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Abstract

We consider the problem of unsupervised domain adap-

tation for semantic segmentation by easing the domain shift

between the source domain (synthetic data) and the target

domain (real data) in this work. State-of-the-art approaches

prove that performing semantic-level alignment is helpful

in tackling the domain shift issue. Based on the observa-

tion that stuff categories usually share similar appearances

across images of different domains while things (i.e. object

instances) have much larger differences, we propose to im-

prove the semantic-level alignment with different strategies

for stuff regions and for things: 1) for the stuff categories,

we generate feature representation for each class and con-

duct the alignment operation from the target domain to the

source domain; 2) for the thing categories, we generate fea-

ture representation for each individual instance and encour-

age the instance in the target domain to align with the most

similar one in the source domain. In this way, the individ-

ual differences within thing categories will also be consid-

ered to alleviate over-alignment. In addition to our pro-

posed method, we further reveal the reason why the current

adversarial loss is often unstable in minimizing the distri-

bution discrepancy and show that our method can help ease

this issue by minimizing the most similar stuff and instance

features between the source and the target domains. We

conduct extensive experiments in two unsupervised domain

adaptation tasks, i.e. GTA5 → Cityscapes and SYNTHIA →
Cityscapes, and achieve the new state-of-the-art segmenta-

tion accuracy.

1. Introduction

Semantic segmentation [28] enables image scene under-

standing at the pixel level, which is crucial to many real-

world applications such as autonomous driving. The recent

surge of deep learning [25] methods that generate features

from large training datasets has significantly accelerated the

progress in semantic segmentation [3, 4, 45, 5, 18, 19, 7, 39,
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Figure 1. Illustration of the proposed Stuff Instance Matching

(SIM) structure. By matching the most similar stuff regions and

things (i.e., instances) with differential treatment, we can adapt

the features more accurately from the source domain to the target

domain.

8, 21, 31]. However, collecting data with pixel-level anno-

tation is costly in terms of both time and money. Specifi-

cally, to annotate an image in the widely used benchmark

Cityscapes [10] takes 1.5 hours on average; that sums up

to 7,500 hours in total for annotating all the 5,000 images.

Such annotation cost is quite burdensome, given that train-

ing deep neural networks on the collected data usually takes

less than dozens of hours.

To address the problem of high-cost annotation, unsuper-

vised domain adaptation methods are proposed for seman-

tic segmentation [32, 33]. In these works, a model trained

on a source domain dataset with segmentation annotations

is adapted for an unlabeled target domain. The source do-

main datasets can be synthetic, e.g., from video games, so

that little human effort is required. However, such meth-

ods suffer from the domain shift problem. Existing meth-

ods deal with the problem by minimizing the distribution

discrepancy of the features extracted by a feature extractor

[36, 14] between the source domain and the target domain.

To this end, the GAN [13] architectures, usually composed
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of a generator and a discriminator, are broadly used in this

context. The generator extracts features from the input im-

ages, and the discriminator distinguishes which domain the

features are generated from. The discriminator can thereby

guide the generator to generate the target domain features

with a distribution closer to the feature distribution of the

source domain in an adversarial way.

In the previous GAN-style approaches, the adversarial

loss is essentially a binary cross-entropy about whether the

generated feature is from the source domain. We observe

that such a global training signal is usually weak for the seg-

mentation task. First, the alignments between stuff regions

and between things require different treatments but the ad-

versarial loss lacks such structural information. For exam-

ple, the stuff regions usually lack the appearance variance in

an image but the things can have diverse appearances in the

same image. Therefore, it is sub-optimal to use an adversar-

ial loss to align the stuff and thing features globally without

differential treatments. Second, the global GAN structure

only adapts the feature distribution between two domains

and does not necessarily adapt the target domain features

towards the most likely space of source domain features.

Therefore, as the semantic head gathers the features from

the source domain with more training iterations, it becomes

harder for the feature generator to adapt the target domain

features exactly toward the source domain features. This

leads to a performance drop on the target domain images as

shown in figure 2.

This paper proposes a stuff and instance matching (SIM)

framework to address the aforementioned difficulties. First,

we treat the alignments between stuff regions and between

instances of things with different guidance. The key idea

is shown in figure 1. The multiple stuff regions in a source

image are usually similar, so the stuff from different do-

mains can be directly aligned with their global feature vec-

tors. While the multiple instances of the same thing, e.g., of

the car category, can be diverse in the source image. There-

fore we align instances in the target image to the most sim-

ilar ones in the source image.

Second, we deal with the instability with the GAN train-

ing framework, we apply a L1 loss to explicitly minimize

the distance between the target domain stuff and thing fea-

tures with the most similar source domain counterparts. In

this way, the adaptation is processed in a more accurate di-

rection, instead of the rough distribution matching when us-

ing only the adversarial cross entropy loss, even after the se-

mantic head gathers the source domain features with longer

training iterations. As shown in figure 2, we implement the

output space adversarial adaptation [37] from GTA5 [32]

dataset to Cityscapes [10] dataset, and compare it with our

model which adds the SIM module. We successfully solve

the problem of the performance drop at longer training iter-

ations with few more computations.

Figure 2. mIoU comparison on the validation set of Cityscapes

by adapting from GTA5 dataset to Cityscapes dataset. The blue

line corresponds to the output space adversarial adaptation strategy

[37]. The orange line corresponds to the output space adversarial

adaptation combined with our proposed SIM structure. The model

performance is tested every 5000 iterations.

Finally, we propose to improve the SIM framework with

a self-supervised learning strategy. Specifically, we use pre-

dicted segmentation with high confidence to train the seg-

mentation model, and to enhance the alignment for both

stuff categories and thing categories.

We evaluate the proposed approach on two unsuper-

vised domain adaptation tasks, the adaptation from GTA5 to

Cityscapes and from SYNTHIA to Cityscapes, and achieve

a new state-of-the-art performance on both tasks.

2. Related works

The domain adaptation in classification is a broadly stud-

ied problem after the surge of deep learning methods and

a big progress has been made [43]. However, the domain

adaptation in semantic segmentation problem is more chal-

lenging as it is in essence a pixel-level classification prob-

lem involving structured contextual semantic adaptation. A

typical practice of this task is adapting a semantic segmen-

tation model trained on synthetic datasets [32, 33] (source

domain) to perform on real image datasets [10] (target do-

main). The key idea of the domain adaptation task is to align

the feature distributions between the source domain and the

target domain, so that the model can utilize the knowledge

learned from the source domain to perform tasks on the tar-

get domain. We generally divide current methods into three

categories: image-level transferring, feature-level transfer-

ring and label-level transferring.

The image-level transferring refers to changing the ap-

pearance of images such that images from the source do-

main and the target domain are more visually similar. These

methods [26, 41, 44] usually transfer the color, illumination

and other stylization factors of images from one domain

to another or from both domains to a neutral domain. In

[26], Li et al. use CycleGAN [46] with a perceptual loss

to preserve the locality of semantic information to perform

the unpaired image-to-image transferring. In [44], Zhang

et al. propose an Appearance Adaptation Network which

transfers appearances of images between two domains mu-

tually, such that the images appearance tend to be domain-
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Figure 3. Framework. 1) The overall structure is shown on the left. The solid lines represent the first step training procedure in Eqn (12),

and the dash lines along with the solid lines represent the second step training procedure in Eqn (13). The blue lines correspond to the flow

direction of the source domain data, and the orange lines correspond to the flow direction of target domain data. ∩ is an operation defined

in Eqn (4); + is an operation defined in Eqn (11) and is only effective in the second step training procedure. 2) The specific module design

is shown on the right. h, w and c represent the height, width and channels for the feature maps; H , W and n represent the height, width and

class number for the output maps of the semantic head. For SH, the input ground truth label map supervise the the semantic segmentation

task, and the semantic head also generates a predicted label map joining the operations of ∩ and +. For SM and IM, the grey dash lines

represent the matching operation defined in Eqn (6) and (8) respectively.

invariant. Choi et al. [9] raise a GAN-based self-ensembling

data augmentation method for domain alignment.

The feature-level transferring refers to matching the ex-

tracted feature distributions between the source domain and

the target domain. While feature extractors [36, 14, 17] can

extract task-specific features, the features extracted from the

target domain and the ones from the source domain have a

discrepancy due to the domain shift, which negatively im-

pacts the model’s performance on the target domain dataset.

Therefore, minimizing the feature distribution discrepancy

with GAN [13] structure is a common practice in domain

adaptation. Sankaranarayanan et al. proposes an image re-

construction framework [35] to make the reconstructed im-

ages from two domains close to each other so that the fea-

tures are pulled closer with back propagation. Tsai and et

al. proposes a simple end-to-end output space domain adap-

tation framework [37]. Wu and et al. proposes a channel-

wise feature alignment network [41] to close the gap of the

channel-wise mean and standard deviation in CNN feature

maps. Chang and et al. propose a framework [2] to extract

domain-invariant structures for adaptation.

The label-level transferring refers to giving pseudo-

labels to the target domain dataset given the knowledge

learned from the source domain for helping the adaptation

task. This follows a self-supervised learning framework

[22] where no human efforts are input for labeling the tar-

get dataset. Zou et al. [47] proposes a class-balanced self-

training framework. Li et al. [26] proposes a joint self-

learning and image transferring frameworkfor adaptation.

3. Background

Definitions We follow the unsupervised semantic seg-

mentation framework for the domain adaptation task; that

is, given a source domain dataset with images and the pixel-

level semantic annotations {xs
i , y

s
i } and a target domain

dataset with only images {xt
i}, we plan to train a model that

can predict the pixel-level labels {ŷti} for the target domain

images. We denote the class number with N .

Segmentation and adversarial adaptation The seman-

tic segmentation task in deep learning literature is broadly

discussed [3, 4, 45, 5], and the problem solving strategy is

formalized by utilizing a feature extractor network F to ex-

tract image features and a classification head C to classify

features into semantic classes. We use the cross entropy loss

to supervise the model on the pixel classification task with

the annotated source domain dataset in Eqn (1).

L
S
seg(f

s
i ) = −

∑

i,h,w

∑

k∈N

y
(h,w)
i log(S(C(fs

i )
(h,w))(k))

(1)
where fs

i = F (xs
i ), x

s
i ∈ Xs, Xs is the source domain

image dataset, h and w are the height and width of the

feature maps, y is the ground truth label, S is the softmax
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operation. However, due to the domain shift problem, the

model trained on the source domain will achieve inferior

performance if directly applied to test on the target domain.

Therefore, we impose a traditional GAN structure on the

output space [37] to globally minimize the feature distribu-

tion discrepancy between the source domain and the target

domain. Here, the feature extractor F and the classification

head C serve as the generator G where G = C ◦ F . A

discriminator D will discriminate the generated output by

the generator G. We close the feature distribution discrep-

ancy between the source domain and the target domain by

optimizing the adversarial target function in Eqn (2).

min
G

Ladv(G,D) = −
∑

xt
i
∈XT

log(1−D(S(G(xt
i)))) (2)

while the discriminator tries to distinguish which domain

the feature is from by optimizing the discriminator target

function in Eqn (3).

min
D

LD(G,D) = −
∑

xt
i
∈XT

log(D(S(G(xt
i))))

−
∑

xt
j
∈XS

log(1−D(S(G(xs
j))))

(3)

4. Proposed Methods

The key idea of our method is that the past experience

leading to good outcomes should also help the current train-

ing process. Specifically to our task, the past experience

should help both the feature-level transferring and the label-

level transferring from the source domain to the target do-

main. First, we raise a stuff and instance matching (SIM)

framework to reduce the intra-class domain shift problem.

Second, we propose a self-supervised learning framework

combined with our proposed SIM structure to enable the

label-level transferring, which further boosts the perfor-

mance. The overall framework is shown in figure 3.

4.1. Stuff and instance matching (SIM)

First, we discuss the matching process for the back-

ground classes such as road, sidewalk, sky and etc.. These

classes usually cover a large area of the image and lack ap-

pearance variation, so we only extract the image-level stuff

feature representation for them. For each source domain

image, we access the correctly classified label map by se-

lecting the predicted labels matched with the ground truth

labels in Eqn (4).

Ls
Pi

= argmax
k∈N

(C(fs
i )

(k))

Ls
Ci

= Ls
Gi

∩ Ls
Pi

(4)

where Ls
Ci

is the correctly classified label map, Ls
Gi

is the

ground truth label map, Ls
Pi

is the predicted label map,

and i ∈ {1..|XS |}. We average the features belonging to

the same background semantic class across the width and

height of the image as the stuff representation for each back-

ground class in Eqn (5).

Ab(L, f) =

∑

h,w δ(L(h,w) − b)f (h,w)

max(ǫ,
∑

h,w δ(L(h,w) − b))

Sb
j = Ab(Ls

Ci
, fs

i ) where j = imodw,

if Ab(Ls
Ci
, fs

i ) 6= 0

(5)

where Sb
j is the j’th source domain semantic feature sam-

ple of class b, b ∈ B (background classes), i ∈ {1..|XS |},

w is the number of feature samples to be stored for each

class, δ is the Dirac delta function and ǫ is a regularizing

term. For each target domain image, we minimize the dis-

tance of the stuff representation of each background class

with the closest intra-class source stuff feature representa-

tion. Because the ground truth of the target domain image

is not provided, we use the predicted label map to generate

the stuff feature representation for each background class.

We adapt the stuff feature representation of the background

classes by minimizing the loss function defined in Eqn (6)

when the model is trained on the target domain.

Lstf =
∑

i

∑

b

min
j

∥

∥

∥
Ab(Lt

Pi
, f t

i )− Sb
j

∥

∥

∥

1

1
(6)

where i ∈ {1..|XT |}, and b ∈ Lt
Pi

∩B.

Second, we discuss the instance matching process for the

foreground classes such as cars, persons and etc.. Because

the ground truth does not provide the instance level annota-

tions, we generate the foreground instance mask by finding

the disconnected regions for each foreground class in the la-

bel map L. This coarsely segment the intra-class semantic

regions into multiple instances, and thus various instance-

level feature representations of one image can be generated

accordingly in Eqn (7).

Rk = {rk1 , rk2 , ..., rkm
} = T (L, k)

I(r, f) =

∑

h,w r(h,w)f (h,w)

max(ǫ,
∑

h,w r(h,w))

(7)

where rki
is the i’th (i ∈ {1, ..,m}) binary mask of the

connected region belonging to class k, k ∈ K (foreground

classes), T is the operation to find the disconnected regions

of class k from the label mask L, and I is the operation

to generate the instance-level feature representation. The

source domain instance feature samples can be generated in

algorithm 1. Therefore, the target domain instance features

can be pulled closer to the closest intra-class source domain

instance feature sample by minimizing the loss function in

Eqn (8).

Lins =
∑

i

∑

k∈K

1
∣

∣Rt
k

∣

∣

∑

rt∈Rt
k

min
j

∥

∥

∥
I(rt, f t

i )− Sk
j

∥

∥

∥

1

1
(8)

where i ∈ {1..|XT |}, and Rt
k = T (Lt

Pi
, k).
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Algorithm 1: Instance-level source feature samples

Result: Sk

z = 10; # maximum class instances in an image

ck = 0, ∀k ∈ K; # instance feature counter

for xs
i ∈ XS do

for k ∈ K do
Rs

k = T (Ls
Ci
, k)

if Rs
k 6= ∅ then
Rsort = sort Rs

k by area in descent order

for l ∈ {1..min(z,|Rsort|)} do
j = ck mod z ∗ w
ck = ck + 1
Sk
j = I(Rsort[l], f

s
i )

end

end

end

end

4.2. Self­supervised learning with SIM

Because the model is only trained on the source domain

with the ground truth annotations, the features and the soft-

max output are thus generated to optimize the source do-

main segmentation loss function but ignore the target do-

main segmentation supervision. However, the distribution

of the ground truth labels from both domains also have a

discrepancy, and this negatively impacts the model’s perfor-

mance on the target domain. Therefore, we propose a self

supervised learning framework combined with our feature

matching methods to alleviate this problem.

We first follow the framework described in sections 3 and

4.1 to train a model with the source domain images XS and

ground truth annotations Y S along with the target domain

images XT . Then we use the trained model to give pseudo-

labels to the pixels with high confidence of the predicted

labels in the training set images XT shown in Eqn (9).

ŷti = argmax
k∈N

✶[S(C(ft
i
))(k)>yk

t ]
(C(f t

i )
(k)) (9)

where ✶ is a function which returns the input if the con-

dition is true or a don’t care symbol if not, and ykt is the

confidence threshold for class k. Then, we add the seman-

tic segmentation loss on the target domain images in Eqn

(10) along with other losses to retrain our model.

L
T
seg(f

t) = −
∑

i,h,w

∑

k∈N

ŷ
(h,w)
i log(S(C(f t

i )
(h,w))(k))

(10)
With the pseudo labels supervising the model to generate

features corresponding to specific classes, these features

should generically be adapted to be closer to the corre-

sponding intra-class source domain features. The Lt
Pi

is

thereby augmented by Eqn (11) for the stuff feature adapta-

tion loss defined in Eqn (6) and the instance feature adapta-

tion loss defined in Eqn (8):

✶Lt
Pi

6=ŷt
i
(Lt

Pi
) = ✶Lt

Pi
6=ŷt

i
(ŷti). (11)

✶ selects the positions in the input satisfying the condition.

4.3. Training procedure

We follow a two-step training procedure to improve the

performance of the generator G on semantic segmentation

task on the target domain dataset. First, we train our model

without the self-supervised learning module, and optimize

the target function in Eqn (12) with G and D in an adver-

sarial training strategy:

min
G,D

Lstep1 =min
G

(λsegL
S
seg + λadvLadv+

λci(Lstf + Lins)) + min
D

λDLD,
(12)

where λ’s are the weight parameters for the losses. Second,

after giving the pseudo labels to the target domain training

dataset with the model trained in the first step, we reini-

tialize and repeat the training process to optimize the loss

function in Eqn (13).

min
G,D

Lstep2 =min
G

(λseg(L
S
seg + L

T
seg) + λadvLadv+

λci(L̃stf + L̃ins)) + min
D

λDLD,

(13)

where L̃stf and L̃ins are augmented with predicted ŷtis ac-

cording to Eqn (11).

5. Implementation

5.1. Network architecture

Segmentation Network. We adopt ResNet-101 model

[14] pre-trained on ImageNet [11] with only the 5 con-

volutional layers {conv1, res2, res3, res4, res5} as the

backbone network. Due to memory limit, we do not use

the multi-scale fusion strategy [42]. For generating better-

quality feature maps, we follow the common practice from

[3, 42, 37] and twice the resolution of the feature maps of

the final two layers. To enlarge the field of view, we use

dilated convolutional layers [42] with stride 2 and 4 in res4
and res5. For the classification heads, we apply an ASPP

module [4] to res5 with λseg = 1.

Discriminator. Following [37], We use 5 convolutional

layers with kernel size 4×4, stride of 2 and channel number

of {64, 128, 256, 512, 1} respectively to form the network.

We use a leaky ReLU [24] layer of 0.2 negative slope be-

tween adjacent convolutional layers. Due to the small batch

size in the training process, we do not use batch normaliza-

tion layers [20]. The sole discriminator is implemented on

the upsampled softmax output of the ASPP head on res5
with λadv = 0.001 and λD = 1.
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Table 1. Comparison to the state-of-the-art results of adapting GTA5 to Cityscapes.

GTA5 → Cityscapes

Method ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l
fe

nc
e

po
le

lig
ht

si
gn

ve
ge

ta
tio

n

te
rr
ai

n

sk
y

pe
rs

on

rid
er

ca
r

tru
ck

bu
s

tra
in

m
ot

or
bi

ke

bi
ke

mIoU

Wu et al.[40] 85.0 30.8 81.3 25.8 21.2 22.2 25.4 26.6 83.4 36.7 76.2 58.9 24.9 80.7 29.5 42.9 2.5 26.9 11.6 41.7

Tsai et al.[37] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

Saleh et al.[34] 79.8 29.3 77.8 24.2 21.6 6.9 23.5 44.2 80.5 38.0 76.2 52.7 22.2 83.0 32.3 41.3 27.0 19.3 27.7 42.5

Luo et al. [29] 88.5 35.4 79.5 26.3 24.3 28.5 32.5 18.3 81.2 40.0 76.5 58.1 25.8 82.6 30.3 34.4 3.4 21.6 21.5 42.6

Hong et al.[16] 89.2 49.0 70.7 13.5 10.9 38.5 29.4 33.7 77.9 37.6 65.8 75.1 32.4 77.8 39.2 45.2 0.0 25.5 35.4 44.5

Chang et al. [2] 91.5 47.5 82.5 31.3 25.6 33.0 33.7 25.8 82.7 28.8 82.7 62.4 30.8 85.2 27.7 34.5 6.4 25.2 24.4 45.4

Du et al. [12] 90.3 38.9 81.7 24.8 22.9 30.5 37.0 21.2 84.8 38.8 76.9 58.8 30.7 85.7 30.6 38.1 5.9 28.3 36.9 45.4

Vu et al. [38] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

Chen et al. [6] 89.4 43.0 82.1 30.5 21.3 30.3 34.7 24.0 85.3 39.4 78.2 63.0 22.9 84.6 36.4 43.0 5.5 34.7 33.5 46.4

Zou et al. [47] 89.6 58.9 78.5 33.0 22.3 41.4 48.2 39.2 83.6 24.3 65.4 49.3 20.2 83.3 39.0 48.6 12.5 20.3 35.3 47.0

Lian et al. [27] 90.5 36.3 84.4 32.4 28.7 34.6 36.4 31.5 86.8 37.9 78.5 62.3 21.5 85.6 27.9 34.8 18.0 22.9 49.3 47.4

Li et al. [26] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

ours (ResNet101) 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2

Du et al. [12] 88.7 32.1 79.5 29.9 22.0 23.8 21.7 10.7 80.8 29.8 72.5 49.5 16.1 82.1 23.2 18.1 3.5 24.4 8.1 37.7

Li et al. [26] 89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3

ours (VGG16) 88.1 35.8 83.1 25.8 23.9 29.2 28.8 28.6 83.0 36.7 82.3 53.7 22.8 82.3 26.4 38.6 0.0 19.6 17.1 42.4

5.2. Training Details

We use Pytorch toolbox and a single GPU to train our

network. Stochastic Gradient Descent (SGD) is used to

optimize the segmentation network. We use Nesterov’s

method [1] with momentum 0.9 and weight decay 5×10−4

to accelerate the convergence. Following [3], we set the ini-

tial learning rate to be 2.5×10−4 and let it polynomially de-

cay with the power of 0.9. For the discriminator networks,

we use Adam optimizer [23] with momentum 0.9 and 0.99.

The initial learning rate is set to 10−4 and the same polyno-

mial decay rule is applied.

6. Experiments

6.1. Datasets

The Cityscapes [10] dataset consists of 5000 images of

resolution 2048× 1024 with high-quality pixel-level anno-

tations. These images of street scenes were annotated with

19 semantic labels for evaluation. This dataset is split into

training, validation and test sets with 2975, 500 and 1525

images respectively. Following previous works [15, 30], We

only evaluate our models on the validation set. The GTA5

[32] dataset contains 24966 fine annotated synthetic images

of resolution 1914 × 1052. All the images are frames cap-

tured from the game Grand Theft Auto V. To accommodate

the model with the limited GPU memory, we follow [37]

and resize GTA5 images to the resolution of 1280 × 720.

This dataset shares all the 19 classes used for evaluation

in common with the Cityscapes dataset. The SYNTHIA

[33] dataset has 9400 images of resolution 1280× 760 with

pixel-level annotations. Similar to [29, 37, 12, 26], we eval-

uate our models on Cityscapes validation set with the 13

classes shared in common between SYNTHIA dataset and

Cityscapes dataset. The Cityscapes images are resized to

1024× 512 for both the training stage and the testing stage.

6.2. GTA5 to Cityscapes

We first show our over results and compare to the previ-

ous state-of-the-arts; then discuss the effectiveness of each

module in our model; finally we discuss the choice of hyper

parameters of our proposed SIM module.

Overall results. We compare the performance of our

method with the current state-of-the-arts in table 1. For

fair comparison, we list the performance of the models us-

ing resnet-101 [14] and VGG16 [36] as the backbones re-

spectively. Our method achieves the state-of-the-art perfor-

mance with either backbone.

Module contributions. We show the contribution of

each module to the overall performance of our model in

table 2. If trained purely on the source domain dataset,

the model can achieve an mIoU of 36.6 on the Cityscapes

validation set. Then, we follow the work of [37] to add

the global adversarial training on the output space with the

adversarial loss in Eqn (2) and the discriminator loss in

Eqn (3), and the mIoU is thereby improved to 41.4. As

mentioned in section 2, image-level adaptation is also a

key factor in minimizing the discrepancy of data distribu-

tion. Therefore, it is helpful to utilize a transferred source-

domain image dataset whose appearance is more similar to

that of the target-domain image dataset. We adopt the trans-

ferred GTA5 images of [26] which utilizes a CycleGAN

[46] structure to adapt the style of GTA5 images to the style
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Table 2. Ablation study on the adaptation from GTA5 dataset

to Cityscapes dataset. AA stands for adversarial adaptation; IT

stands for image transferring; SIM stands for semantic and in-

stance matching; SSL stands for self-supervised learning.

method AA IT SIM SSL mIoU

source only 36.6

+ AA[37] X 41.4

+ IT[26] X X 44.9

+ SIM X X X 46.2

+ SSL X X X X 49.2

target only 65.1

Table 3. Influence of λci given the number of semantic feature

samples to be stored is 50 (w = 50)

λci 0.1 0.05 0.01 0.005 0.001

mIoU 43.4 44.2 46.2 45.4 45.5

Table 4. Influence of the number of semantic feature samples to be

stored (w) given λci = 0.01

w 10 50 200 800 1600

mIoU 45.2 46.2 46.1 45.3 45.0

of Cityscapes images. This further improves the mIoU to

44.9, which serves as the baseline for our works.

Then, we add our SIM module to the training framework.

The background classes include road, sidewalk, building,

wall, fence, vegetation, terrain and sky. The foreground

classes are all the rest classes used for evaluation. With the

best setting for the SIM module where λci = 0.01 and w,

the number of semantic source domain feature samples to

be stored, is 50, the mIoU improves to 46.2 by optimizing

the Eqn (12). In this setting, we empirically set the max-

imum source domain instance features of each class to be

stored to 10 for each image, and the feature of the instance

covering larger area is to be stored with higher priority. We

also adapt 10 instance features at maximum for each class

from the target domain to the source domain. This is be-

cause instance feature representations of small regions or

noise regions may be too many for storage and adaptation.

Finally, we retrain our model with the combination of

SIM and the self supervised learning (SSL) framework

given the pseudo-labeled target dataset by the training step

1. When generating the pseudo labels for the target dataset,

we choose the confidence threshold for each class respec-

tively. We first follow Eqn (9) to give pseudo labels for

each pixel by setting yt = 0 for each image in the target

dataset. Then, we generate a confidence map corresponding

to the pseudo label map where the confidence is the maxi-

mum item of the softmax output in each channel so that the

pseudo label at each pixel is associated with a confidence

value. After this, we rank the confidence values belong-

ing to the same class across the whole target dataset. If the

median confidence value is below 0.9, then the confidence

threshold for that class is set to the median confidence value;

otherwise, it is set to 0.9. With the new ykt being set, we fol-

low Eqn (9) to generate the pseudo labels with don’t cares

for the target dataset and thus the model retraining can be

processed by optimizing Eqn (13). This improves the mIoU

to 49.2. We provide a visualization showing the improve-

ments of our methods in figure 4.

Hyper parameters analysis. This mainly deals with the

settings of λci, the weight for the semantic matching loss

and the instance matching loss, and w, the number of se-

mantic feature samples to be stored for our proposed SIM

module. For the hyper parameters of other modules, we fol-

low [37] to set λseg = 1, λadv = 0.01 and λD = 1 to

control the variables.

First, we discuss the influence of λci given w = 50,

which is shown in table 3. We experiment the influence

of λci with different w’s. Here we only exhibit the results

with w = 50, the setting that achieves the best performance,

to provide the intuition of the influence of the choice of

λci. We argue that λci should not be set either too large

or too small. If it is too large, the features corresponding

to the image-level or instance-level semantic class would

be pulled closer to the same source domain feature sam-

ple too much, such that these target-domain features would

also be very close to each other thus lack intra-class feature

variance. This could worsen the scene understanding for

the feature extractor and thus negatively impact the over-

all performance of our model. On the other hand, if λci

is too small, the matching loss would not help the model

much on minimizing the feature discrepancy between the

source domain and the target domain. As shown in table 3,

when λci = 0.01, an appropriately large value, the model

achieves the best performance.

Second, we show the influence of the choice of w, the

number of semantic feature samples to be stored, as shown

in table 4. As the model is always being updated dur-

ing the training stage, it would be infeasible to access all

the source-domain feature samples with the newly updated

model. Therefore, we store an amount of feature samples

generated with recent updated models. The number of these

feature samples, w, should balance the factors such that

1) w should be large enough so that there will be enough

source domain feature samples to be matched; and 2) w

should not be too large or the stored source domain feature

samples are not up-to-date. With our experiments, w = 50
achieves the best performance.

6.3. SYNTHIA to Cityscapes

We evaluate the mIoU of 13 classes shared between the

source domain and the target domain as [29, 37, 12, 26].

We use the same hyper parameters which achieves the best

performance discussed in section 6.2 for all the following

experiments. We compare our model with the previous
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Target Image Source OnlyGround Truth AA+IT Ours

Figure 4. Visualization of the segmentation results. ’Source only’, ’AA+IT’, and ’Ours’ correspond to the models that achieves mIoU of

36.6, 44.9, and 49.2 in table 2, respectively.

Table 5. Comparison to the state-of-the-art results of adapting SYNTHIA to Cityscapes.

SYNTHIA → Cityscapes

Method ro
ad

si
de

w
al

k

bu
ild

in
g

lig
ht

si
gn

ve
ge

ta
tio

n

sk
y

pe
rs

on

rid
er

ca
r

bu
s

m
ot

or
bi

ke

bi
ke

mIoU

Luo et al. [29] 82.5 24.0 79.4 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 46.3

Tsai et al.[37] 84.3 42.7 77.5 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7

Du et al. [12] 84.6 41.7 80.8 11.5 14.7 80.8 85.3 57.5 21.6 82.0 36.0 19.3 34.5 50.0

Li et al. [26] 86.0 46.7 80.3 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 51.4

ours (ResNet101) 83.0 44.0 80.3 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 52.1

Table 6. Ablation study on the adaptation from SYNTHIA dataset

to Cityscapes dataset. AA stands for adversarial adaptation; IT

stands for image transferring; SIM stands for semantic and in-

stance matching; SSL stands for self-supervised learning.

method AA IT SIM SSL mIoU

source only 38.6

+ AA[37] X 45.9

+ IT[26] X X 46.0

+ SIM X X X 47.1

+ SSL X X X X 52.1

target only 71.7

state-of-the-arts in table 5. Our model also achieves a new

state of the art on adaptation from SYNTHIA dataset to the

Cityscapes dataset.

Table 6 shows the contribution of each module. The

model can achieve an mIoU of 38.6 if trained on the source

domain only. By adding the adversarial training module and

utilizing the transferred source domain images, the model

can achieve an mIoU of 46.0. We notice that the improve-

ment of utilizing the transferred images is not obvious, and

we conjecture that this is because of the large gap of lay-

outs between the source domain and the target domain. By

adding our SIM module, the mIoU improves to 47.1. After

retraining our model with self-supervised learning using the

same pseudo-labeling strategy described in section 6.2, our

model achieves an mIoU of 52.1.

7. Conclusions

We propose a stuff and instance matching (SIM) mod-

ule for the unsupervised domain adaptation of semantic seg-

mentation from a synthetic dataset to a real-image dataset.

We (1) consider the difference of appearance variance be-

tween the stuff regions and the instances of things, and

thus treat them differently in the adaptation process; (2) ex-

plicitly minimize the distance of the closest stuff and in-

stance features between the source domain and the target

domain, which enables the adaptation in a more accurate di-

rection and stabilize the GAN training process at longer it-

erations. By combining our SIM module with self-training,

our model achieves a new state-of-the-art on this task.
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