tracklets.

3.3. SpatialTemporal merging of pose hypotheses

Our video tracking pipeline merges tracklets, but it does

not deal with merging human poses. For example, in fig. 3

the approach correctly links all the yellow tracklets, but it

does not address the question of what to do with the multiple

pose estimates for frame 4 (i.e., ρ4
β2
1

, ρ4
β4
1

and ρ4
β6
2

). In this

section we present our solution to this problem.

Given a set of merged, overlapping tracklets for person

p, we define Ht
p = {ρt

β
t−δ
p

, ..., ρtβt
p
, ..., ρt

β
t+δ
p

}, as the pose

hypotheses of p at time t. Ht
p represents the collection of

poses for person p, generated by our Clip Tracking Network

at time t by running on tube crops centered on different

keyframes. The most straightforward procedure to obtain a

single final pose for each person is to simply select, for each

joint, the hypothesis Ht
p with the highest confidence score.

We call this Baseline Merge and, as we show later in our
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Figure 3: Video Tracking Pipeline merges fixed-length tracklets

into arbitrary length tracks by comparing the similarity of their

detected poses in the frames the tracklets overlap on.

experiments, it achieves competitive performance, already

highlighting the power of our Clip Tracking Network. Nev-

ertheless, this procedure occasionally predicts the wrong lo-

cation when the person of interest is entangled with or oc-

cluded by another person, as show in fig. 4d.

To overcome these limitations, we propose a novel

method to merge these hypotheses (fig. 4b-c). Our intu-

ition is that the optimal location for a joint should be the

one that is both consistent across the multiple candidates

within a frame (spatial constraint) and consistent over con-

secutive frames (temporal constraint). We model the prob-

lem of predicting the optimal location for each joint in each

frame as a shortest path problem and we solve it using the

Dijkstra’s algorithm [10]. Instead of considering each joint

detection as a node in the graph, we operate on clusters

obtained by running a mean shift algorithm over joint hy-

potheses [8]. This clusters robustly smooth out noise in the

individual hypotheses, while also reducing the graph size

leading to faster optimization. As a similarity function φ be-

tween clusters ct and ct+1 in consecutive frames, we com-

pute a spatial-temporal weighting function that follows the

aforementioned intuition: it favours clusters with more hy-

potheses and those that have smoother motion across time.

Formally,

φ(ct, ct+1) = (|H| − |ct|) + (|H| − |ct+1|)
︸ ︷︷ ︸

Spatial

+λ
∥
∥µ(ct)− µ(ct+1)

∥
∥
2

2
︸ ︷︷ ︸

Temporal

, (3)

where µ(ct), µ(ct+1) are the locations of the centers of the

clusters, |ct|, |ct+1| their magnitude and |H| the number of

hypotheses. Finally, we balance these spatial and temporal

constraints using λ.

Figure 4: Merging pose hypotheses. Our video tracking pipeline

runs our Clip Tracking Network on multiple overlapping frames,

producing multiple hypotheses for every joint of a person (a). We

cluster these hypotheses (b) and solve a spatial-temporal optimiza-

tion problem on these clusters to estimate the best location of each

joint (c). This achieves better predictions than a simple baseline

that always pick the hypothesis with the highest confidence score

(d), especially on frames with highly entangled people.

4. Experiments

4.1. Datasets and Evaluation

We experiment with PoseTrack [3], which is a large-

scale benchmark for human pose estimation and tracking

in video. It contains challenging sequences of highly ar-

ticulated people in dense crowds performing a wide range

of activities. We experiment on both the 2017 and 2018

versions of this benchmark. PoseTrack2017 contains 250

videos for training, 50 for validation and 214 for test. Pose-

Track2018 further increased the number of videos of the

2017 version to a total of 593 for training, 170 for valida-

tion and 375 for test. These datasets are annotated with 15

body joints, each one defined as a point and associated to

a unique person id. Training videos are annotated with a

single dense sequence of 30 frames, while validation videos

also provide annotations for every forth frame, to enable the

evaluation of longer range tracking.

We evaluate our models using the standard human pose

estimation [19, 24, 27] and tracking [3, 20] metrics: joint

detection performance is expressed in terms of average

precision (AP), while tracking performance in terms of

multi object tracking accuracy (MOTA). We compute

these metrics independently on each body joint and then ob-

tain our final performance by averaging over the joints. As

done in the literature [13, 30, 34], when we evaluate on the

validation sets of these datasets, we compute AP on all the

localized body joints, but we threshold low confidence pre-

dictions prior to computing MOTA. For our experiments we

learn a per-joint threshold on a hold out set of the training

set. Moreover, we remove very short tracklets (< 5 frames)

and tiny bounding boxes (W ∗ H < 3200), as these often

capture not annotated, small people in the background.
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4.2. Implementation details

3D Video HRNet. Prior to inflating a 2D HRNet to our

3D version, we pre-train it for image pose estimation on the

PoseTrack dataset (2017 or 2018, depending on what set

we evaluate the models on). This step enables the network

to learn the task of localizing body joints, so that during

training on videos it can focus on learning to track. We

inflate the first two stages of HRNet using “mean” initial-

ization [6, 12, 13], which replicates the 2D filters and nor-

malizes them accordingly. We use stepsize S = 1, as it

produces the highest number of pose hypotheses, and clips

of |C| = 9 frames, so that the model can benefit from impor-

tant temporal information. We use the same hyperameters

of [30], but we train 3D HRNet for 20 epochs and decrease

the learning rate two times after 10 and 15 epochs, respec-

tively (1e-4 → 1e-5 → 1e-6). Finally, during inference we

follow the procedure of [30, 34]: we run on both the original

and the flipped image and average their heatmaps.

Person detector. We use a ResNet-101 SNIPER [28] de-

tector to localize all the person instances. We train it on the

MS COCO 2017 dataset [19] and achieve an AP of 57.9 on

the “person” class on COCO minival, which is similar to

that of other top-down approaches [34, 36].

Merging pose hypotheses. We follow the PoseTrack eval-

uation procedure to determine a good size estimate for our

clusters. This procedure considers a prediction correctly,

if the L2 distance between that prediction and the closest

ground truth is within a radius defined as 50% of the head

size of the person. We use the same radius for our clusters.

Moreover, we set λ = 0.1 to give equal importance to the

spatial and temporal components, as the latter has approxi-

mately 10× the magnitude of the former.

4.3. Comparisons with the stateoftheart

We compare our approach with the state-of-the-art

(SOTA) methods in the literature on body joints detection

and tracking, on the validation sets of PoseTrack2017 (ta-

bles 1 and 2) and PoseTrack2018 (tables 3 and 4). Our

approach achieves SOTA results on both metrics, on both

datasets and against both top-down and bottom-up ap-

proaches. In some cases, the improvement over the SOTA

is substantial: +6.5 mAP on PoseTrack2017 (which corre-

sponds to 28% in error reduction), and +3.0 MOTA on Pose-

Track2018 (9% in error reduction). When compared to only

top-down approaches, which is the category this approach

belongs to, the improvement in MOTA is even more signifi-

cant, up to +6.2 on PoseTrack2017 (18% in error reduction)

over the winner of the last PoseTrack challenge (FlowTrack,

65.4 vs 71.6), showing the importance of performing joint

detection and tracking simultaneously.

Next, we evaluate our approach on the test sets of

PoseTrack 2017 (table 5) and PoseTrack 2018 (table 6).

The annotations for these sets are private and we obtained

Method Head Sho Elb Wri Hip Kne Ank Avg

B
o

tt
o

m
-u

p JointFlow [11] - - - - - - - 69.3

TML++ [15] - - - - - - - 71.5

STAF [25] - - - 65.0 - - 62.7 72.6

STEmbedding [17] 83.8 81.6 77.1 70.0 77.4 74.5 70.8 77.0

T
o

p
-d

o
w

n

Detect&Track [13] 67.5 70.2 62.0 51.7 60.7 58.7 49.8 60.6

PoseFlow [35] 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5

FastPose [37] 80.0 80.3 69.5 59.1 71.4 67.5 59.4 70.3

FlowTrack [34] 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.7

HRNet [30] 82.1 83.6 80.4 73.3 75.5 75.3 68.5 77.3

Our approach 89.4 89.7 85.5 79.5 82.4 80.8 76.4 83.8

Table 1: Joint detection (AP) on PoseTrack2017 val.

Method Head Sho Elb Wri Hip Kne Ank Avg

B
o

tt
o

m
-u

p JointFlow [11] - - - - - - - 59.8

TML++ [15] 75.5 75.1 62.9 50.7 60.0 53.4 44.5 61.3

STAF [25] - - - - - - - 62.7

STEmbedding [17] 78.7 79.2 71.2 61.1 74.5 69.7 64.5 71.8

T
o

p
-d

o
w

n Detect&Track [13] 61.7 65.5 57.3 45.7 54.3 53.1 45.7 55.2

PoseFlow [35] 59.8 67.0 59.8 51.6 60.0 58.4 50.5 58.3

FastPose [37] - - - - - - - 63.2

FlowTrack [34] 73.9 75.9 63.7 56.1 65.5 65.1 53.5 65.4

Our approach 80.5 80.9 71.6 63.8 70.1 68.2 62.0 71.6

Table 2: Joint tracking (MOTA) on PoseTrack2017 val.

Method Head Sho Elb Wri Hip Kne Ank Avg

B
-U STAF [25] - - - 64.7 - - 62.0 70.4

TML++ [15] - - - - - - - 74.6

T
-D PT CPN++ [36] 82.4 88.8 86.2 79.4 72.0 80.6 76.2 80.9

Our approach 84.9 87.4 84.8 79.2 77.6 79.7 75.3 81.5

Table 3: Joint detection (AP) on PoseTrack2018 val.

Method Head Sho Elb Wri Hip Kne Ank Avg

B
-U STAF [25] - - - - - - - 60.9

TML++ [15] 76.0 76.9 66.1 56.4 65.1 61.6 52.4 65.7

T
-D PT CPN++ [36] 68.8 73.5 65.6 61.2 54.9 64.6 56.7 64.0

Our approach 74.2 76.4 71.2 64.1 64.5 65.8 61.9 68.7

Table 4: Joint tracking (MOTA) on PoseTrack2018 val.

Method Additional Data wrists AP ankles AP Total AP Total MOTA

JointFlow [11] COCO 53.1 50.4 63.4 53.1

TML++ [15] COCO 60.9 56.0 67.8 54.5

FlowTrack [34] COCO 71.5 65.7 74.6 57.8

HRNet [30] COCO 72.0 67.0 75.0 57.9

POINet [26] COCO 69.5 67.2 72.5 58.4

KeyTrack [29] COCO 71.9 65.0 74.0 61.2

Our approach COCO 69.8 65.9 74.1 64.1

Table 5: Results from the PoseTrack2017 test leaderboard [1].

Method Additional Data wrists AP ankles AP Total AP Total MOTA

TML++ [15] COCO 60.2 56.8 67.8 54.9

PT CPN++ [36] COCO + Other 68.2 66.1 70.9 57.4

FlowTrack [34] COCO + Other 73.0 69.0 74.0 61.4

Our approach COCO 69.8 67.1 73.5 64.3

Table 6: Results from the PoseTrack2018 test leaderboard [2].

our results by submitting our predictions to the evaluation

server [1]. Again, our approach achieves the best tracking

results on both test sets (+3 MOTA) and on par to SOTA

results on joint detection, even though our model is actually

trained on less data than the competitors on PoseTrack2018.

4.4. Analysis of our approach

We now analyze our approach and our hyper-parameter

choices. For simplicity, we run our experiments only on

the validation set of PoseTrack2017, using the settings de-

scribed in sec. 4.2. Unless specified, we do not employ our

spatial-temporal merging procedure (sec. 3.3) to keep our

analysis transparent, as this corrects some mistakes.
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Figure 5: Results for different values of clips lengths |C| (a) and stepsize S.

Backbone:

HRNet
Linking

Spatial Temporal
Detection

mAP

Tracking

MOTA
Merge Merge

(sec. 3.3) (sec. 3.3)

Base 2D oks-gbm 77.7 65.6

Our 3D

(sec. 3.1)

none 82.3 -

sec. 3.2 83.1 70.8

sec. 3.2 ✓ 83.5 71.4

sec. 3.2 ✓ 83.4 71.1

sec. 3.2 ✓ ✓ 83.8 71.6

Table 7: Ablation study on the components of our approach. In

line 3, we test our Video Tracking pipeline paired with a Baseline

merge that always selects the hypothesis with the highest score.

Ablation study. Here we evaluate the different compo-

nents of our approach and quantify how much each of them

contributes to the model’s final performance (table 7). First,

we compare against a baseline 2D HRNet model [30] that

runs on each frame independently. This baseline model

achieves a mAP of 77.7; this is substantially lower com-

pared to our most basic 3D HRNet (82.3 mAP), which does

not perform any tracking and just uses OKS-based NMS

over the hypotheses. This big improvement is due to our

model being able to predict joints in frames where the per-

son detector failed to localized the person.

When our 3D HRNet is paired with our video track-

ing pipeline (sec. 3.2) and the baseline merge, it improves

MOTA considerably compared to the same 2D HRNet base-

line paired with the popular OKS-based greedy bipartite

matching (oks-gbm) algorithm that links pose predictions

over time [13, 34]. Interestingly, this also improves mAP

over our 3D HRNet with no tracking (+0.8 mAP). Finally,

when we substitute the baseline merge with our procedure

(sec. 3.3), the results further improve: both spatial and tem-

poral merges are beneficial and complementary, bringing

our full model performance to 83.8 mAP and 71.6 MOTA,

almost a 10% improvement over the strong baseline.

Clip length |C|. Our 3D HRNet operates on spatial-

temporal tubes of length |C|. In sec. 4.2, we set this value

to 9, so that both our Clip Tracking Network and our Video

Tracking pipeline can greatly benefit from rich temporal in-

formation. Here we examine how performance changes as

we change this hyperparameter (fig. 5a). Setting |C| = 1 is

equivalent to running the baseline 2D HRNet presented in

the previous section and it achieves the lowest performance

among all variations. Interestingly, the largest improvement

HRNet: 3D filters None Early (ours) Last All

mAP 77.7 81.1 80.6 79.3

MOTA 65.6 70.0 69.2 68.0

Table 8: Results from different HRNet architecture as Clip Track-

ing Network, which differ in where they have 3D temporal filters.

is brought by moving from 1 to 3, which indicates that little

temporal information is already sufficient to compensate for

many failures of the person detector. Further increasing |C|
leads to a slow, but steady improvement in both mAP and

MOTA, as the model can recover from even more mistakes.

We quantitatively show this recovery in fig. 5a, where the

number of false negatives decreases as |C| increases.

Step size S. In sec. 4.2, we set this to 1, so that our ap-

proach can use every frame of a video as keyframe and col-

lect the largest set of pose hypotheses. This procedure, how-

ever, may be too expensive for some applications and here

we evaluate how the performance changes as we improve

the runtime by reducing the number of keyframes (i.e., in-

crease the stepsize). Increasing the value of S leads to a lin-

ear speed up by a factor S, as the two most expensive com-

ponents of our approach (person detector and 3D HRnet)

now run only every S frames. As expected, results (fig. 5b)

for both joint detection and tracking decrease as we increase

S, as the model looses its temporal benefits. Nevertheless,

they decreases slowly and even when we run our fastest in-

ference with the largest step size, the model still achieves

competitive performance (mAP 78.9 and MOTA 67.2), on

par with that of many state-of-the-art models (table 1). Fur-

thermore, note out how these results are better than those of

our baseline 2D HRNet (mAP 77.7 and MOTA 65.6, fig. 5a,

|C| = 1), yet this 3D model is effectively faster, as it runs

its person detector only once every 8 frames, as opposed to

all frames, as done by 2D HRNet.

Network design. Our 3D HRNet architecture uses 3D

convolutions in its early 2 stages (sec. 3.1), as these are the

best suited to learn the low-level correspondence needed to

correctly link the joints of the same person within a tube.

In this section we evaluate different network designs: our

design (Early), a 3D HRNet architecture with 3D filters in

its last stage (Last), which learn to smooth joint predictions

over small temporal windows, and a fully 3D HRNet archi-

tecture (All), that balances learning good temporal corre-
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Figure 6: Visualization of the output of our approach on five videos from the PoseTrack dataset. Bounding boxes and poses are color

coded using the track id predicted by our model. Solid bounding boxes indicate that the instance was localized by the person detector,

while dotted bounding boxes were originally missed by the detector, but recovered by our approach.

spondences and spatially smooth joint predictions. As train-

ing a full 3D HRNet requires a considerable amount of GPU

memory, we experiment here with a lightweight setup with

|C| = 3. Results are presented in table 8. For reference, we

report the mAP performance of a standard 2D HRnet with-

out any 3D filter. Adding 3D filters, no matter the location,

always improves over the simple 2D architecture. Among

the different choices, “Early” achieves the best performance

for both detection and tracking, validating our design.

Dependency on person detector. Like all top-down

methods, our approach is also limited by the accuracy of

the employed person detector. However, we believe that

our approach is significantly less sensitive than others in

the literature, as it can recover missed predictions using its

temporal reasoning. To validate this, we evaluate how well

the propagation of detection boxes to neighboring frames

allows the model to improve recall. We experiment on the

validation set of PoseTrack2018, as the 2017 set does not

have bounding box annotations. We compare our 3D ap-

proach against its 2D counterpart, using two different back-

bones (table 9). Results show that: (i) our 3D approach

can indeed recover a substantial number of missed predic-

tions (+4-7% recall) and (ii) it can even raise the recall of a

weaker detector (3D MobileNet-V2, recall 83) on par with

that of a much stronger model (2D ResNet-101, recall 82.9).

Person detector Base 2D Our 3D

Strong ResNet-101 82.9 86.5

Weaker MobileNet-V2 77.6 83.0

Table 9: Person bounding box recall on PoseTrack 2018.

5. Conclusion

We have presented a novel top-down approach for multi-

person pose estimation and tracking in videos. Our ap-

proach can recover from failures of its person detector by

propagating known person locations through time and by

searching for poses in them. Our approach consists of three

components. Clip Tracking Network was used to jointly

perform joint pose estimation and tracking on small video

clips. Then, Video Tracking Pipeline was used to merge

tracklets predicted by Clip Tracking Network, when these

belonged to the same person. Finally, Spatial-Temporal

Merging was used to refine the joint locations based on a

spatial-temporal consensus procedure over multiple detec-

tions for the same person. We showed that this approach is

capable of correctly predicting people poses, even on very

hard scenes containing severe occlusion and entanglements

(fig. 6). Finally, we showed the straight of our approach by

achieving state-of-the-art results on both joint detection and

tracking, on both the PoseTrack 2017 and 2018 datasets,

and against all top-down and bottom-down approaches.
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