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Abstract

Discovering hidden pattern from imbalanced data is a
critical issue in various real-world applications including
computer vision. The existing classification methods usu-
ally suffer from the limitation of data especially the mi-
nority classes, and result in unstable prediction and low
performance. In this paper, a deep generative classifier is
proposed to mitigate this issue via both data perturbation
and model perturbation. Specially, the proposed generative
classifier is modeled by a deep latent variable model where
the latent variable aims to capture the direct cause of tar-
get label. Meanwhile, the latent variable is represented by
a probability distribution over possible values rather than
a single fixed value, which is able to enforce uncertainty of
model and lead to stable prediction. Furthermore, this la-
tent variable, as a confounder, affects the process of data
(feature/label) generation, so that we can arrive at well-
Jjustified sampling variability considerations in statistics,
and implement data perturbation. Extensive experiments
have been conducted on widely-used real imbalanced im-
age datasets. By comparing with the state-of-the-art meth-
ods, experimental results demonstrate the superiority of our
proposed model on imbalance classification task.

1. Introduction

The imbalanced data is inevitable in real-world applica-
tions especially in computer vision. For example, the back-
ground samples extremely outnumber the foreground sam-
ples in object detection [21]; the amount of healthy persons
dominates that of the patients with lung cancer in medi-
cal image processing [13]. The size ratio between frequent
event (majority classes) and rare event (minority classes)
may be 10:1 or even 1000:1, which makes rare event detec-
tion much more difficult [9, 39]. However, misclassifying
rare events can result in heavy costs, e.g., in disease diag-
nosis, failing to identify a patient would cause the loss of
life.

The scarce occurrences of rare events impair the detec-

tion task to imbalance classification problem. It aims to
predict the unknown variables (e.g., event) based on their
observed features using a model estimated on a training
dataset, which is a common statistical problem and has
attracted much interest from various communities. Many
methods have been proposed and perform successfully
when training and testing data have similar joint distribution
of features. Unfortunately, imbalanced data cannot always
guarantee this because of two main reasons. Firstly, the ob-
served features usually fall into two categories, one contain-
ing “direct causes” of the target variable, where the con-
ditional distribution of the target given these features will
not change when adding any other features, and the other
having “noisy features” which do not affect the expected
outcomes of the target [18]. Secondly, it is hard to directly
determine the “direct causes” from insufficient training data
especially for the minority classes. In this case, the learning
model often obtains a good coverage of the majority sam-
ples whereas the minority samples are distorted.

From a probability theory perspective, it is difficult to
build a stable model for invariant prediction from limited
observed samples [42]. To date, many methods have been
proposed to guarantee the stability as much as possible,
which can be roughly divided into two categories: data per-
turbation and model perturbation. The former kind aims
to characterize the underlying data distribution by approx-
imating the data generation process. This mechanism, in
imbalance classification, is adopted to augment the minor-
ity classes and then help the subsequent classifier determine
the proper class boundaries [1, 25]. Even though they obtain
promising performance, in such two-stage learning frame-
work, data augmentation and classifier construction are im-
plemented separately, which limits their applications. The
later one tries to sufficiently assess the uncertainty of data
by introducing uncertainty into learning model (e.g., learn-
ing a probability distribution on the weights of ncural net-
work [4, 33] or constructing the loss function in an ambigu-
ity set of the empirical distribution [31]). This strategy has
ability to express uncertainty with few data and make rea-
sonable predictions, however, it results in much more com-
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plicated learning model and higher computational cost.

Thus, in this paper, we focus on robust imbalance clas-
sification to determine the essential factors of the target la-
bel so that the expected label value conditional on them is
stable. Our idea is motivated by the literatures on causal
inference and probabilistically generative model. To cap-
ture the cause-effect structure relationship, we propose a
deep generative classifier (DGC) with the aid of deep la-
tent variable model. It simultaneously learns the latent vari-
able from the process of training data generation (includ-
ing input features and labels) and approximates the Bayes’
rule using importance sampling on the latent variable. Data
generation process is formulated by minimizing the worst-
case expectation of optimal transport cost between real and
generative data distributions. DGC produces predictions by
comparing the likelihood of labels on the learned latent vari-
ables for a given input. From this view, the proposed model
can be taken as a joint generative model to approximate the
joint distribution of input features, labels and latent vari-
ables, where the latent variables can characterize the essen-
tial structure hidden in the original data and can be used as
the direct cause of labels. Therefore, it is expected to ob-
tain stable prediction for new coming data. In summary,
our contributions include:

e A deep generative classifier for imbalanced data is pro-
posed by a deep latent variable model, where the la-
tent variable is expressed via a probability distribution
over possible values rather than a fixed value. Thus, it
can be taken as a latent confounder affecting the whole
learning process.

o The proposed method has ability to simultancously im-
plement data perturbation (via feature/label generation
process) and model perturbation (via enforcing uncer-
tainty on latent variables and minimizing the worst-
case expectation), which can reduce the variability of
label estimation and lead to stable prediction.

e We theoretically analyze the generalization error
bounds of the proposed model, and efficiently optimize
it by stochastic variational inference.

e A series of experiments are conducted to demonstrate
its advantage over the state-of-the-art imbalance classi-
fication methods. Especially, it can produce good per-
formance on the minority class, while maintaining a
reasonable overall accuracy.

The remaining of this paper is organized as follows. The
related work will be reviewed in Section 2. Then, the pro-
posed method will be given in detail. In Section 4, we will
describe and discuss the experiments. At last, conclusions
and future work are briefly provided.

2. Related work

The class imbalance has been a frequent but challeng-
ing issue and attracts a significant amount of interest from
the community of computer vision and machine learn-
ing. Most traditional classifiers have ability to optimize
the overall prediction accuracy, however, they typically fa-
vor the majority classes and fail to classify the minority
classes [15, 34]. Over the years, researchers have devised
many methods for tackling class imbalance problem. Two
basic strategies are resampling (oversampling or undersam-
pling) and cost-sensitive learning [5, 13]. However, those
methods are usually designed for low dimensional feature
space and hard to cope with high dimensional data, like
images, audio signals, etc. The emerging research surge
of deep learning gave us the inspirations for an alternative
strategy to deal with more complicated imbalanced data.
Recent works mainly focus on two facets: data perturbation
by extending resampling strategy to deep learning model
and model perturbation by introducing uncertainty in model
parameters or loss function, as shown in Figure 1.
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Figure 1. Two strategies for deep imbalanced learning.

To compensate the skewed distribution (caused by im-
balanced data), deep generative models such as Variational
autoencoder (VAE) [16] and Generative Adversarial Net-
work (GAN) [11] are introduced to generate synthetic sam-
ples in the original feature space for imbalance classifica-
tion. A simple way is to directly apply VAE on the given
imbalanced data to capture the dimensional dependencies
via latent variable, and then generate new samples from the
learned latent variable [38, 43]. This strategy suffers from
the drawback of VAE, which assumes that the data follow
a single Gaussian distribution. When samples have mixture
distributions, VAE cannot generate artificial data with sharp
edges or fine details. To handle this case, Guo et al. [12]
model latent representation via two Gaussian distributions
with opposite means. Unfortunately, this idea is only useful
for binary classification and cannot directly deal with multi-
class imbalanced data.

An alternative generation strategy is GAN, which pro-
vides an effective way to learn mapping from the la-
tent encoding space to original data space. To consider
the difference between different classes, conditional GAN

14125



(cGAN) [10] is introduced to generate class-specific mi-
nority samples [7]. GAN-based generation methods are
usually fed with a random noise, which may result in a
highly entangled process and disrupt the orientation-related
features [6]. To solve this problem, researchers proposed
BAGAN [25] by integrating AE and cGAN via a two-step
framework. It learns the latent codes via AE and feeds
them to cGAN instead of the random noise. However, at-
tempting to oversample the minority class using GAN may
lead to boundary distortion [29]. To make the latent fea-
tures much more discriminative, a discriminative feature-
based sampling (DFBS) method is proposed in [22]. DFBS
adopts a supervised autoencoder with triplet loss to extract
the latent features, then generates synthetic samples in the
latent space by a random combination method. This gener-
ation strategy has the ability to bring samples within the
same class closer together and push those from different
classes further apart. The generated samples, in these meth-
ods, are likely close to the mode of the minority class, while
new samples around the boundaries are required for reliable
classifier [5, 35].

The previous methods can be roughly called as two-stage
strategy, one for generating synthetic data, and the other for
training classifier on the augmented data. Even though they
sufficiently exploit data perturbation for imbalance classifi-
cation performance, there may be a gap between data gen-
eration and classifier training. Recently, a generative ad-
versarial minority oversampling (GAMO) method [27] is
proposed to seamlessly integrate them by a three-player ad-
versarial game between a convex generator, a multi-class
classifier network, and a real/fake discriminator. GAMO
generates new samples within the convex hull of the real
minority-class samples. However, the convex hull of a mi-
nority class would be far from the true data distribution,
which may generate less informative or even overlapped
samples.

Besides data perturbation, model perturbation is also a
good way to improve the stability of learning process, which
is useful for limited data [42]. Among them, Bayesian
network is widely used to offer uncertainty estimation via
its parameters in form of probability distributions [4]. Re-
cently, this strategy is extended to convolutional neural net-
work [33]. By using a prior distribution to integrate out the
parameters, they are estimated across many models during
training, which has ability to prevent overfitting and obtain
robust prediction. However, the learning process is time-
consuming due to that much more parameters have to be
estimated for characterizing the distributions of original net-
work weights. To overcome the limitation of observed data,
researchers proposed distributionally robust learning mod-
els with ambiguity set containing all (continuous or dis-
crete) distributions that can be converted to the (discrete)
empirical distribution at bounded cost [32]. Although this

kind of model perturbation strategy prefers to robust predic-
tion, it leads to more complicated model and higher compu-
tational complexity.

Motivated by the above problems, in this paper, we pro-
pose a new imbalance classification method via deep gen-
erative model to sufficiently exploit both data perturbation
and model perturbation.

3. Proposed method

Inspired by the dual roles of generative model, summa-
rizing past data (including prior knowledge) and generat-
ing synthetic observations, in this section, we design a deep
generative classifier for imbalanced data.

3.1. Preliminaries and notations

Let calligraphic letter (i.e., X') indicate sets, capital letter
(i.e., X) for matrix, and lower case letter (i.e., x) for vec-
tor. Given a joint distribution over X’ X )/, the training set is
with N points from C' classes, which are independent and
identically distributed. The i-th training point (x;,y;) con-
tains feature information x; € RP and label information
y; € R, where y, is a C-dimensional one-hot vector. De-
note N = ch=1 n¢, where n. is the size of the c-th class.
For an imbalance classification setting, there may be a big
variance among {nq,...,N.,...,nc}. Usually, the size of
the largest class may be ten or even hundred times larger
than that of the smallest class. In this paper, our goal is to
learn a predictive model, which can make a robust predic-
tion for new coming data point x* € R¥. In such an imbal-
anced situation, it is hard to guarantee the training data used
to build the classification model follow the same distribu-
tion with the testing data, especially for minority classes [5].

3.2. Deep generative classifier (DGC)

To effectively handle imbalanced data, we design a deep
generative model to simultaneously mine the direct cause of
target label and build a stable generative imbalanced classi-
fier.

Otalxy)

(@ (b)
Figure 2. The architecture of graphical models for a) the traditional
generative classifier and b) the proposed DGC. ¢) is the parameter-
ized version of b). The nodes denote observed or latent variables.
The solid lines and dash lines represent generative and recognition
model respectively.

Giving the training dataset, generative classifier aims to
build a model of “how data for a class looks like”. Math-
ematically, it will learn the joint probability distribution
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p(x,y) by estimating the parameters of p(x|y) and p(y)
(as shown in Figure 2(a)). In prediction phase, the label
y* of a new coming sample z* can be assigned via the
Bayes rule. The well-known generative classifier, Naive
Bayes classifier, has obtained promising performance if
the features are independent to each other, i.e., the condi-
tional distribution can be factorized along all features via
p(xly) = HdD=1 p(x4]y). Unfortunately, this assumption is
not appropriate for the complicated case, e.g., image data,
since all “natural” images always show a lot of spatial regu-
larity, but this kind of factorized distribution cannot present
discontinuities across hypersurfaces.

Inspired by deep learning, we propose a deep genera-
tive classifier with the aid of deep latent variable model.
Our goal is to mine the direct cause and implement sta-
ble prediction on the target label, even for imbalanced data.
Let z denote the direct cause of target label, in this case,
any noisy feature v will not affect the prediction result,
ie, p(ylz,v) = p(y|z) always holds. Meanwhile, z
is expected to capture the essential structure of the origi-
nal data, i.e., both x and y can be most likely generated
from z. To achieve these two goals, our generative model
is designed as shown in Figure 2(b). In this model, the
joint probability distribution p(x, z,y) can be factorized as
p(z)p(x|z)p(y|z). This model has a good by-product that
the conditional distribution p(x|y) can be written by

plxy) [ p(x,2,y)dz
plxly) = ply) [ p(x,2z,y)dzdx"

M

which is not factorized along the original features, thus, it
is expected to be more powerful on real-world complicated
applications.

To build the graphical model from training data, we in-
troduce its parameterized version in Figure 2(c). Mathe-
matically, the input feature x € R and corresponding la-
bel y € R are generated by the latent vector z € R* and
parameter 8 = {01, 65} as follows.

p(x,2,y) = p(z)po, (X|2)po, (¥|2)- ®)

For convenient computing, z is assumed to be sampled
from a standard Gaussian prior, ie., z ~ A(0,I¥). Dur-
ing training process, the proper z will be recognized with
the aid of parameter ¢, i.e., z = ¢(x,y).

3.3. Inference learning for DGC model

One way to infer deep generative model is to postulate
that they are trying to minimize certain divergence between
the true data distribution P of D = (X,Y), and the genera-
tive distribution Pg of the generated data D = (X,Y’) from
the observed training data.

As mentioned above, imbalanced data cannot provide
sufficient information for training classifier, which will

be easy to result in overfitting problem and might fur-
ther constitute poor predictors beyond the training dataset.
This is the main reason that the good performance can-
not be obtained on minority classes. Thus, we infer the
proposed deep generative model by utilizing Wasserstein
distance [2, 36]. Comparing with KL-divergence or JS-
divergence, Wasserstein distance has the ability to measure
the similarity between the distributions well and preserve
the transitivity in latent space due to the much weaker topol-
ogy.

From the optimal transport (OT) point of view, we aim
at minimizing OT cost between real data distribution P and
generative distribution Pg,

X,Y), (X,Y))]

3)
here Pr = ((X.Y) ~ P,(X,Y) ~ Pg). Minimizing (3)
is equal to precisely minimize the worst-case expectation,
which has ability to provide an upper confidence bound on
the out-of-sample error. Thus, it is expected to produce
good solution on limited data.
For our case, given the latent variable Z, X and Y are
independent to each other as shown in Figure 2(c), i.e., X L
Y'|Z, thus we have

WelP, Pe) = rlengp E((X,Y),(X,Y))Nr[c((

Pg(x,y)=/ZPg(x\z)Pg(y|z)Pz(z)dz V(x,y) € D. (4)

Among it, Ps(x|z) deterministically maps z to x, similarly,
Pa(Y|Z) for mapping z to y with two functions Gx : Z —
X and Gy : Z — Y, respectively.

According to [36], instead of finding a coupling I' be-
tween (X, X) and (Y, V), it is sufficient to find a conditional
distribution Q(Z|X,Y) such that its Z marginal distribution
(Qz) is identical to the prior distribution P, here Qz can
be computed by

Qz = Exy)~plQ(Z|X,Y)] = Ex~py y~py [Q(Z|X,Y)]
Q)
In this situation, the OT cost can be re-written as

inf ]EPXIEPY]EQ(Z\)( y>[cl(X,Gx(Z))+02(Y,Gy(Z))]
Q:Qz=Pz ’
(6)

where ¢1(x, %) and c2(y,¥) are measurable cost functions
with non-negative value.
In order to implement a numerical solution, the above

constrained problem can be relaxed by adding a penalty,
ie.,

We(P, Pg) = EpryEp, Eqzx,v)[c1 (X, Gx(Z))

inf
Q(Z|X,Y)EQ
+ (Y, Gy (2))] + X Dz(Qz, Pz).
)]

where Q is any nonparametric set of recognition model. D,
is an arbitrary divergence between () z and Py. In this work,
the maximum mean discrepancy (MMD) is adopted since it
shares the properties of divergence functions and has the
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ability to form an unbiased U-estimator [8]. The other rea-
son is that MMD is conjuncted with the subsequent stochas-
tic gradient descent (SGD) methods. A > 0 is the hyperpa-
rameter to trade-off the corresponding terms.
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Figure 3. Neural network version of the proposed DGC.

To efficiently handle the objective function, we adopt
stochastic optimization technique. Then, the objective func-
tion can be calculated along each training sample as follows.

= inf E
P
a4 (zi|xi,yi)EQ *

+ c2(yis 9o, (vil2i))] + A - Dz(q6(2i|xi, y:), p(2i)).

]Eplh'. Eqr,s(zilxz Vi) [Cl (Xi» 9o, (xi |z1)) 8)

i

Among it, ¢; measures the distance between the given data
x; and the generated data X; = g, (X;|2;) on feature space
via e1(X;,%;) = |[x; — %X4||3. co evaluates the difference
between the ground truth label information y; and the gen-
erated label information y; = g¢o,(yi|z;). Specially, we
adopt the cross-entropy loss function, i.e., c2(y;,¥:)
yilogy; + (1 —y;)log(1 — y;) to measure the difference
on label space. Note the parameters need to be optimized
include 6 = {0, 0-} and ¢ = {¢1, P2}, as shown in Figure
3.

To obtain an unbiased estimate of L(x;, y;; 6, ¢), we can
sample z; via z; ~ ¢4(2;|x;,y;). More specifically, by
taking advantage of reparameterization trick for Gaussian
distribution, we sample ¢ ~ AN(0,I¥) and reparametrize
z; = jy(X;,y:)+eQ0o4(x;,y;). For imbalanced data, there
are only few samples in minority classes. To make up for
the limitation of input data, a set of latent codes {zE] )}jzl
is sampled if the corresponding input point x; belongs to
the minority classes and y; = ¢, where s¢ is the number of
oversampling latent codes for each instance of the c-th class.
The oversampling codes will be used to generate synthetic
data in the original feature space via decoder (ZEJ ) for xz(-J )
and infer more robust classifier p(y|z).

The model parameters {6, ¢} can be iteratively updated
by minimizing (8) with the aid of stochastic variational
inference [17]. Once having the optimal model, a gen-
erative classifier will be built, where the conditional dis-
tribution p(y.|x) for the c-th class has its support as a
low-dimensional manifold. Then, the proper label vector
y* € RY of any new coming point z* € R” can be ob-
tained by an approximation to Bayes’ rule with importance

sampling z5 ~ q(z|x*,y.):

S
* * 1 * S
P(y’le") ~ softmaxf_l{loggsz_;c(x ,yc,zc;e,@} ©)

S is the sampling size. In experiment, it is set to be 10 for
prediction.

3.4. Error bound analysis

In this subsection, we will theoretically analyze the gen-
eralization error bounds of the proposed model. Motivated
by [3], we can define the generalization of input feature and
label generation process by measuring the difference be-
tween the population real data distribution (P,.¢,;) and gen-
erated data distribution (Pg). The generalization error will
be acceptable if the population distance between P,..,; and
‘Pq is close to the empirical distance between the observed
real data distribution (ﬁreal) and its generated distribution
(Pg). In the proposed deep latent variable model, given la-
tent code Z, the input feature information X is independent
to input label Y, i.e., (X L Y|Z). In this case, the data
distribution (X,Y") ~ P, can be factorized into two parts
X ~ Xpeqrand Y ~ Yyeqr, similar to Pg, ﬁreal and 750.

Definition 1 For the empirical real distribution ( Xyeals
Vreal ) with N training examples, a generated distribution
(X, Va) generalizes under the distribution distance d(-, -)
with generalization error 01,69 > 0 if the following holds
with high probability,

|E(X) — E(X)| <6, 10)

[E(Y) ~ E(Y)] <6 (1
where E(X) and E(Y) indicate the population distance between
the real and generated distributions on feature and label informa-

tion respectively. E(X) and E(Y') are the corresponding empiri-
cal distances.

(10) and (11) can be proved by the following two theo-
rems and the detailed proof is given in Supplementary.

Theorem 1 For any X ¢ RP*N (N, D > 0),

s 10g o1
<
E(X) < B(X) +4/ =%

(maxd,)?

holds with probability at least 1 — 01(01 > 0) over uni-

Jormly choosing an empirical version (X) of X. Here,

di = d(x", %) =[5 - x{ V3

Theorem 2 Given prior label probabilities
{pla"'ap(‘>"'7pc} (Where De = P(y = C) and
M pe = 1) and the conditional latent variable densities

{f1,f2,..., fo} (where f. = [(z]y = c)), following [30],
the error rate of generative classifier can be formulated

and bounded.:

|[E(Y)—E(Y)| = 1—/max{p1f1(z),...,pcfc(z)}dz < 9.
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Table 1. Summarization of the experimental datasets.

Dataset Shape Classes IR Training Set Testing Set

MNIST | 383810100 | 0B B0 0 g do | 899,985, 1098, 974, 1009
Fashion-MNIST | 2828 110100 | so0ss5us on' 0,40 | 100, 100, 100, 1000, 1000

i [ w0 seas | S SO0 | T 0 e

CelebA | 64x 64 x 3 5 100 15000, 1500, 750, 300, 150 2660, 5422, 423, 3587, 636

DGC aims to build a robust imbalance classifier by mod-
eling generation processes of input feature and label. The
theoretical analysis is to derive generalization error bounds
of these two generation processes. Theorem 1 shows that
the bound on feature generation will be tight when gener-
ated instances are realistic ( small max;d;), which is em-
pirically proven in Fig.6. Theorem 2 indicates the bound on
label generation will be tight when the ground-truth label
has a higher probability while other labels have much lower
probabilities, which is empirically proven by the classifica-
tion accuracy.

4. Experiments

In this section, a series of experiments are conducted
to evaluate the proposed method. The code is available at
https://github.com/lvyilin/DGC.

4.1. Datasets

The experimental data includes two single-channel im-
age sets (MNIST [19] and Fashion-MNIST [41]) and two
three-channel image sets (SVHN [28] and CelebA [23]).
These datasets are not significantly imbalanced in nature.
Following GAMO [27], we created imbalanced datasets by
randomly selecting instances with different sizes from dif-
ferent classes in order of their indices. For CelebA, only
five non-overlapping classes (blonde, black, bald, brown,
and gray) are kept. Details of these datasets are shown in
Table 1. Obviously, there is a large imbalance ratio (IR:
ratio of the number of instances from the largest class to
that of the smallest class) from 56.25 to 100. Note that
datasets with imbalance ratio over 10 can be regarded as
highly imbalanced [9, 39]. Larger ratio will make the learn-
ing problem more difficult. For each dataset, the classifi-
cation performance is evaluated on the public testing set.
All the methods run on five imbalanced subsets with same
size (for each dataset) to mitigate any bias generated due
to randomization. The average results and corresponding
statistics are recorded.

4.2. Methodology

In order to validate the imbalance classification perfor-
mance, five well-known and widely used metrics [14, 26,
37] are adopted: recall of minority class (Rsr), precision
of majority class (Ppr4), average class specific accuracy
(ACSA), macro-averaged geometric mean (G,qcro) and
macro-averaged F-measure (F},qcr0 ). Larger value indi-
cates better performance.

We choose two kinds of methods as baselines, one for
robust learning with data perturbation and the other with
model perturbation. The first kind contains BAGAN [25],
DFBS [22], and GAMO [27]. Among them, BAGAN and
DFBS firstly augment imbalanced data and then adopt the
existing methods to train classifier. GAMO is one-stage
and outperforms the recently proposed deep oversampling
method [1]. The second type includes mmDGMs [20] and
BayesCNN [33]. mmDGMSs adopts a latent variable to af-
fect the generation process on feature information, and the
discriminative model for label prediction. BayesCNN im-
plements robust prediction by introducing uncertainty on
the parameters of convolutional neural which is a good ar-
chitecture for images.

The parameters of all algorithms we compared with are
adopted from their original papers or determined by exper-
iments. For our DGC model, the size of latent space (k) is
set to 64 for the first three datasets and 128 for the fourth
dataset to capture more information. A € {1,10} is tuned
by 5-fold cross-validation technique.

4.3. Results and discussion

The experimental results are listed and analyzed from
two facets: comparing the proposed DGC with baselines
and investigating its stability.

e Comparing classification performance

To make a fair comparison, the trained models are evalu-
ated by the same public testing set for each dataset. The
overall classification performance (average value and the
standard variance in terms of ACSA, Gaero and Fipacro)
on four benchmark datasets are listed in Table 2. The best
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Table 2. Comparing overall classification performance on experimental datasets.

MNIST Fashion-MNIST
MethOd ACSA Fmacro Gmacro ACSA Fmacro Gmacro
BAGAN 0.8848 +0.02 0.8785+0.02 0.9295+0.01 | 0.7814 £ 0.01 0.7610 +£0.01 0.8546 + 0.01
DFBS 0.7812+0.04 0.7838 £0.04 0.8683 +0.02 | 0.5135+0.17 0.4620+0.27 0.6382 £+ 0.21
GAMO 0.8826 = 0.01 0.8794 +£0.01 0.9308 = 0.00 | 0.7929 +£0.01 0.7880 & 0.01  0.8740 = 0.00
BayesCNN | 0.9158 £ 0.01 0.9141 £0.01 0.9512+£0.01 | 0.7934 £0.01 0.7835+0.01 0.8701 4+ 0.01
mmDGMs | 0.9066 +0.02 0.9039 £0.02 0.9449 +£0.01 | 0.8091 £0.00 0.7984 +£0.01 0.8796 £ 0.00
DGC 0.9480 + 0.00 0.9474 + 0.00 0.9704 + 0.00 | 0.8364 =0.00 0.8314 =0.00  0.9010 =0.00

SVHN CelebA
MethOd ACSA Fmacro G’I’TI,/ICTO ACSA F’I’TI,(IC’I‘() Gmacro
BAGAN 0.6785 £ 0.01 0.6719 £0.01 0.7876 £0.01 | 0.5972 £0.00 0.5152 £0.02 0.6554 £ 0.01
DFBS 0.4788 +0.03 0.4745+0.03 0.6539+£0.02 | 0.2109 £ 0.00 0.1335+0.01 0.2664 £+ 0.01
GAMO 0.6474 £ 0.01 0.6457 £0.01 0.7784 £ 0.01 | 0.6409 = 0.02 0.5903 + 0.03  0.7472 + 0.02
BayesCNN | 0.5511 £0.03 0.5392 £0.03 0.6998 £ 0.02 | 0.5517 = 0.04 0.4936 £0.04 0.6534 + 0.04
mmDGMs | 0.7220 £ 0.01 0.7291 £0.01 0.8291 £ 0.01 | 0.3760 £ 0.03 0.0618 £0.14 0.3754 £ 0.04
DGC 0.7493 +0.01  0.7535 = 0.01  0.8501 £ 0.00 | 0.6755 £+ 0.03  0.6454 £+ 0.02 0.7779 £ 0.03

Table 3. Comparing prediction performance on the smallest class (Ras7) and largest class (P 4).

|  MNIST | Fashion-MNIST | SVHN | CelebA

Method | R Pya | Ru Pya | Ru Pya | Rarr Prra

BAGAN | 05354 0.8541 | 0.7306 0.5709 | 0.1630 04222 | 0.0192  0.5064
DFBS 0.5946  0.5118 | 0.4412 0.3395 | 0.1946 0.2173 | 0.0522 0.2174
GAMO 0.6394 0.8812 | 0.7928 0.6165 | 0.2813 0.4047 | 0.2302 0.6687
BayesCNN | 0.7578 0.8896 | 0.8474 0.6022 | 0.1263 0.3276 | 0.1063  0.5225
mmDGMs | 0.6525 0.8459 | 0.8160 0.5942 | 0.3740 0.4301 | 0.0006 0.4110
DGC 0.8276  0.9270 | 0.8864 0.6900 | 0.4882 0.5348 | 0.2987 0.7603

results are highlighted in bold. As expected, the proposed
DGC obtained the best performance in all cases.

From this result, we can get following observations.
DFBS, as a two-stage method, performs worse than other
methods, because it cannot guarantee generated instances
are useful to create margins among classes. GAMO, as
a one-stage method, performs better than DFBS, however
it is hard to trade off the discriminator and classifier, so
that the generated images look real but cannot demonstrate
the intrinsic structure of classes. BAGAN is superior to
DFBS because it adopts AE to determine class distribu-
tion on latent space. Unfortunately, the initialization strat-
egy of subsequent GAN may push BAGAN to fall into the
mode collapse problem. BayesCNN cannot obtain satisfy-
ing results even though it adopts model perturbation strat-
egy, because imbalanced data contains too few instances to
sufficiently train the complicated model. mmDGMs takes
advantage of generative model and perturbation on latent
code. However, it adopts the discriminative classifier to de-
termine class boundaries, which limits its performance on
highly imbalanced data. This result confirms that DGC can
construct effective imbalanced classifier by integrating data
and model perturbation in a unified deep generative model.

In real-world applications, the minority class is of more
interest. Thus, it is expected that the classifier can return a

higher recall on minority class and maintain higher preci-
sion on majority class. Table 3 lists the recall of the small-
est class (i.e., the percentage of minority instances correctly
predicted) and the precision of the largest class (i.e., the per-
centage of correct predictions in majority class). It can be
seen that, for Fashion-MNIST, five baselines increase the
performance on minority class but their performances on
majority class are not significantly improved. For CelebA,
baselines definitely output worse results on minority class.
This result indicates that existing methods cannot determine
the clear boundaries among classes. Fortunately, for both
the minority class and majority class, DGC consistently ob-
tains the best and high-quality classification results. Pair-
wise t-test is conducted along each evaluation metric at
95% confidence level. Fortunately, the p-value between
DGC and any bascline is below 0.01, which demonstrates
DGC has ability to significantly improve classification per-
formance.

o Investigating stability of DGC

To investigate the learning process of DGC, we display
the convergence of latent code on its mean (u) and stan-
dard deviation (o) over epochs. It is hard to show all la-
tent codes since there are k latent features and each input
data has a latent code. Therefore, we randomly select two
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Figure 4. Convergence of (a) o values and (b) y values (only the
first latent feature is demonstrated for two instances A and B which
are randomly selected from two classes.

(a) Input Data (X) (b) DGC (7)

Figure 5. tSNE analysis of (a) input data (X') and (b) latent codes
(Z) obtained by DGC on Fashion-MNIST dataset.

(b) The smallest class

Figure 6. Generated Fashion-MNIST images by DGC for (a) the
largest class and (b) the smallest class.

(a) The largest class

training instances (A and B belonging to class C and Cs)
from Fashion-MNIST, and demonstrate the convergence of
the first latent feature (u1,01). As aforementioned, the vari-
ational posterior distribution g4(z|x, y)are approximated as
Gaussian distributions which become more confident over
epochs, decreasing standard deviation as shown in Figure
4(a). An interesting thing is that two means (u for A and
B) are separated and converge over epochs in Figure 4(b).

Meanwhile, we adopt tSNE analysis [24] to visually
present the discriminative ability of DGC. Taking Fashion-
MNIST dataset as an example, tSNE is firstly applied on the
training data, i.e., projecting the original feature space to a
2-dimension space. When visualizing the instances, differ-
ent classes are marked in different colors. The results on the
original input feature space and the learned latent feature
space are demonstrated in Figure 5(a) and 5(b). Obviously,
it is not easy to directly separate classes in the original fea-
ture space. To be exciting, the class boundaries are clear in
the latent space, which further confirms that the latent code
z has the discriminative ability. This result further confirms
that DGC is good at identifying the direct cause of target

0.91

osb— ]
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-0 F_macro
0.85 &4 G_marco
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0'8%.0 02 04 06 08 1.0
sampling rate r

Figure 7. Effect of sampling rate () on DGC.

label. Figure 6 gives the generated images with z. As ex-
pected, DGC indeed generates realistic and diverse images.

In experiments, the latent code is sampled from the
learned Gaussian distribution. The number of latent codes
(s°) for each instance in the c-th class is set to be max{1, r x
";’1%} where n. is the size of c-th class, Tmaz
max{n.|_,} is the size of the largest class, and 7 is the
sampling rate. We test DGC under varying sampling rate r,
as shown in Figure 7. DGC slightly benefits from large rate
r, while its performance decreases when r is too large. It
is reasonable because more oversampled similar codes may
result in overfitting. This result demonstrates that sampling
few latent codes is good enough to construct imbalanced
classifier, which makes the training process more efficient.

5. Conclusions and future work

In this paper, we proposed a deep generative model for
imbalance classification. It takes advantage of data pertur-
bation and model perturbation to improve the prediction ac-
curacy and learning stability on imbalanced data. DGC is
inferred by utilizing Wasserstein distance. As a generative
model, it can be improved by adopting improved architec-
tures for future investigation, such as Self-Attention [44]
or sliced-Wasserstein generative model [40], which can
achieve good performance by considering more detailed
features or efficient projection along random directions.
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