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Abstract

State-of-the-art image classification algorithms building

upon convolutional neural networks (CNNs) are commonly

trained on large annotated datasets of high-quality images.

When applied to low-quality images, they will suffer a sig-

nificant degradation in performance, since the structural

and statistical properties of pixels in the neighborhood are

obstructed by image degradation. To address this prob-

lem, this paper proposes a novel deep degradation prior for

low-quality image classification. It is based on statistical

observations that, in the deep representation space, image

patches with structural similarity have uniform distribution

even if they come from different images, and the distribu-

tions of corresponding patches in low- and high-quality

images have uniform margins under the same degradation

condition. Therefore, we propose a feature de-drifting mod-

ule (FDM) to learn the mapping relationship between deep

representations of low- and high- quality images, and lever-

age it as a deep degradation prior (DDP) for low-quality

image classification. Since the statistical properties are in-

dependent to image content, deep degradation prior can be

learned on a training set of limited images without supervi-

sion of semantic labels and served in a form of “plugging-

in” module of the existing classification networks to im-

prove their performance on degraded images. Evaluations

on the benchmark dataset ImageNet-C demonstrate that our

proposed DDP can improve the accuracy of the pre-trained

network model by more than 20% under various degrada-

tion conditions. Even under the extreme setting that only

10 images from CUB-C dataset are used for the training

of DDP, our method improves the accuracy of VGG16 on

ImageNet-C from 37% to 55%.

1. Introduction

Recent years witness remarkable progresses of image

classification task [46, 39], mainly with deep convolu-

∗co-first author. †Corresponding author.

tional neural network trained on large-scale datasets like

ImageNet [8]. Since the collected images of the existing

datasets are usually free of degradation, such as low visibil-

ity [41, 12, 34], color cast [42, 2], and overexposure, evalu-

ation of standard neural network-based methods for image

classification shows a significant drop in classification ac-

curacy when applied to low-quality images [13].

In practice, one solution for this problem is to firstly im-

prove the visibility of degraded images by image enhance-

ment methods, and then to perform image classification,

called two-stage methods in this paper [7, 17, 18]. However,

the main reason why image degradation affects image clas-

sification is that the structural and statistical properties of

pixels in the neighborhood are obstructed by image degra-

dation. Since the existing image enhancement methods are

devised to achieve pleasing visual effect, they cannot guar-

antee that the regions with similar structure in the image

can be enhanced uniformly, leading to uncovered and in-

complete feature representation for classification. A typical

example is shown in Figure 1. As can be seen, there is still a

margin between the feature distributions of enhanced image

and clear image.

Another feasible solution for low-quality image classifi-

cation is to transform it into a domain adaptation problem

and to match the degraded and clear images with adversar-

ial learning or kernelized training. This method is based on

the assumption that the marginal distributions of low- and

high- quality images can be aligned in the learned feature

space by a deep network. Therefore, after decreasing the di-

vergence between the marginal distributions in the learned

feature space, the classifier trained with high-quality images

tends to perform well on the low-quality images.

While promising, most existing domain adaptation ap-

proaches require either complex neural network architec-

tures [3, 27, 14] or fine-tuning the target domain [31, 21,

26]. Different from these methods, this paper proposes

to learn a transferrable mapping relationship between deep

representations of low- and high- quality images, and lever-

age it as a deep degradation prior (DDP) for image classi-

fier. This method is based on statistical observations that, i)
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Figure 1. We choose four similar patches a1 ∼ a4 from different clean images and visualize their features using VGG16 trained on

ImageNet, as shown in (A). We visualize the feature distribution by using t-SNE [20]. As shown in (D), the clean patches have uniform

distribution in feature space. The fog obstructs the statistical properties of pixels within local patches, resulting in feature drifting, as shown

in (B) and (D). The visibility is well improved after dehazing [25]. However, the phenomenon of feature drift still exists, as in (C) and (D).

image patches with structural similarity have uniform distri-

bution in the deep representation space, even if they come

from different images; ii) the distributions of the corre-

sponding structure-similar patches in low- and high-quality

images have uniform margins under the same degradation

condition. Since the statistical properties are irrelevant to

image content, our proposed deep degradation prior can be

learned on a small number of images and do not need su-

pervision of semantic labels.

Specifically, we propose a feature de-drifting module

(FDM) to learn the mapping relationship between deep rep-

resentations of low- and high- quality images, and leverage

it as a deep degradation prior (DDP) for low-quality im-

age classification. The FDM is devised to compensate for

the attenuation effect of image degradation on features, in

which a four layers forward network is adopted to simu-

late the visual processing mechanism of non-classical re-

ceptive field model. After trained on an arbitrary degraded

image dataset, the FDM can be easily plugged into the ex-

isting classification networks to improve their performance

on degraded images. Evaluations on the benchmark dataset

ImageNet-C [13] demonstrate the performance of our pro-

posed method on low-quality image classification. The pro-

posed DDP can be learned on only 10 images from CUB-C

dataset, and achieve the accuracy improvement of VGG16

on ImageNet-C from 37% to 55%. The contributions of this

paper are summarized as follows:

(1) This paper finds that, in the deep representation

space, the distributions of low- and high-quality image

patches have uniform margins under the same degradation

condition, and accordingly proposes a novel deep degrada-

tion prior for low-quality image classification.

(2) This paper proposes a feature de-drifting module

(FDM) to learn the mapping relationship between deep rep-

resentations of low- and high- quality images. After trained

on a small number of degraded image dataset, the FDM can

be easily plugged into the existing classification networks

to boost their performance on degraded images.

(3) Evaluations on the benchmark dataset ImageNet-C

demonstrate the performance of our proposed method un-

der various degradation conditions. Even under the extreme

setting that only 10 images from CUB-C dataset are used

for the training, our method still achieves the accuracy im-

provement of VGG16 from 37% to 55%.

2. Related Work

Differences in the representations of degraded images

and clean images would shift the feature distribution, re-

sulting in a performance drop when a pre-trained classifi-

cation model is evaluated cross-domain [29]. Image en-

hancement algorithms can restore the degraded image to

a clear version such that human vision can identify ob-

ject and structure details. For example, B. Li et al. [17]

uses the dehazing network to improve the object detection

performance in the foggy environment. D. Da et al. [7]

evaluates the influence of image super-resolution for high-
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Figure 2. The distributions of corresponding structure-similar patches in the deep representation space. The high-quality images are from

ImageNet dataset [8] and CUB dataset [33], and the low-quality images are generated by the method in [13].

level vision tasks. D. Liu et al. [18] employs the denois-

ing algorithm to improve image segmentation performance.

However, these enhancing methods can’t always promise an

improved performance for down-stream high-level vision

tasks, especially when the degradation is heavy. Fine-tuning

the network using degraded images is another popular strat-

egy to improve performance. However, fine-tuning based

methods need semantic labels to supervise network train-

ing. When the semantic labels are unavailable for degraded

images, it will not be applicable. Domain adaption [22]

transfers the models across different domains by solving the

domain shift problem. Enormous of domain adaption meth-

ods [45, 31, 21, 26, 3, 27, 14] are proposed in recent years.

However, these methods usually have complex neural net-

work architectures. Besides, there is no work specifically

tackling the classification problem on degraded images. By

contrast, we propose a light-weight “plugging-in” feature

de-drifting module, which significantly improves the gener-

alizability of networks pre-trained on the ImageNet.

The most related work with us are [30, 29], where W. Tan

et al. proposes a feature super-resolution method to achieve

the semantic-level alignment between high-resolution and

low-resolution images, and Z. Sun et al. proposes a fea-

ture quantization method to map the distorted features into

new space with less divergence. Different from them, our

method is more general since: 1) it can be trained on a

dataset while testing on another, i.e., CUB-C → ImageNet-

C; 2) it can achieve fairly good performance even if it is

only trained on a small scale dataset, e.g., 10 images from

CUB-C; 3) it does not require the semantic labels of target

domain, reducing the effort for collecting and annotating

degraded images.

3. Deep Degradation Prior

Prior work on sparse coding evidence that local patches

in natural images can be reconstructed based on a learned

over-complete visual dictionary, where the representation

coefficient is sparse, called sparse representation [35, 19,

24, 32]. The visual dictionary is learned from many ar-

bitrary local patches sampled from natural images as long

as they contain diverse local structures, e.g., smooth areas,

edges, textures, etc. In other words, the visual dictionary

learned from a dataset (e.g., CUB) can be used to represent
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images from another dataset (e.g., ImageNet). This prop-

erty comes from the following fact that the local patches

are statistically irrelevant to specific image content (e.g.,

semantics) and can be embedded into a low-dimensional

manifold [35]. Besides, recent progress in deep convolu-

tional neural network also witnesses a similar phenomenon

that features learned in shallow layers are mainly low-level

ones, such as edges, colors, textures, etc [9, 38]. Accord-

ingly, the learned convolutional weights can be regarded as

visual dictionaries to extract (represent) these low-level fea-

tures (local patches).

Motivated by the above work, we propose a novel deep

degradation prior which is simple and effective for down-

stream high-level vision tasks, such as classification on de-

graded images. Specifically, we argue that: 1) the clear

image patches from different dataset share a similar distri-

bution in the feature embedding space, resulting in an in-

distinguishable cluster; 2) the degraded image patches have

the similar property while they are separated from the clear

ones due to their distinct local statistics; 3) if we can learn a

mapping between the clear features and degraded features,

it could be used for arbitrary natural images.

To illustrate the above claims, we conducted a statistical

experiment on the clear and foggy images, synthesized ac-

cording to the hazy model [13] on the ImageNet [8] dataset

and CUB [33] dataset. Some examplar hazy images are

shown in the right corners of Figure 2. First, for the Im-

ageNet dataset, we sampled hundreds of clear patches and

the corresponding foggy patches from the same positions,

denoted SI and SIF , respectively. The same procedure was

carried out on the CUB dataset, and the sampled patches

are denoted SC and SCF , respectively. Referring to [35],

the patch size was set 10∗10 in the experiment. To better

visualize their distributions and avoid messy clusters, we

filtered the patches to enable that they share the similar lo-

cal structures. Mathematically, they were subjected to the

following constraint:

SSIM (pi, pj) > T, ∀ pi, pj ∈ SI or SC , (1)

where SSIM denotes the structural similarity measurement

[4]. T is a threshold and was set to 0.7. We kept 500 patches

for both clear and foggy cases on each dataset, as shown in

the up/bottom middle part of Figure 2.

Then, to obtain their feature representations in the em-

bedding space [40], we used the VGG16 network pre-

trained on the ImageNet dataset as the feature extractor.

Specifically, the features of each patch were extracted from

the “conv2 2” layer, since it’s respective field is 9*9, almost

the same with the patch size. These features are shown in

the red, blue, green, and yellow cubes in Figure 2. Finally,

we leveraged t-SNE [20] to visualize them, as shown in the

central part of Figure 2.

It is clear that: 1) features from clear images are clus-

tered together regardless which dataset they come from. It

is the same for the foggy case; 2) there is a large gap be-

tween the clear features and foggy ones. Therefore, if we

find a mapping between them, we can bridge them together.

In this sense, restoring the degraded image patch to a clear

one in the feature embedding space will certainly benefit the

down-stream classification and detection tasks. In this pa-

per, we call such a mapping as the deep degradation prior

(DDP). In the next part, we will present an efficient solution

to show how to learn an effective DDP.

4. Learning DDP by Deep Neural Network

4.1. Overview of the Network

Given a clear dataset and its paired degraded dataset

without semantic labels, our goal is to learn an effective

DDP, which can be plugged in existing convolutional neural

networks seamlessly to enhance their generalizability on de-

graded images. To this end, we propose an effective learn-

ing method by reconstructing the clear features from the de-

graded ones under the supervision of a simple Mean Square

Error (MSE) loss. As shown in Figure 3 (a), during the

training phase, we first use a pre-trained model to extract

the low-level features of both degraded and clear images,

for example, “conv2 2” in VGG16 [28], and the first layer

in AlexNet [15], respectively. This part of network is fixed

during the training phase and is called Shallow Pretrained

Layers (SPL) in this paper. The degraded and clear features

are denoted “DF” and “CF” in Figure 3 (a).

Then, we propose a novel feature de-drifting module

(FDM) to accomplish the feature reconstruction. Taking

the hazy image as an example, it is concatenated with the

DF from SPL together and fed into FDM. Leveraging the

residual learning idea, the output feature from FDM is fused

with the original DF by an element-wise sum. The result-

ing enhanced feature (EF) is compared with its paired CF to

calculate the MSE loss and the error is back-propagated to

FDM to update its parameters.

During the testing phase, we insert the trained FDM into

an existing classification network, i.e., between its SPL and

subsequent deep pre-trained layers (DPL), as shown in Fig-

ure 3 (b). It is noteworthy that the learned weights in FDM

serve as the learned DDP to map the degraded features to

the clear ones (see Figure 2).

4.2. Feature De­drifting Module

The degradation changes the statistics of a local patch,

which results in a biased feature response by SPL compared

with the original clear one. In order to correct the drifted

feature response, we propose a novel feature de-drifting

module. It is inspired by the non-classical receptive field

of human vision [6] as shown in Figure 3 (c). Non-classical

receptive field is very useful to enhance the high frequencies
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Figure 3. (a)-(b) Diagram of the training/testing phase of the proposed method. (c) Illustration of the non-classical receptive field [6] for

enhancing the high frequencies while maintaining the low frequencies. (d) The network structure of our feature de-drifting module (FDM).

while maintaining low frequencies. Mathematically, given

an input I , a filter with a non-classical receptive field gen-

erates an output f as follows:

f = A1(I ∗G1(σ1)) +A2(I ∗G2(σ2)) +A3(I ∗G3(σ3)),
(2)

where G1 ∼ G3 denote three Gaussian filters with different

filter bandwidths, i.e.,

G(σ) = 1√
2πσ2

exp(−x2
+y2

2σ
) (3)

A1 ∼ A3 represent the coefficient in the central, sur-

rounded, and marginal frequency areas, respectively. ∗ de-

notes the convolution operation. σ1 ∼ σ3 are the scale

parameters determining the filter bandwidths accordingly.

Eq. (2) can be reformulated as:

f = A1(I ∗G1) +A2((I ∗G1) ∗G2
′)

+A3((I ∗G1) ∗G2
′) ∗G3

′ , (4)

where, G2
′ and G3

′ are also Gaussian filters with scale pa-

rameters
√

σ2
2 − σ2

1 and
√

σ2
3 − σ2

2 . In this way, the convo-

lutional result in the first (second) term can be used as the

input of the second (third) Gaussian filter G2
′ (G3

′).

Inspired by the non-classical receptive field and Eq. (4),

we design our FDM as shown in Figure 3 (d). The first three

blocks filled in orange, yellow and blue, represent the con-

volution process in the central, surrounded, and marginal

frequency areas, respectively. Each block consists of two

convolutional layers. The output features from the three

blocks are then concatenated together and fed into a final

1*1 convolutional layer simulate the linear weighting be-

tween the central, surrounded and marginal frequency parts,

as shown in Eq. (2). Details of FDM are summarized in Ta-

ble 1 and Table 2 for VGG16 and AlexNet, respectively.

Table 1. The details of FDM with VGG16.
InputSize Num Filter Stride Pad

G1 1 131*112*112 128 3 1 1

G1 2 128*112*112 128 3 1 1

G2 1 128*112*112 64 3 1 1

G2 2 64*112*112 64 3 1 1

G3 1 64*112*112 32 3 1 1

G3 2 32*112*112 32 3 1 1

W 224*112*112 128 1 1 0

Table 2. The details of FDM with AlexNet.
InputSize Num Filter Stride Pad

G1 1 67*27*27 128 3 1 1

G1 2 128*27*27 128 3 1 1

G2 1 128*27*27 64 3 1 1

G2 2 64*27*27 64 3 1 1

G3 1 64*27*27 32 3 1 1

G3 2 32*27*27 32 3 1 1

W 224*27*27 64 1 1 0

5. Experiments

We evaluate the performance of our proposed deep

degradation prior on ImageNet-C dataset [13], which is a

rigorous benchmark with 50000 images in 1000 categories

and widely used for robustness evaluation of image classi-

fier. In this paper, we mainly focus on three kinds of degra-

dation conditions, including fog, low contrast, and bright-

ness. For each of the mentioned degradation conditions, we

perform experiments on five levels of degradation. The ex-

amples of degraded images are shown in Figure 4. Besides,

under each degradation condition, we test the influence of

data size on deep degradation prior modeling.

Following the degraded image generation methods in

[13], we use the clean images of CUB (total 11788 images)
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Figure 4. Some examples of degraded images from ImageNet-C.

dataset to synthesize the degraded images, named CUB-C,

for the training of FD-Module. We employ AlexNet [15]

and VGG16 [28] pre-trained on clean images as base mod-

els. The FD-Module is trained for 5000 iterations using

SGD with batch size of 32. The initial learning rate is 0.001.

The learning rate decreases to 0.0001 after 2500 iterations.

In FD-Module, the filter weights of each layer are initialized

using the MSRA initialization method.

5.1. Fog

Fog is very common for the images captured in outdoor

and will cause image degradation due to atmospheric ab-

sorption and scattering. The high-frequency components

and color fidelity are degraded in fog images. Since the

degradation is spatial-variant, it will change the structure

of local regions inconsistently and significantly increase the

difficulty of feature extraction. The goal of image dehazing

methods is to enhance the contrast and restore the struc-

ture details, which make the images more visual pleasing,

but cannot eliminate the structure inconsistency. In this pa-

per, we select five state-of-the-art image dehazing methods

as baseline: DehazeNet [4], AoD-Net [17], FPCNet [42],

FAMED-Net [43], and GFN-Net [25]. All of the test foggy

images are dehazed by the baseline methods and then send

to pre-trained image classifiers (VGG16 and AlexNet). Our

proposed FDM is firstly trained on foggy images and then

plugged into the same pre-trained image classifiers (VGG16

and AlexNet). The evaluations are performed on five degra-

dation levels respectively.

As can be seen from Figure 5 (a), our proposed method

significantly surpasses the two-stage methods in terms of

classification accuracy, especially when the fog concentra-

tion is large. Moreover, with the increase of fog concentra-

tion, the performance of two-stage methods drops notably,

while our method can also improve the accuracy of the pre-

trained network by more than 30%. It demonstrates that

FDM effectively boosts the fog-degraded features.

5.2. Low Contrast

The images captured under weak and colored illumina-

tion conditions often appear low contrast and color cast,

which will degrade the recognition accuracy. The goal of

contrast enhancement methods is to improve the dynamic

range of images and remove color cast. In this paper, we

select five contrast enhancement methods as baseline: HE

[11], CVC [5], WAHE [1], LDR [16], OpenCE [36]. All of

the low-contrast images are enhanced by the baseline meth-

ods and then send to pre-trained image classifiers (VGG16

and AlexNet). Our proposed FDM is firstly trained on low-

contrast images and then plugged into the same pre-trained

image classifiers (VGG16 and AlexNet). The evaluations

are performed at five degradation levels.

As shown in Figure 5 (b), the two-stage method cannot

consistently improve the classification accuracy. When the

degradation is small (e.g., Contrast-1 and Contrast-2), the

performance is even worse than directly using the origin im-

ages. As a contrast, our proposed method can consistently

improve the classification accuracy of all five degradation

conditions, which demonstrates the robustness of our DDP.

5.3. Brightness

Low lighting condition and limited dynamic range of

digital imaging devices in image capturing can significantly

degrade the image quality from many aspects, such as low

contrast and amplified noise, which results in a biased fea-

ture distribution compared with the clear one and down-

grades the classification accuracy. One common solution

is to use HDR algorithm to balance the dynamic range

and suppress noises. In this experiment, we compared our

method with four HDR methods: LIME [12], HQEC [44],

SRIE [10], MRINP [34]. The results are shown in Figure 5

(c). It is clear that the accuracy of classifying HDR en-

hanced images is even slightly lower than classifying the

degraded images. Although the HDR methods could im-

prove the visibility of degraded images, it also produced

some artifacts, which consequently results in extra feature

drifting as well. By contrast, our method improves the ac-

curacy by correcting the feature drifting and aligning them

with the clear ones in the embedding space. It demonstrates

the effectiveness of the learned DDP by the FDM.

5.4. Performance Analysis

We first explore the effect of training set volume on deep

degradation prior modeling. We use different proportions of

degraded images from CUB-C to train the FDM, e.g., Fog-

3, Contrast-3, and Brightness-3. The results are plotted in

Figure 6 (a)-(c), respectively. As can be seen, the perfor-

mance of FDM is not sensitive to the training dataset vol-

ume. The classification accuracy only drops by 5% when

using only 1% training data compared with using all the

training data (total 11788 images). Besides, in the extreme
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Figure 5. Comparison of DDP against the two-stage methods under different degradation conditions, (a) fog, (b) contrast and (c) brightness.
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Figure 6. The influence of training dataset volume on DDP. The x-axis represents the proportion of images in CUB dataset used for training.

condition that only 10 foggy images from CUB-C dataset

are used for training, our method still boosts the accuracy of

VGG16 on ImageNet-C from 37% to 55%. It is very useful

when large scale degraded images are difficult to collect.

Then, we present the feature visualization results to

demonstrate the performance of feature de-drifting. Here

we take the fog degradation as example. We visualize the

feature maps of synthesized foggy images, clear images, de-

hazed images and the ones generated by our method in Fig-

ure 8. As can be seen, due to the influence of fog, the am-

plitude of feature response of object is attenuated inconsis-

tently. The dehazing methods can recover some structural

information of the image, but cannot consistently enhance

the discriminative features for object. As a contrast, our

method significantly boosts the feature responses on dis-

criminative region while suppressing the interference. Fur-

thermore, we also evaluate the performance of our method

and two-stage method on real foggy images. The visual-

ized feature maps are shown in Figure 7. We can see that,

when the fog concentration is small, the two-stage method

can also recover the structural features. However, with the

increase of fog concentration, the discrimination of the fea-

tures captured from the dehazed images drop significantly.

As a contrast, the features extracted by our method can al-

ways reveal the structure of objects, even in the heavies fog

condition. It demonstrates that our proposed method is ro-

bust and applicable to real foggy scenes.

Apart from above three kinds of degradation, we also

evaluate the performance of DDP on the degraded images

with motion blur. DPP can improve the accuracy of the

VGG16 from 24% to 38% by using only 10 images for

training. In addition, we conduct experiments on real-world

images with two types of degradations (under-exposure and

noise) from UG2 [37]. We train two DDP modules (e.g.,

DDPc for contrast enhancement and DDPd for denoising),

and incorporate them into the pre-trained networks (e.g.,

VGG16) to boost the degraded features as shown in Fig-

ure 9. We can see that the results are also positive.
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Figure 7. Visualization of the feature maps of real foggy images and de-foggy results. The foggy images are from Haze20 dataset [23]. The

feature maps are extracted from the Conv2 2 layer of VGG16 pre-trained on ImageNet. With the increase of fog density, the discrimination

of the features of dehazed images drop significantly, while the features extracted by our method can always reveal the structure of objects.

Clear Feature Ours

GFN-NetFAMED-NetFPC-NetAoD-Net

Degraded Feature

Clear Feature Ours

GFN-NetFAMED-NetFPC-NetAoD-Net

Dehaze-NetDegraded FeatureInput

Input Dehaze-Net

Figure 8. The feature maps of synthesized foggy images, clear im-

ages, dehazed images and the ones generated by our method. All

the features are output from the same Conv2 2 layer of VGG16

trained on ImageNet.

Input VGG16 VGG16+DDPc VGG16+DDPc+DDPd

Figure 9. The feature maps of real low-light image with two kinds

of degradations (e.g., low-contrast and noise).

6. Conclusion

In this paper, we introduce a novel deep degradation

prior (DDP) for low-quality image classification, which can

be used to reduce the feature mismatch between clear im-

ages and various degraded ones. We devise a simple and

effective module named feature de-drifting module (FDM)

to learn the DDP by adaptively enhancing features at dif-

ferent frequencies. FDM can be trained on a small scale

dataset, e.g., only 10 images from CUB-C, but still remains

robust and effective. Further, the learned DDP by FDM on a

dataset can be generalized to another dataset with the same

degradation, regardless the diverse image contents. More-

over, it is very easy to deploy FDM into existing classifi-

cation networks as a “plugging-in” module. Extensive ex-

periments on different types of degradation and two popular

benchmark datasets, i.e., ImageNet-C and CUB-C, validate

the effectiveness of the learned DDP by FDM in degraded

image classification tasks. It boosts the classification accu-

racy by large margins under various degradation conditions.
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