
Cross-Batch Memory for Embedding Learning

Xun Wang∗, Haozhi Zhang∗ , Weilin Huang†, Matthew R. Scott

Malong Technologies

{xunwang, haozhang, whuang, mscott}@malong.com

Abstract

Mining informative negative instances are of central im-

portance to deep metric learning (DML), however this task

is intrinsically limited by mini-batch training, where only a

mini-batch of instances is accessible at each iteration. In

this paper, we identify a “slow drift” phenomena by ob-

serving that the embedding features drift exceptionally slow

even as the model parameters are updating throughout the

training process. This suggests that the features of instances

computed at preceding iterations can be used to consid-

erably approximate their features extracted by the current

model. We propose a cross-batch memory (XBM) mecha-

nism that memorizes the embeddings of past iterations, al-

lowing the model to collect sufficient hard negative pairs

across multiple mini-batches - even over the whole dataset.

Our XBM can be directly integrated into a general pair-

based DML framework, where the XBM augmented DML

can boost performance considerably. In particular, with-

out bells and whistles, a simple contrastive loss with our

XBM can have large R@1 improvements of 12%-22.5% on

three large-scale image retrieval datasets, surpassing the

most sophisticated state-of-the-art methods [37, 26, 2], by

a large margin. Our XBM is conceptually simple, easy to

implement - using several lines of codes, and is memory ef-

ficient - with a negligible 0.2 GB extra GPU memory. Code

is available at: https://github.com/MalongTech/research-

xbm.

1. Introduction

Deep metric learning (DML) aims to learn an embedding

space where instances from the same class are encouraged

to be closer than those from different classes. As a funda-

mental problem in computer vision, DML has been applied

to various tasks, including image retrieval [39, 12, 7], face

recognition [38], zero-shot learning [47, 1, 16], visual track-

ing [17, 34] and person re-identification [44, 13].

∗Equal contribution †Corresponding author

A family of DML approaches are known as pair-based,

whose objectives can be defined in terms of pair-wise sim-

ilarities within a mini-batch, such as contrastive loss [3],

triplet loss [29], lifted-structure loss[22], n-pairs loss [30],

multi-similarity (MS) loss [37] and etc. Moreover, most

existing pair-based DML methods can be unified as weight-

ing schemes under a General Pair Weighting (GPW) frame-

work [37]. The performance of pair-based methods heav-

ily rely on their capability of mining informative negative

pairs. To collect sufficient informative negative pairs from

each mini-batch, many efforts have been devoted to im-

proving the sampling schemes, which can be categorized

into two main directions: (1) sampling informative mini-

batches based on global data distribution [32, 6, 28, 32, 9];

(2) weighting informative pairs within each individual mini-

batch [22, 30, 37, 35, 40].

Various sophisticated sampling schemes have been de-

veloped, but the hard mining ability is inherently limited

by the size of a mini-batch, which the number of possi-

ble training pairs depends on. Therefore, to improve the

sampling scheme, it is straightforward to enlarge the mini-

batch, which can boost the performance of pair-based DML

methods immediately. We demonstrate by experiments that

the performance of pair-based approaches, such as con-

trastive loss [3] and recent MS loss [37], can be improved

strikingly when the mini-batch grows larger on large-scale

datasets (Figure 1, left and middle). It is not surprising

because the number of negative pairs grows quadratically

w.r.t. the mini-batch size. However, simply enlarging a

mini-batch is not an ideal solution to solve the hard min-

ing problem due to two limitations: (1) the mini-batch size

is limited by the GPU memory and computational cost; (2)

a large mini-batch (e.g. 1800 used in [29]) often requires

cross-device synchronization, which is a challenging engi-

neering task. A naive solution to collect abundant infor-

mative pairs is to compute the features of instances in the

whole training set at each training iteration, and then search

for hard negative pairs from the whole dataset. Obviously,

this solution is extremely time consuming, especially for a

large-scale dataset, but it inspired us to break the limit of

mining hard negatives within a single mini-batch.

6388

16 32 64 128 256
batch-size (log-scale)

45

50

55

60

65

70

R
ec

al
l@

1(
%

)

MS
Triplet
Contrastive

16 32 64 128 256
batch-size (log-scale)

40

50

60

70

80

90

R
ec

al
l@

1(
%

)

SOP
In-shop
VehicleID

0.0 0.01 0.05 0.1 0.2 0.5 1.0
memory ratio

40

50

60

70

80

90

R
ec

al
l@

1(
%

)

SOP
In-shop
VehicleID

Figure 1. R@1 results with GoogleNet. Left: R@1 on SOP vs. mini-batch size with contrastive, triplet and MS approaches. Middle:

R@1 vs. mini-batch size by varying datasets. Right R@1 vs. memory ratio at mini-batch size 16 with contrastive loss.

In this paper, we identify an interesting “slow drift” phe-

nomena that the embedding of an instance actually drifts at

a relatively slow rate throughout the training process. It sug-

gests that the deep features of a mini-batch computed at past

iterations can considerably approximate to those extracted

by current model. Based on the “slow drift” phenomena,

we propose a cross-batch memory (XBM) module to record

and update the deep features of recent mini-batches, allow-

ing for mining informative examples across multiple mini-

batches. Our XBM can provide plentiful hard negative pairs

by directly connecting each anchor in the current mini-batch

with the embeddings from recent mini-batches.

Our XBM is conceptually simple, easy to implement and

memory efficient. The memory module can be updated us-

ing a simple enqueue-dequeue mechanism by leveraging the

computation-free features computed at the past iterations,

with only about a negligible 0.2 GB of extra GPU mem-

ory utilized. More importantly, our XBM can be directly

integrated into most existing pair-based methods with just

several lines of codes, and can boost performance consider-

ably. We evaluate our XBM with various conventional pair-

based DML techniques on three widely used large-scale im-

age retrieval datasets: Stanford Online Products (SOP) [22],

In-shop Clothes Retrieval (In-shop) [20], and PKU Vehi-

cleID (VehicleID) [19]. In Figure 1 (middle and right), our

approach demonstrates excellent robustness and brings con-

sistent performance improvements across all settings; under

the same configurations, our XBM obtains extraordinary

R@1 improvements on all three datasets compared with the

corresponding pair-based methods (e.g. over 20% for con-

trastive loss). Furthermore, with our XBM, a simple con-

trastive loss can easily outperform the most state-of-the-art

sophisticated methods, such as [37, 26, 2], by a large mar-

gin.

In parallel to our work, He et al. [10] built a dynamic dic-

tionary as a queue of preceding mini-batches to provide a

rich set of negative samples for unsupervised learning (with

a contrastive loss). However, unlike [10] which uses a spe-

cific encoding network to compute the features of current

mini-batch, our features are computed more efficiently by

taking them directly from the forward of the current model

with no additional computational cost. More importantly, to

solve the problem of feature drift, He et al. designed a mo-

mentum update that slowly progresses the key encoder to

ensure the consistency between different iterations, while

we identify the “slow drift” phenomena which suggests

that the features can become stable by themselves when the

early phase of training finishes.

2. Related Work

Pair-based DML. Pair-based DML methods can be opti-

mized by computing the pair-wise similarities between in-

stances in the embedding space [8, 22, 29, 35, 30, 37]. Con-

trastive loss [8] is one of the classic pair-based DML meth-

ods, which learns a discriminative metric via Siamese net-

works. It encourages the deep features of positive pairs to

be closer to each other, and those of negative pairs to be

farther than a fixed threshold. Triplet loss [29] requires the

similarity of a positive pair to be higher than that of a nega-

tive pair (with the same anchor) by a given margin.

Inspired by contrastive loss and triplet loss, a number

of pair-based DML algorithms have been developed, which

attempted to weight all pairs in a mini-batch, such as up-

weighting informative pairs (e.g. N-pair loss [30], Multi-

Similarity (MS) loss [37]) through a log-exp formulation, or

sampling negative pairs uniformly w.r.t. pair-wise distance

[40]. Generally, pair-based methods can be cast into a uni-

fied weighting formulation through General Pair Weighting

(GPW) framework [37].

However, most deep models are trained with SGD where

only a mini-batch of samples are accessible at each itera-

tion, and the size of a mini-batch can be relatively small

compared to the whole dataset, especially for a large-scale

dataset. Moreover, a large fraction of the pairs is less infor-

mative as the model learns to embed most trivial pairs cor-

rectly. Thus the conventional pair-based DML techniques

suffer from lacks of hard negative pairs, which are critical

to promote model training.

To alleviate the aforementioned problems, a number of

approaches have been developed to collect more potential

information contained in a mini-batch, such as building

6389

a class-level hierarchical tree [6], updating class-level

signatures to select hard negative instances [32], or ob-

taining samples from an individual cluster [28]. Unlike

these approaches which aim to enrich the information in a

mini-batch, our XBM are designed to directly mine hard

negative examples across multiple mini-batches.

Proxy-based DML. There is another branch of DML

methods aiming to learn the embeddings by comparing

each sample with proxies, including proxy NCA [21],

NormSoftmax [46] and SoftTriple [25]. In fact, our XBM

module can be regarded as the proxies to some extent.

However, there are two main differences between the

proxy-based methods and our XBM module: (1) proxies

are often optimized along with the model weights, while

the embeddings of our memory are directly taken from

the past mini-batches; (2) proxies are used to represent

the class-level information, whereas the embedding of

our memory computes the information for each individual

instance. Both proxy-based methods and our XBM aug-

mented pair-based methods are able to capture the global

distribution of data over the whole dataset during training.

Feature Memory Module. Non-parametric memory mod-

ule for embedding learning has shown power in various

computer visual tasks [36, 43, 41, 42, 48, 18]. For ex-

amples, the external memory can be used to address the

unaffordable computational demand of conventional NCA

[41] in large-scale recognition, and encourage instance-

invariance in domain adaptation [48, 42]. But only the pos-

itive pairs are optimized, while the negatives are ignored in

[41]. Our XBM is able to to provide a rich set of negative

examples for the pair-based DML methods, which is more

generalized and can make full use of the past embeddings.

The key distinction is that existing memory modules only

store the embeddings of current mini-batch [36], or main-

tain the whole dataset [41, 48] with a moving average up-

date, while our XBM is maintained as a dynamic queue of

mini-batches, which is more flexible and applicable in ex-

tremely large-scale datasets.

3. Cross-Batch Memory Embedding Networks

In this section, we first analyze the limitation of existing

pair-based DML methods. Then we introduce the “slow

drift” phenomena, which provides the underlying evidence

that supports our cross-batch mining approach. Finally, we

describe our XBM module and integrate it into existing pair-

based DML methods.

3.1. Delving into Pair­based DML

Let X = {x1,x2, . . . ,xN} denotes a set of training in-

stances, and yi is the corresponding label of xi. An embed-

ding function, f(·;θ), projects a data point xi onto a D-

dimensional unit hyper-sphere, vi = f(xi;θ). We measure

the similarity between two instances of a pair in the embed-

ding space. During training, we denote an affinity matrix

of all pairs within the current mini-batch as S, whose (i, j)
element is the cosine similarity between the embeddings of

the i-th sample and the j-th sample: vT
i vj .

To facilitate further analysis, we delve into the pair-based

DML methods by using the GPW framework described in

[37]. With GPW, a pair-based function can be formulated

in a unified pair-weighting form:

L =
1

m

m∑

i=1




m∑

yj 6=yi

wijSij −

m∑

yj=yi

wijSij


 , (1)

where m is the mini-batch size, and wij is the weight as-

signed to Sij . Eq. 1 shows that any pair-based method can

be considered as a weighting scheme focusing on informa-

tive pairs. Here we list the weighting schemes of contrastive

loss, triplet loss and MS loss.

– Contrastive loss. For each negative pair, wij = 1 if

Sij > λ, otherwise wij = 0. The weights of all posi-

tive pairs are set to 1.

– Triplet loss. For each negative pair, wij = |Pij |,
where Pij is the valid positive set sharing the anchor.

Formally, Pij = {xi,k|yk = yi, and Sik < Sij + η}
and η is a predefined margin in triplet loss. Similarly,

we can obtain the triplet weight for a positive pair.

– MS loss. Unlike contrastive loss and triplet loss which

only assigns a weight with integer value, MS loss [37]

is able to weight the pairs more properly by jointly

considering multiple similarities. The MS weight for a

negative pair is computed as:

wij =
eβ(Sij−λ)

1 +
∑

k∈Ni

eβ(Sik−λ)
,

where β and λ are hyper-parameters, and Ni is the

valid negative set for the anchor xi. The MS weight

for a positive pair can be computed similarly.

In fact, the main path of developing pair-based DML is

to design a better weighting mechanism for pairs within

a mini-batch. Generally, with a small mini-batch (e.g. 16

or 32), the sophisticated weighting schemes can perform

much better (Figure 1, left). However, beyond the weight-

ing scheme, the mini-batch size is also of great importance

to DML. Figure 1 (left and middle) shows the R@1s of vari-

ous pair-based methods are increased considerably by using

a larger mini-batch on large-scale datasets. Intuitively, the

number of negative pairs increase quadratically when the

mini-batch size grows, which naturally provides more in-

formative pairs. Instead of developing another sophisticated

6390

𝒎𝒊𝒏𝒊−𝒃𝒂𝒕𝒄𝒉 𝑿𝑩𝑴
𝒆𝒏𝒒𝒖𝒆𝒖𝒆

Co
nv

Co
nv Conv

po
ol

in
g

FC
L2

No
rm

𝒇(·, 𝜽)

-
+

𝐬𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒊𝒆𝒔 Pa
ir-

ba
se

d
 L

os
s

𝐜𝒐𝒎𝒑𝒂𝒓𝒆 𝒅𝒆𝒒𝒖𝒆𝒖𝒆

Figure 2. Cross-Batch Memory (XBM) trains an embedding network by comparing each anchor with a memory bank using a pair-based

loss. The memory bank is maintained as a queue with the current mini-batch enqueued and the oldest mini-batch dequeued. Our XBM

enables a large amount of valid negatives for each anchor to benefit the model training with many pair-based methods.

but highly complicated algorithm to weight the informative

pairs, our intuition is to simply collect sufficient informa-

tive negative pairs, where a simple weighting scheme, such

as contrastive loss, can easily outperform the stage-of-the-

art weighting approaches. This provides a new path that is

straightforward yet more efficient to solve the hard mining

problem in DML.

Naively, a straightforward solution to collect more in-

formative negative pairs is to increase the mini-batch size.

However, training deep networks with a large mini-batch is

limited by GPU memory, and often requires massive data

flow communication between multiple GPUs. To this end,

we attempt to achieve the same goal by introducing an al-

ternative approach using very low GPU memory and mini-

mum computation burden. We propose a XBM module that

allows the model to collect informative pairs over multiple

past mini-batches, based on the “slow drift” phenomena as

described below.

3.2. Slow Drift Phenomena

The embeddings of past mini-batches are usually consid-

ered out-of-date because the model parameters are changing

throughout the training process [10, 32, 25]. Such out-of-

date features are always discarded, but we learn that they

can be an important resource, while being computation-

free, by identifying the “slow drift” phenomena. We study

the drifting speed of embeddings by measuring the differ-

ence of features for the same instance computed at different

training iterations. Formally, the feature drift of an input x

at t-th iteration with step ∆t is defined as:

D(x, t; ∆t) ..= ||f(x;θt)− f(x;θt−∆t)||22 (2)

We train GoogleNet [33] from scratch with a contrastive

loss, and compute the average feature drift for a set of ran-

domly sampled instances at different steps: {10, 100, 1000}
(in Figure 3). The feature drift is consistently small, within

only e.g. 10 iterations. For the large steps, e.g. 100 and

1000, the features change drastically at the early phase, but

0 1 2 3 4 5 6
iter. (1e4)

0.0

0.5

1.0

1.5

2.0

fe
at

ur
e

dr
ift

t=1000
t=100
t=10

Figure 3. Feature drift with different steps on SOP. The embed-

dings of training instances drift within a relatively small distance

even under a large interval, e.g. ∆t = 1000.

become relatively stable within about 3K iterations. Fur-

thermore, when the learning rate decreases, the drift gets

extremely slow. We define such phenomena as “slow drift”,

which suggests that with a certain number of training iter-

ations, the embeddings of instances can drift very slowly,

resulting in marginal differences between the features com-

puted at different training iterations.

Furthermore, we demonstrate that such “slow drift” phe-

nomena can provide a strict upper bound for the error of

gradients of a pair-based loss. For simplicity, we consider

the contrastive loss of one single negative pair L = v
T
i vj ,

where vi, vj are the embeddings of current model and ṽj is

an approximation of vj .

Lemma 1. Assume ||vj − ṽj ||
2
2 < ǫ , L̃ = v

T
i ṽj and f

satisfies Lipschitz continuous condition, then the error of

gradients related to vi is,

∣∣∣
∣∣∣
∂L

∂θ
−

∂L̃

∂θ

∣∣∣
∣∣∣
2

2
< Cǫ, (3)

where C is the Lipschitz constant.

Proof and discussion of Lemma 1 are provided in Sup-

plementary Materials. Empirically, C is often less than 1

6391

Algorithm 1 Pseudocode of XBM.

train network f conventionally with K epochs
initialize XBM as queue M

for x, y in loader: # x: data, y: labels
anchors = f.forward(x)

memory update
enqueue(M, (anchors.detach(), y))
dequeue(M)

compare anchors with M
sim = torch.matmul(anchors.transpose(), M.feats)
loss = pair_based_loss(sim, y, M.labels)

loss.backward()
optimizer.step()

with the backbones used in our experiments. Lemma 1 sug-

gests that the error of gradients is controlled by the error of

embeddings under Lipschitz assumption. Thus, the “slow

drift” phenomenon ensures that mining across mini-batches

can provide negative pairs with valid information for pair-

based methods.

In addition, we discover that the “slow drift” of embed-

dings is not a special phenomena in DML, and also exists in

other conventional tasks, as shown in Supplementary Mate-

rials.

3.3. Cross­Batch Memory Module

We first describe our cross-batch memory (XBM)

module, with model initialization and updating mechanism.

Then we show that our memory module is easy to imple-

ment, can be directly integrated into existing pair-based

DML framework as a plug-and-play module, by simply

using several lines of codes (in Algorithm 1).

XBM. As the feature drift is relatively large at the early

epochs, we warm up the neural networks with 1k iter-

ations, allowing the model to reach a certain local op-

timal field where the embeddings become more stable.

Then we initialize the memory module M by comput-

ing the features of a set of randomly sampled train-

ing images with the warm-up model. Formally, M =
{(ṽ1, ỹ1), (ṽ2, ỹ2), . . . , (ṽm, ỹM)}, where ṽi is initialized

as the embedding of the i-th sample xi, and M is the mem-

ory size. We define a memory ratio as RM
..= M/N , the

ratio of memory size to the training size.

We maintain and update our XBM module as a queue:

at each iteration, we enqueue the embeddings and labels

of the current mini-batch, and dequeue the entities of the

earliest mini-batch. Thus our memory module is updated

with embeddings of the current mini-batch directly, without

any additional computation. Furthermore, the whole

training set can be cached in the memory module, because

very limited memory is required for storing the embedding

features, e.g. 512-d float vectors. See the other update

strategy in Supplementary Materials.

XBM augmented Pair-based DML. We perform hard neg-

ative mining with our XBM on the pair-based DML. For

a pair-based loss, based on GPW in [37], it can be cast

into a unified weighting formulation of pair-wise similari-

ties within a mini-batch in Eqn.(1), where a similarity ma-

trix is computed within a mini-batch, S. To perform our

XBM mechanism, we simply compute a cross-batch simi-

larity matrix S̃ between the instances of current mini-batch

and the memory bank.

Formally, the memory augmented pair-based DML can

be formulated as below:

L =
1

m

m∑

i=1

Li =

m∑

i=1




M∑

ỹj 6=yi

wijS̃ij −

M∑

ỹj=yi

wijS̃ij


 , (4)

where S̃ij = v
T
i ṽj . The memory augmented pair-based

loss in Eqn.(4) is in the same form as the normal pair-based

loss in Eqn.(1), by computing a new similarity matrix S̃.

Each instance in current mini-batch is compared with all

the instances stored in the memory, enabling us to collect

sufficient informative pairs for training. The gradient of the

loss Li w.r.t. vi is,

∂Li

∂vi

=

M∑

ỹj 6=yi

wij ṽj −
M∑

ỹj=yi

wij ṽj (5)

and the gradients w.r.t. vi model parameters (θ) can be com-

puted through a chain rule:

∂Li

∂θ
=

∂Li

∂vi

∂vi

∂θ
(6)

Finally, the model parameters θ are optimized through

stochastic gradient descent. Lemma 1 ensures that the

gradient error raised by embedding drift can be strictly

constrained with a bound, which minimizes the side effect

to the model training.

Hard Mining Ability. We investigate the hard mining abil-

ity of our XBM mechanism. We study the amount of valid

negative pairs produced by our memory module at each it-

eration. A negative pair with non-zero gradient is consid-

ered as valid. The statistical result is illustrated in Figure 4.

Throughout the training procedure, our memory module

steadily contributes about 1,000 hard negative pairs per iter-

ation, whereas less than 10 valid pairs are generated by the

original mini-batch mechanism.

Qualitative hard mining results are shown in Figure 5.

Given a bicycle image as an anchor, the mini-batch provides

limited and different images, e.g. roof and sofa, as nega-

tives. On the contrary, our XBM offers both semantically

bicycle-related images and other samples, e.g. wheel and

clothes. These results clearly demonstrate that the proposed

6392

0 0.2 0.4 0.6 0.8 1 20 40 60
iter. (1e3)

1

10

102

103

104

#n
eg

at
iv

es
 (l

og
-s

ca
le

)

memory
mini-batch

Figure 4. The number of valid negative examples from mini-batch

and that from memory per iteration. Model is trained on SOP with

RM = 1, mini-batch size 64 and GoogleNet as the backbone.

Figure 5. Given an anchor image (yellow), examples of positive

(green) and negative from mini-batch (gray) and that from memory

(purple). Current mini-batch can only bring few valid negatives

with less information, while our XBM module can provide a wide

variety of informative negative examples.

XBM can provide diverse, related, and even fine-grained

samples to construct negative pairs.

Our results confirm that (1) existing pair-based ap-

proaches suffer from the problem of lacking informative

negative pairs to learn a discriminative model, and (2) our

XBM module can significantly strengthen the hard mining

ability of pair-based DML in a very simple yet efficient

manner. See more examples in Supplementary Materials.

4. Experiments and Results

4.1. Implementation Details

We follow the standard settings in [22, 30, 23, 14] for fair

comparison. Specifically, we adopt GoogleNet [33] as the

default backbone network if not mentioned. The weights

of the backbone were pre-trained on ILSVRC 2012-CLS

dataset [27]. A 512-d fully-connected layer with l2 normal-

ization is added after the global pooling layer. The default

embedding dimension is set as 512. For all datasets, the in-

put images are first resized to 256× 256, and then cropped

to 224×224. Random crops and random flips are utilized as

data augmentation during training. For testing, we only use

the single center crop to compute the embedding for each

instance as [22]. In all experiments, we use the Adam opti-

mizer [15] with 5e−4 weight decay and the PK sampler (P

categories, K samples/category) to construct mini-batches.

4.2. Datasets

Our methods are evaluated on three large-scale datasets

for few-shot image retrieval. Recall@k is reported. The

training and testing protocol follow the standard setups:

Stanford Online Products (SOP) [22] contains 120,053

online product images in 22,634 categories. There are only

2 to 10 images for each category. Following [22], we use

59,551 images (11,318 classes) for training, and 60,502 im-

ages (11,316 classes) for testing.

In-shop Clothes Retrieval (In-shop) contains 72,712

clothing images of 7,986 classes. Following [20], we use

3,997 classes with 25,882 images as the training set. The

test set is partitioned to a query set with 14,218 images of

3,985 classes, and a gallery set having 3,985 classes with

12,612 images.

PKU VehicleID (VehicleID) [19] contains 221,736 surveil-

lance images of 26,267 vehicle categories, where 13,134

classes (110,178 images) are used for training. Following

the test protocol described in [19], evaluation is conducted

on a predefined small, medium and large test sets which

contain 800 classes (7,332 images), 1600 classes (12,995

images) and 2400 classes (20,038 images) respectively.

4.3. Ablation Study

We provide ablation study on SOP dataset with

GoogleNet to verify the effectiveness of our XBM module.

Memory Ratio. The search space of our cross-batch hard

mining can be dynamically controlled by memory ratio RM.

We illustrate the impact of memory ratio to XBM aug-

mented contrastive loss on three benchmarks (in Figure 1,

right). Firstly, our method significantly outperforms the

baseline (with RM = 0), with over 20% improvements on

all three datasets using various configurations of RM. Sec-

ondly, our method with mini-batch of 16 can achieve better

performance than the non-memory counterpart using 256

mini-batch, e.g. with an improvement of 71.7%→78.2% on

recall@1, while saving GPU memory considerably.

More importantly, our XBM can boost the contrastive

loss largely with small RM (e.g. on In-shop, 52.0%→
79.4% on recall@1 with RM = 0.01) and its performance

is going to be saturated when the memory expands

to a moderate size. It makes sense, since the memory

with a small RM (e.g. 1%) already contains thousands of

embeddings to generate sufficient valid negative instances

on large-scale datasets, especially fine-grained ones, such

as In-shop or VehicleID. Therefore, our memory scheme

can have consistent and stable performance improvements

with a wide range of memory ratios.

6393

SOP In-shop
VehicleID

Small Medium Large

Recall@K (%) 1 10 100 1000 1 10 20 30 40 50 1 5 1 5 1 5

Contrastive 64.0 81.4 92.1 97.8 77.1 93.0 95.2 96.1 96.8 97.1 79.5 91.6 76.2 89.3 70.0 86.0

Contrastive w/ M 77.8 89.8 95.4 98.5 89.1 97.3 98.1 98.4 98.7 98.8 94.1 96.2 93.1 95.5 92.5 95.5

Triplet 61.6 80.2 91.6 97.7 79.8 94.8 96.5 97.4 97.8 98.2 86.9 94.8 84.8 93.4 79.7 91.4

Triplet w/ M 74.2 87.4 94.2 98.0 82.9 95.7 96.9 97.4 97.8 98.0 93.3 95.8 92.0 95.0 91.3 94.8

MS 69.7 84.2 93.1 97.9 85.1 96.7 97.8 98.3 98.7 98.8 91.0 96.1 89.4 94.8 86.7 93.8

MS w/ M 76.2 89.3 95.4 98.6 87.1 97.1 98.0 98.4 98.7 98.9 94.1 96.7 93.0 95.8 92.1 95.6

Table 1. Retrieval results of memory augmented (‘w/ M’) pair-based methods compared with their respective baselines on three datasets.

16 32 64 128 256
batch-size (log-scale)

50

60

70

80

R
ec

al
l@

1(
%

)

Contrastive
Contrastive w/ M
Contrastive w/ M*

Figure 6. Performance of contrastive loss by training with differ-

ent mini-batch sizes. Unlike conventional pair-based methods,

XBM augmented contrastive loss is equally effective under ran-

dom shuffle mini-batch sampler (denoted with superscript *).

Mini-batch Size. Mini-batch size is critical to the perfor-

mance of many pair-based approaches (Figure 1, left). We

further investigate its impact to our memory augmented

pair-based methods (shown in Figure 6). Our method has

a 3.2% performance gain by increasing its mini-batch size

from 16 to 256, while the original contrastive method has a

significantly larger improvement of 25.1%. Obviously, with

the proposed memory module, the impact of mini-batch

size is reduced significantly. This indicates that the effect

of mini-batch size can be strongly compensated by our

memory module, which provides a more principled solution

to address the hard mining problem in DML.

With General Pair-based DML. Our memory module can

be directly applied to the GPW framework. We evaluate it

with contrastive loss, triplet loss and MS loss. As shown in

Table 1, our memory module can improve the original DML

approaches significantly and consistently on all bench-

marks. Specifically, the memory module remarkably boosts

the performance of contrastive loss by 64.0%→77.8% and

MS loss by 69.7%→76.2%. Furthermore, with sophisti-

cated sampling and weighting approach, MS loss has 16.7%

recall@1 performance improvement over contrastive loss

on VehicleID Large test set. Such a large gap can be sim-

ply filled by our memory module, with a further 5.8% im-

provement. MS loss has a smaller improvement because

it weights extremely hard negatives heavily which might be

outliers, while such a harmful influence is weakened by the

equally weighting scheme of contrastive loss. For a detailed

Method Time GPU Mem. R@1 Gain

Cont. bs. 64 2.10 h. 5.12 GB 63.9 -

Cont. bs. 256 4.32 h. +15.7 GB 71.7 +7.8

Cont. w/ 1% RM 2.48 h. +0.01 GB 69.8 +5.9

Cont. w/ 100% RM 3.19 h. +0.20 GB 77.4 +13.5

Table 2. Training time and GPU memory cost on 64, 256 mini-

batch size and 1%, 100% memory ratio with 64 mini-batch size.

analysis see Supplementary Materials (SM).

The results suggest that (1) both straightforward (e.g.

contrastive loss) and carefully designed weighting scheme

(e.g. MS loss) can be improved largely by our memory

module, and (2) with our memory module, a simple

pair-weighting method (e.g. contrastive loss) can easily

outperform the most sophisticated, state-of-the-art methods

such as MS loss [37] by a large margin.

Memory and Computational Cost. We analyze the com-

plexity of our XBM module on memory and computational

cost. On memory cost, The XBM module M (O(DM)) and

affinity matrix S̃ (O(mM)) requires a negligible 0.2 GB

GPU memory for caching the whole training set (Table 2).

On computational complexity, the cost of S̃ (O(mDM))
increases linearly with memory size M . With a GPU im-

plementation, it takes a reasonable 34% amount of extra

training time w.r.t. the forward and backward procedure.

It is also worth noting that XBM does not act in the in-

ference phase. It only requires 1 hour extra training time

and 0.2GB memory, to achieve a surprising 13.5% perfor-

mance gain by using a single GPU. Moreover, our method

can be scalable to an extremely large-scale dataset, e.g. with

1 billion samples, since our XBM module can generate a

rich set of valid negatives with a small-memory-ratio XBM,

which requires acceptable cost.

4.4. Quantitative and Qualitative Results

In this section, we compare our XBM augmented con-

trastive loss with the state-of-the-art DML methods on three

benchmarks on image retrieval. Even though our method

can reach better performance with a larger mini-batch size

(Figure 6), we only use 64 mini-batch which can be im-

plemented on a single GPU with ResNet50 [11]. Since the

backbone architecture and embedding dimension can effect

the recall metric, we list the results of our method with var-

6394

Recall@K (%) 1 10 100 1000

HDC [45] G384 69.5 84.4 92.8 97.7

A-BIER [24] G512 74.2 86.9 94.0 97.8

ABE [14] G512 76.3 88.4 94.8 98.2

SM [32] G512 75.2 87.5 93.7 97.4

Clustering [31] B64 67.0 83.7 93.2 -

ProxyNCA [21] B64 73.7 - - -

HTL [6] B512 74.8 88.3 94.8 98.4

MS [37] B512 78.2 90.5 96.0 98.7

SoftTriple [25] B512 78.6 86.6 91.8 95.4

Margin [40] R128 72.7 86.2 93.8 98.0

Divide [28] R128 75.9 88.4 94.9 98.1

FastAP [2] R128 73.8 88.0 94.9 98.3

MIC [26] R128 77.2 89.4 95.6 -

Cont. w/ M G512 77.4 89.6 95.4 98.4

Cont. w/ M B512 79.5 90.8 96.1 98.7

Cont. w/ M R128 80.6 91.6 96.2 98.7

Table 3. Recall@K(%) performance on SOP. ‘G’, ‘B’ and ‘R’

denotes applying GoogleNet, InceptionBN and ResNet50 as back-

bone respectively, and the superscript is embedding size.

ious configurations for fair comparison in Table 3, 4 and 5.

See results on more datasets in SM.

The results demonstrate that our XBM module, with a

contrastive loss, can surpass the state-of-the-art methods on

all datasets by a large margin. On SOP, our method with

R128 outperforms the current state-of-the-art method: MIC

[26] by 77.2% → 80.6%. On In-shop, our method with R128

achieves even higher performance than FastAP [2] with

R512, and improves by 88.2%→91.3% compared to MIC.

On VehicleID, our method outperforms existing approaches

considerably. For example, on the large test dataset, by us-

ing a same G512, it improves the R@1 of recent A-BIER

[24] largely by 81.9%→92.5%. With R128, our method sur-

passes the best results by 87%→93%, which is obtained by

FastAP [2] using R512.

Figure 7 shows that our memory module promotes the

learning of a more discriminative encoder. For example, at

the first row, our model is aware of the deer under the lamp

which is a specific character of the query product, and re-

trieves the correct images. In addition, we also present some

bad cases in the bottom rows, where our retrieved results are

visually closer to the query than that of baseline model. See

more visualizations in SM.

5. Conclusions

We have presented a conceptually simple, easy to imple-

ment, and memory efficient cross-batch mining mechanism

for pair-based DML. In this work, we identify the “slow

drift” phenomena that the embeddings drift exceptionally

slow during the training process. Then we propose a cross-

batch memory (XBM) module to dynamically update the

embeddings of instances of recent mini-batches, which al-

lows us to collect sufficient hard negative pairs across mul-

tiple mini-batches, or even from the whole dataset. Without

Recall@K (%) 1 10 20 30 40 50

HDC [45] G384 62.1 84.9 89.0 91.2 92.3 93.1

A-BIER [24] G512 83.1 95.1 96.9 97.5 97.8 98.0

ABE [14] G512 87.3 96.7 97.9 98.2 98.5 98.7

HTL [6] B512 80.9 94.3 95.8 97.2 97.4 97.8

MS [37] B512 89.7 97.9 98.5 98.8 99.1 99.2

Divide [28] R128 85.7 95.5 96.9 97.5 - 98.0

MIC [26] R128 88.2 97.0 - 98.0 - 98.8

FastAP [2] R
512 90.9 97.7 98.5 98.8 98.9 99.1

Cont. w/ M G512 89.4 97.5 98.3 98.6 98.7 98.9

Cont. w/ M B512 89.9 97.6 98.4 98.6 98.8 98.9

Cont. w/ M R128 91.3 97.8 98.4 98.7 99.0 99.1

Table 4. Recall@K(%) performance on In-Shop.

Method
Small Medium Large

1 5 1 5 1 5

GS-TRS [5] 75.0 83.0 74.1 82.6 73.2 81.9

BIER [23] G512 82.6 90.6 79.3 88.3 76.0 86.4

A-BIER [24] G512 86.3 92.7 83.3 88.7 81.9 88.7

VANet [4] G2048 83.3 95.9 81.1 94.7 77.2 92.9

MS [37] B512 91.0 96.1 89.4 94.8 86.7 93.8

Divide [28] R128 87.7 92.9 85.7 90.4 82.9 90.2

MIC [26] R128 86.9 93.4 - - 82.0 91.0

FastAP [2] R
512 91.9 96.8 90.6 95.9 87.5 95.1

Cont. w/ M G512 94.0 96.3 93.2 95.4 92.5 95.5

Cont. w/ M B512 94.6 96.9 93.4 96.0 93.0 96.1

Cont. w/ M R128 94.7 96.8 93.7 95.8 93.0 95.8

Table 5. Recall@K(%) performance on VehicleID.

Figure 7. Top 4 retrieved images w/o and w/ memory module. Cor-

rect results are highlighted with green, while incorrect purple.

bells and whistles, the proposed XBM can be directly inte-

grated into a general pair-based DML framework, and im-

prove the performance of existing pair-based methods sig-

nificantly on image retrieval. In particular, with our XBM, a

contrastive loss can easily surpass state-of-the-art methods

[37, 26, 2] by a large margin on three large-scale datasets.

This paves a new path in solving for hard negative min-

ing which is a fundamental problem for various computer

vision tasks. Furthermore, we hope that the dynamic mem-

ory mechanism can be extended to improve a wide variety

of machine learning tasks because ”slow drift” is a general

phenomenon not only occurring in DML.

6395

References

[1] Maxime Bucher, Stéphane Herbin, and Frédéric Jurie. Im-

proving semantic embedding consistency by metric learning

for zero-shot classiffication. In ECCV, 2016.

[2] Fatih Cakir, Kun He, Xide Xia, Brian Kulis, and Stan

Sclaroff. Deep metric learning to rank. In CVPR, 2019.

[3] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity

metric discriminatively, with application to face verification.

In CVPR, 2005.

[4] Ruihang Chu, Yifan Sun, Yadong Li, Zheng Liu, Chi Zhang,

and Yichen Wei. Vehicle re-identification with viewpoint-

aware metric learning. In ICCV, 2019.

[5] Yan Em, Feng Gag, Yihang Lou, Shiqi Wang, Tiejun Huang,

and Ling-Yu Duan. Incorporating intra-class variance to fine-

grained visual recognition. In ICME. IEEE, 2017.

[6] Weifeng Ge, Weilin Huang, Dengke Dong, and Matthew R

Scott. Deep metric learning with hierarchical triplet loss. In

ECCV, 2018.

[7] Alexander Grabner, Peter M. Roth, and Vincent Lepetit. 3d

pose estimation and 3d model retrieval for objects in the

wild. In CVPR, 2018.

[8] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduc-

tion by learning an invariant mapping. In CVPR, 2006.

[9] Ben Harwood, Vijay Kumar B G, Gustavo Carneiro, Ian

Reid, and Tom Drummond. Smart mining for deep metric

learning. In ICCV, 2017.

[10] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual rep-

resentation learning. In arXiv:1911.05722, 2019.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[12] Xinwei He, Yang Zhou, Zhichao Zhou, Song Bai, and Xiang

Bai. Triplet-center loss for multi-view 3d object retrieval. In

CVPR, 2018.

[13] Alexander Hermans*, Lucas Beyer*, and Bastian Leibe.

In defense of the triplet loss for person re-identification.

arXiv:1703.07737v4, 2017.

[14] Wonsik Kim, Bhavya Goyal, Kunal Chawla, Jungmin Lee,

and Keunjoo Kwon. Attention-based ensemble for deep met-

ric learning. In ECCV, 2018.

[15] Diederick P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015.

[16] Sasi Kiran Yelamarthi, Shiva Krishna Reddy, Ashish Mishra,

and Anurag Mittal. A zero-shot framework for sketch based

image retrieval. In ECCV, 2018.

[17] Laura Leal-Taixé, Cristian Canton-Ferrer, and Konrad

Schindler. Learning by tracking: Siamese cnn for robust tar-

get association. In CVPR Workshops, 2016.

[18] Suichan Li, Dapeng Chen, Bin Liu, Nenghai Yu, and Rui

Zhao. Memory-based neighbourhood embedding for visual

recognition. In ICCV, 2019.

[19] Hongye Liu, Yonghong Tian, Yaowei Wang, Lu Pang, and

Tiejun Huang. Deep relative distance learning: Tell the dif-

ference between similar vehicles. In CVPR, 2016.

[20] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou

Tang. Deepfashion: Powering robust clothes recognition and

retrieval with rich annotations. In CVPR, 2016.

[21] Yair Movshovitz-Attias, Alexander Toshev, Thomas K. Le-

ung, Sergey Ioffe, and Saurabh Singh. No fuss distance met-

ric learning using proxies. In ICCV, 2017.

[22] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio

Savarese. Deep metric learning via lifted structured feature

embedding. In CVPR, 2016.

[23] Michael Opitz, Georg Waltner, Horst Possegger, and Horst

Bischof. Bier - boosting independent embeddings robustly.

In ICCV, 2017.

[24] Michael Opitz, Georg Waltner, Horst Possegger, and Horst

Bischof. Deep metric learning with bier: Boosting indepen-

dent embeddings robustly. PAMI, 2018.

[25] Qi Qian, Lei Shang, Baigui Sun, and Juhua Hu. Softtriple

loss: Deep metric learning without triplet sampling. ICCV,

2019.

[26] Karsten Roth, Biagio Brattoli, and Bjorn Ommer. Mic: Min-

ing interclass characteristics for improved metric learning. In

ICCV, 2019.

[27] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. IJCV, 2015.

[28] Artsiom Sanakoyeu, Vadim Tschernezki, Uta Buchler, and

Bjorn Ommer. Divide and conquer the embedding space for

metric learning. In CVPR, 2019.

[29] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

Facenet: A unified embedding for face recognition and clus-

tering. In CVPR, 2015.

[30] Kihyuk Sohn. Improved deep metric learning with multi-

class n-pair loss objective. In NeurIPS. 2016.

[31] Hyun Oh Song, Stefanie Jegelka, Vivek Rathod, and Kevin

Murphy. Deep metric learning via facility location. In CVPR,

2017.

[32] Yumin Suh, Bohyung Han, Wonsik Kim, and Kyoung Mu

Lee. Stochastic class-based hard example mining for deep

metric learning. In CVPR, 2019.

[33] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, 2015.

[34] Ran Tao, Efstratios Gavves, and Arnold WM Smeulders.

Siamese instance search for tracking. In CVPR, 2016.

[35] Evgeniya Ustinova and Victor Lempitsky. Learning deep

embeddings with histogram loss. In NeurIPS. 2016.

[36] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan

Wierstra, et al. Matching networks for one shot learning.

In NeurIPS, 2016.

[37] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and

Matthew R Scott. Multi-similarity loss with general pair

weighting for deep metric learning. In CVPR, 2019.

[38] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A

discriminative feature learning approach for deep face recog-

nition. In ECCV, 2016.

6396

[39] Paul Wohlhart and Vincent Lepetit. Learning descriptors for

object recognition and 3d pose estimation. In CVPR, 2015.

[40] Chao-Yuan Wu, R. Manmatha, Alexander J. Smola, and

Philipp Krähenbühl. Sampling matters in deep embedding

learning. ICCV, 2017.

[41] Zhirong Wu, Alexei A Efros, and Stella Yu. Improving gen-

eralization via scalable neighborhood component analysis.

In ECCV, 2018.

[42] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.

Unsupervised feature learning via non-parametric instance

discrimination. In CVPR, pages 3733–3742, 2018.

[43] Tong Xiao, Shuang Li, Bochao Wang, Liang Lin, and Xiao-

gang Wang. Joint detection and identification feature learn-

ing for person search. In CVPR, 2017.

[44] Rui Yu, Zhiyong Dou, Song Bai, Zhaoxiang Zhang,

Yongchao Xu, and Xiang Bai. Hard-aware point-to-set deep

metric for person re-identification. In ECCV, 2018.

[45] Yuhui Yuan, Kuiyuan Yang, and Chao Zhang. Hard-aware

deeply cascaded embedding. In ICCV, 2017.

[46] Andrew Zhai, Hao-Yu Wu, and US San Francisco. Classifi-

cation is a strong baseline for deep metric learning. 2019.

[47] Ziming Zhang and Venkatesh Saligrama. Zero-shot learning

via joint latent similarity embedding. In CVPR, 2016.

[48] Zhun Zhong, Liang Zheng, Zhiming Luo, Shaozi Li, and Yi

Yang. Invariance matters: Exemplar memory for domain

adaptive person re-identication. In CVPR, 2019.

6397

