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Abstract

Image style transfer is an underdetermined problem,

where a large number of solutions can satisfy the same con-

straint (the content and style). Although there have been

some efforts to improve the diversity of style transfer by in-

troducing an alternative diversity loss, they have restricted

generalization, limited diversity and poor scalability. In

this paper, we tackle these limitations and propose a simple

yet effective method for diversified arbitrary style transfer.

The key idea of our method is an operation called deep fea-

ture perturbation (DFP), which uses an orthogonal random

noise matrix to perturb the deep image feature maps while

keeping the original style information unchanged. Our

DFP operation can be easily integrated into many existing

WCT (whitening and coloring transform)-based methods,

and empower them to generate diverse results for arbitrary

styles. Experimental results demonstrate that this learning-

free and universal method can greatly increase the diversity

while maintaining the quality of stylization.

1. Introduction

Style transfer, or to repaint an existing image with the

style of another, is considered as a challenging but inter-

esting task in both academia and industry. Recently, the

pioneering works of Gatys et al. [7, 6, 8] have proved that

the correlations (i.e., Gram matrix) between feature maps

extracted from a pre-trained deep convolutional neural net-

work (DCNN) can represent the style of an image well.

Since then, significant efforts have been made to improve

in many aspects including efficiency [29, 12, 16], qual-

ity [15, 31, 21, 10], generality [2, 5, 11, 19, 26, 22], user

control [1, 9] and photorealism [23, 20, 32], etc. However,

despite the remarkable success, these methods often neglect

an important aspect, i.e., the diversity, since many of the

applications (e.g., art creation and creative design) are re-
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quired to satisfy the preferences of different users.

In terms of diversity, one common explanation is that,

image style transfer is an underdetermined problem, where

a large number of solutions can satisfy the same content

and style, just like the results generated by different meth-

ods could all be visually pleasing and perceptually correct.

However, the lack of meaningful variations in vanilla style

transfer mechanism [8, 12, 29] hampers the emergence of

diversity, as the optimization-based methods often converge

to the similar local optimum, while the feed-forward net-

works only produce fixed outputs for the fixed inputs.

Although challenging and meaningful, unfortunately,

this problem has barely received enough attention and there

are only a few efforts to solve it. For instance, based on

the feed-forward networks, Li et al. [18] introduced a diver-

sity loss that penalized the feature similarities of different

samples in a mini-batch. Ulyanov et al. [30] minimized the

Kullback-Leibler divergence between the generated distri-

bution and a quasi-uniform distribution on the Julesz en-

semble [13, 35]. Although their methods could generate di-

verse texture samples or stylized images to a certain extent,

they still suffer from three main limitations. (1) Restricted

generalization. Once trained, their feed-forward network

is tied to a specific style, which cannot be generalized to

other styles. (2) Limited diversity. Since their diversity

is learned by penalizing the variations in mini-batches of

a finite dataset and the weight of diversity loss should be

set to a small value, the degree of diversity is limited. (3)

Poor scalability. Extending their approaches to other meth-

ods requires the intractable modifications to training strate-

gies and network structures, which might be useful for some

learning-based methods like [11], but not suitable for recent

learning-free methods [19, 26, 20] as these methods transfer

arbitrary styles in a style-agnostic manner.

Facing the aforementioned challenges, we rethink the

problem of diversity and an important insight we will use

is that a Gram matrix [8], which is widely used as the style

representation of an image, can correspond to an infinite

number of different feature maps, and the images recon-
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structed from these feature maps are the diverse results we

are looking for. Obviously, the problem of diversity has now

been transformed into the problem of how to obtain the dif-

ferent feature maps with the same Gram matrix. Inspired

by the work of Li et al. [19] which decomposes the Gram

matrices and separates the matching of them by whitening

and coloring transforms (WCTs), we propose a simple yet

effective method, i.e., deep feature perturbation (DFP), to

achieve diversified arbitrary style transfer. Our diversity is

obtained by using an orthogonal noise matrix to perturb the

image feature maps extracted from a DCNN while keeping

the original style information unchanged. That is to say, al-

though the perturbed feature maps are different from each

other, they all have the same Gram matrix. For ease of un-

derstanding, we regard Gram matrix as the style represen-

tation, and define that different feature maps with the same

Gram matrix share the same style-specific feature space.

In this work, our DFP is based on the framework of

WCT [19], so it can be easily incorporated into many WCT-

based methods [19, 26, 20] and empower them to generate

diverse results without any extra learning process. Note that

this learning-free process is fundamentally different from

the aforementioned diversified methods that require learn-

ing with pre-defined styles. Therefore, our method is able

to achieve diversified arbitrary style transfer.

The main contributions of this work are threefold:

• We propose to use deep feature perturbation, i.e., per-

turbing the deep image feature maps by an orthogonal noise

matrix while keeping the original style information un-

changed, to achieve diversified arbitrary style transfer.

• Our method can be easily incorporated into existing

WCT-based methods [19, 26, 20] which are used for differ-

ent style transfer tasks, e.g., artistic style transfer, semantic-

level style transfer and photo-realistic style transfer.

• Theoretical analysis proves the capability of the pro-

posed method in generating diversity, and the experimental

results demonstrate that our method can greatly increase the

diversity while maintaining the quality of stylization.

2. Related Work

Gram-based Methods. Gatys et al. [7, 6, 8] first pro-

posed an algorithm for arbitrary style transfer and texture

synthesis based on matching the correlations (i.e., Gram

matrix) between deep feature maps extracted from a pre-

trained DCNN within an iterative optimization framework,

but one major drawback is the inefficiency. To address

this, Johnson et al. [12] and Ulyanov et al. [29, 30] di-

rectly trained feed-forward generative networks for fast

style transfer, but these methods need to retrain the net-

work every time for a new style, which is inflexible. For this

limitation, some methods [5, 33, 2, 18, 25] were proposed

to incorporate multiple styles into one single network, but

they are still limited in a fixed number of pre-defined styles.

More recently, Huang and Belongie [11] further allowed ar-

bitrary style transfer in one single feed-forward network.

WCT-based Methods. Recently, Li et al. [19] have pro-

posed to exploit a series of feature transforms to achieve

fast arbitrary style transfer in a style learning-free manner.

They reformulated the task of style transfer as an image re-

construction process, with the feature maps of the content

image being whitened at intermediate layers with regard to

their style statistics (i.e., Gram matrix), and then colored to

exhibit the same statistical characteristics of the style im-

age. This method is essentially a Gram-based method, but

it splits the Gram matrices by matrix decomposition, and

separates the matching of them by whitening and coloring

transforms (WCTs), thus providing an opportunity for our

deep feature perturbation. Furthermore, Sheng et al. [26]

combined it with style swap [3] for higher quality semantic-

level style transfer. Li et al. [20] and Yoo et al. [32] de-

veloped this to fast photo-realistic style transfer. More re-

cently, Li et al. [17] derived the form of transformation ma-

trix theoretically and directly learned it with a feed-forward

network. Lu et al. [22] derived a closed-form solution by

treating it as the optimal transport problem. In our work,

taking the most representative ones [19, 26, 20] as exam-

ples, the proposed method can be easily integrated into the

learning-free WCT process and empower these methods to

generate diverse results, which will be shown in Section 5.

Diversified Methods. Our method is closely related

to [18] and [30]. Li et al. [18] introduced a diversity loss

to allow the feed-forward networks to generate diverse out-

puts. It explicitly measures the variations in visual appear-

ances between the generated results, and penalizes them in a

mini-batch. Ulyanov et al. [30] proposed a new formulation

that allowed to train generative networks which sampled the

Julesz ensemble [13, 35]. Specifically, the diversity term

of its learning objective is similar to that of Li et al. [18],

which quantifies the lack of diversity in the batch by mutu-

ally comparing the generated images. Although these meth-

ods could generate diverse outputs to a certain extent, they

still suffer from the restricted generalization, limited diver-

sity and poor scalability, as we have introduced in Section 1.

The proposed method is based on WCT [19], and can

be easily integrated into WCT-based methods to empower

them to generate diverse results. Unlike the previous diver-

sified methods [18, 30] that need to train an independent

network for every style, our diversity is learning-free and

suitable for arbitrary styles. Moreover, without extra con-

straints, our method can generate an infinite number of so-

lutions with satisfactory quality as well as distinct diversity.

3. Style-Specific Feature Space

Defining the style of an image is a quite tricky prob-

lem, and so far no unified conclusion has been reached.
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Figure 1. Our diversified arbitrary style transfer pipeline. (a) We add an orthogonal noise matrix Z to perturb the whitening and coloring

transform (WCT). Like [19], the VGG and DecoderX are first trained for image reconstruction and then fixed for style transfer. C and S

denote the content image and style image, respectively. (b) Our perturbed whitening and coloring transform (PWCT) can be applied in

every level of the multi-level stylization framework of [19].

Informally, a style can be regarded as a family of visual

attributes, such as color, brush strokes and line drawing,

etc. Recently, Gatys et al. [7, 6, 8] have proposed a new

style representation (Gram matrix) for artistic images. In

their works, the style of an image is represented by the cor-

relations between deep feature maps extracted from a pre-

trained DCNN. Given an image ~x as input, the vectorized

feature map extracted from a certain layer (we only take

one layer as an example) of the VGG model [28] is denoted

as F ∈ R
C×HW , where H , W are the height and width of

the original feature map, C is the number of channels. The

style of the image ~x can be represented as follows:

Gij =
∑

k

FikFjk = FFT ∈ R
C×C , (1)

where Fik and Fjk are the activations of the ith and jth

filter at position k, FT is the transpose matrix of F .

It is obvious that, for a definite Gram matrix G, there

could be a large number of feature maps corresponding to

it. Let Fl denote the vectorized feature map of an image in

layer l. Fl is perceived as the style G in layer l if its Gram

matrix matches G. Formally, given the loss function:

LG(Fl) = ||FlF
T
l − G||, (2)

we define the feature maps that satisfy the following con-

straint belong to the same style-specific feature space of G.

SG = {Fl ∈ F : LG(Fl) = 0}, (3)

where F is a set of feature maps. Features belonging to the

same S are perceptually equivalent in style characteristics.

In particular, sometimes we do not need their Gram ma-

trices to be exactly equal, and then we can get the relaxed

constraint,

Sǫ
G = {Fl ∈ F : LG(Fl) ≤ ǫ}, (4)

in which the feature maps are approximately equivalent in

style characteristics.

In this work, our deep feature perturbation can easily

achieve the first constraint (Eq. (3)), while the methods

[18, 30] only satisfy the second constraint (Eq. (4)). That

is to say, the Gram matrices of the diverse perturbed feature

maps obtained by our method can be completely equal.

4. Deep Feature Perturbation

Our deep feature perturbation (DFP) is based on the

work of Li et al. [19] and incorporated into its whitening

and coloring transform (WCT) process to help generate di-

verse stylized results. The pipeline of our method is shown

in Fig. 1, where the diversified style transfer is mainly

achieved by the perturbed whitening and coloring transform

(PWCT), which consists of two steps, i.e., whitening trans-

form and perturbed coloring transform.

Whitening Transform. Given a pair of content image

Ic and style image Is, we first extract their vectorized VGG

feature maps Fc = Φ(Ic) ∈ R
C×HcWc and Fs = Φ(Is) ∈

R
C×HsWs at a certain layer Φ (e.g., Relu 3 1), where Hc,

Wc (Hs, Ws) are the height and width of the content (style)

feature, and C is the number of channels. We first center

Fc by subtracting its mean vector mc. Then the whiten-

ing transform (Eq. (5)) is used to transform Fc to F̂c, in

which the feature maps are uncorrelated from each other

(i.e., F̂cF̂c

T
= I).

F̂c = EcD
− 1

2

c ET
c Fc, (5)
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Table 1. Quantitative comparisons between single-level perturbation and multi-level perturbation in terms of run-time, tested on images of

size 512× 512 and a 6GB Nvidia 980Ti GPU.

Fig. 2 Li et al. [19] I5 I4 I3 I2 I1 I5+I4 I5+I1 I3+I2+I1 I5+I4+I3+I2+I1

Time/sec 3.01 3.53 3.51 3.04 3.03 3.02 4.14 3.54 3.05 4.15

Fig. 3 Li et al. [20] - I4 I3 I2 I1 I4+I3 I4+I1 I2+I1 I4+I3+I2+I1

Time/sec 0.29 - 0.32 0.31 0.30 0.29 0.33 0.32 0.30 0.34

Content I5 I4 I3 I2 I1

Style Li et al. [19] I5 + I4 I5 + I1 I3 + I2 + I1 I5+I4+I3+I2+I1

Figure 2. Single-level perturbation vs. Multi-level perturbation.

Our DFP is integrated into method [19]. The top row shows the

results obtained by only perturbing a single-level stylization in

Fig. 1(b). The bottom row shows the results obtained by perturb-

ing stylizations in multiple levels.

where Dc and Ec are obtained by the singular value de-

composition (SVD) of the Gram matrix FcF
T
c ∈ R

C×C

(Eq. (1)), i.e., FcF
T
c = EcDcE

T
c . Dc is the diagonal matrix

of the eigenvalues, and Ec is the corresponding orthogonal

matrix of eigenvectors.

Perturbed Coloring Transform. We first center Fs

by subtracting its mean vector ms. The coloring trans-

form used in [19] is essentially the inverse of the whitening

step, i.e., using Eq. (6) to transform F̂c so that we can ob-

tain F̂cs which satisfies the same Gram matrix of Fs (i.e.,

F̂csF̂cs

T
= FsF

T
s ).

F̂cs = EsD
1

2

s E
T
s F̂c, (6)

where Ds and Es are obtained by the SVD of the Gram

matrix FsF
T
s ∈ R

C×C , i.e., FsF
T
s = EsDsE

T
s . Ds is

the diagonal matrix of the eigenvalues, and Es is the corre-

sponding orthogonal matrix of eigenvectors.

The goal of coloring transform is to make the Gram ma-

trix of F̂cs the same as that of Fs. According to our analysis

in Section 3, these two feature maps share the same style-

specific feature space. In theory, F̂cs should have a large

number of possibilities, but Eq. (6) only produces one of

them. In order to traverse these solutions as much as possi-

ble, we propose to use deep feature perturbation.

The key idea of our deep feature perturbation is incorpo-

rating an orthogonal noise matrix into Eq. (6) to perturb the

feature F̂cs while preserving its Gram matrix. Obviously,

there are three places to insert the noise matrix, i.e., between

D
1

2

s and ET
s , between ET

s and F̂c, and on the right side of

Content I4 I3 I2 I1

Style Li et al. [20] I4 + I3 I4 + I1 I4 + I3 + I2 + I1

Figure 3. Another comparison of Single-level and Multi-level per-

turbation. Our DFP is integrated into method [20]. This method

only uses four-level stylizations. The top row shows the results

obtained by only perturbing a single-level stylization. The bottom

row shows the results obtained by perturbing stylizations in multi-

ple levels.

F̂c (since ET
s Es = I and F̂cF̂c

T
= I). We eventually in-

sert the orthogonal noise matrix between D
1

2

s and ET
s as this

may consume the least computation and run-time (we will

discuss this in Section 5.2).

We first obtain a random noise matrix N (e.g., sampled

from the standard normal distribution, we will discuss it in

Section 5.2) according to the shape of D
1

2

s and ET
s . Assume

that the shape of D
1

2

s is (C − k) × (C − k), where k is

the number of small singular values (e.g., less than 10−5,

Li et al. [19] suggest removing these small singular values

to obtain higher quality results), and the shape of ET
s is

(C − k) × C, then the shape of N is (C − k) × (C − k).
To obtain orthogonal noise matrix, we apply the SVD to

decompose N , i.e., N = EnDnV
T
n , and directly use the

orthogonal matrix Z = En ∈ R
(C−k)×(C−k). Finally, we

insert Z between D
1

2

s and ET
s of Eq. (6). Our new perturbed

coloring transform is formulated as follows:

ˆFcsn = EsD
1

2

s ZE
T
s F̂c, (7)

since ZZ
T = I , we can deduce as follows:

ˆFcsn
ˆFcsn

T
= (EsD

1

2

s ZE
T
s F̂c)(F̂c

T
EsZ

TD
1

2

s E
T
s )

= EsD
1

2

s (ZET
s F̂cF̂c

T
EsZ

T)D
1

2

s E
T
s

= EsDsE
T
s = FsF

T
s

In our later experiments, we find that only using our per-

turbed coloring transform may reduce the quality of styliza-

tion. This may be because F̂cs (Eq. (6)) contains not only
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λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

Figure 4. Trade-off between diversity and quality by varying di-

versity hyperparameter λ in method [19] (+ our DFP).

style information (Gram matrix) from EsD
1

2

s E
T
s , but also

some content information from F̂c (Eq. (5)). Although our

feature perturbation (Eq. (7)) can keep the style information

unchanged, the content information may be affected by the

noise matrix, which is manifested as a decline in quality.

Fortunately, in WCT-based methods [19, 26, 20], the con-

tent information in F̂c is not the determinant of the content

in the final result, as in these methods F̂cs is mainly served

as the style feature, and blended with the content feature Fc

to balance the style and content (similar to our Eq. (9)). In

order to increase the diversity while maintaining the orig-

inal quality, we introduce a diversity hyperparameter λ to

provide user controls on the trade-off between them.

ˆFcsn

′
= λ ˆFcsn + (1− λ)F̂cs. (8)

Then, we re-center the ˆFcsn

′
with the mean vector ms of

the style, i.e., ˆFcsn

′
= ˆFcsn

′
+ms. At last, we blend ˆFcsn

′

with the content feature Fc before feeding it to the decoder.

ˆFcsn

′
= α ˆFcsn

′
+ (1− α)Fc, (9)

where the hyperparameter α serves as the weight for users

to control the stylization strength, like [19].

Multi-level Stylization. We follow the multi-level

coarse-to-fine stylization used in [19], but replace their

WCTs with our PWCTs, as shown in Fig. 1 (b). In fact,

we do not need to add noise to every level. We will discuss

this in Section 5.2.

Discussions. As a matter of fact, optimizing the diver-

sity loss of [18, 30] can be viewed as a sub-optimal approx-

imation of our method, as analyzed in Section 3. But since

the diversity loss is only optimized on mini-batches of a fi-

nite dataset and the weight should be set to a small value

(otherwise it will seriously reduce the quality), the degree

of diversity is limited. By contrast, the different orthogo-

nal noise matrices can be innumerable and diverse, so there

could be endless possibilities with distinct diversity for the

results of our approach. Moreover, our method is learning-

free and can be effective for arbitrary styles, while the di-

versity loss of [18, 30] needs to be optimized every time for

every style.

λ = 0 λ = 0.3 λ = 0.5 λ = 0.6 λ = 0.8 λ = 1.0

Figure 5. Trade-off between diversity and quality by varying di-

versity hyperparameter λ in method [26] (+ our DFP).

λ = 0 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

Figure 6. Trade-off between diversity and quality by varying di-

versity hyperparameter λ in method [20] (+ our DFP).

5. Experimental Results

5.1. Implementation Details

We incorporate our deep feature perturbation into three

existing WCT-based methods which are used for differ-

ent style transfer tasks, i.e., [19] for artistic style transfer,

[26] for semantic-level style transfer and [20] for photo-

realistic style transfer. Except for replacing the WCTs with

our PWCTs, we do not modify anything else, such as pre-

trained models, pre-processing or post-processing opera-

tions, etc. If not specifically stated, in all experiments, the

stylization weight α of our diversified version is consistent

with the original version, and the random noise matrix N is

sampled from the standard normal distribution. We fine-

tune the diversity hyperparameter λ to make our quality

similar to previous works, i.e., 0.6 for [19], 0.5 for [26] and

1 for [20]. We will discuss these settings in the following

sections. Our code is available at: https://github.

com/EndyWon/Deep-Feature-Perturbation.

5.2. Ablation Study

Single-level Perturbation versus Multi-level Pertur-

bation. We study the effects of single-level perturba-

tion and multi-level perturbation on two WCT-based meth-

ods [19, 20], since they both use the multi-level stylization

(while the method [26] only uses a single-level stylization).

To perturb only specific levels, we set the diversity hyper-

parameter λ of the selected levels to default values (i.e.,

0.6 for [19] and 1 for [20]), and the other levels to 0. As

shown in the top row of Fig. 2, when we perturb separately

from the deepest level (I5) to the shallowest level (I1), the

quality decreases accordingly. This phenomenon exists in

the top row of Fig. 3 as well. We analyze the reason may

be that the deeper level stylizes more low-frequency coarse
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Figure 7. Relation between diversity and stylization strength. Each column (except for the first one) shows the results obtained by different

α values (stylization strength). The top row shows the results of the original method [19]. The middle row shows the results obtained by

setting λ = 0.6 (the default diversity strength) for our diversified version of [19]. The bottom row shows the results obtained by increasing

the value of λ to 1 for our diversified version of [19]. α = 0.6 is the default stylization setting of [19].

Inputs Li et al. [19] Sheng et al. [26] Li et al. [20] Varied Sampling

Figure 8. Relation between orthogonal noise matrix and generated

result. The first column shows the input content (top) and style

(bottom) images. The second to fourth columns show the results

obtained by using the orthogonal noise matrix (top) and original

random noise matrix (bottom) to perturb the methods [19, 26, 20],

respectively. The last column shows the results obtained by vary-

ing the sampling distribution of the orthogonal noise matrix for

methods [19] (top) and [26] (bottom).

characteristics while the shallower level stylizes more high-

frequency fine characteristics, so adding noise into the shal-

lower levels will affect the pixel performance of the final

results. Perturbing at the deepest level can achieve compa-

rable stylization quality as the original methods (see I5 in

Fig. 2 and I4 in Fig. 3). On the other hand, multi-level per-

turbation introduces noise into multiple levels, as shown in

the bottom rows of Fig. 2 and Fig. 3. We can see that intro-

ducing too much noise is unnecessary and will reduce the

quality of stylization. We also compare the run-time in Ta-

ble 1. Note that for method [20], we only consider the styl-

ization time. Compared with the original methods (column

2), the incremental run-time decreases when we perturb the

shallower levels. Nevertheless, the deepest-level perturba-

tion only increases a very small amount of time (in bold).

Trade-off between Diversity and Quality. In Eq. (8),

we introduce a diversity hyperparameter λ to provide user

controls on the trade-off between diversity and quality. Dif-

ferent methods may require different λ values. In this part,

we demonstrate the impact of different λ values on meth-

ods [19, 26, 20] while keeping their default stylization set-

tings. For method [19] and [20], we only perturb the deepest

level as suggested in the former sections. For method [26],

we perturb its bottleneck layer as it only uses a single-level

stylization. The results are shown in Fig. 4, 5 and 6. As

we can see, the degree of diversity rises with the increase of

λ values, but for method [19] and [26] (Fig. 4 and 5), the

quality is obviously reduced when large λ values are ap-

plied. However, this problem does not arise in method [20]

(Fig. 6), it may be because this method [20] contains a

smoothing step to remove noticeable artifacts and it sup-

presses the emergence of diversity to some extent, which

will also be verified by the quantitative comparisons in later

Section 5.3. For trade-offs, we finally adopt 0.6, 0.5 and 1

for the default λ values of [19], [26] and [20], respectively.

Relation between Diversity and Stylization Strength.

The diversity is also related to the stylization strength. Tak-

ing method [19] as an example, Fig. 7 demonstrates the re-

lation between these two aspects. Comparing the top two

rows, we can observe that for our default diversity setting

(λ = 0.6), it works well for the situations where the styl-

ization strength α ≤ 0.6, but destroys the content structure

for those with larger α values. We set a larger diversity

strength (λ = 1) in the bottom row, and we can observe that

it still works fine for those with lower stylization strength

(e.g., α ≤ 0.4). That is to say, we can set a larger diver-

sity strength for a smaller stylization strength. In fact, as
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Content Li et al. [18]

Style Ulyanov et al. [30]

Li et al. [19] Li et al. [19] + our DFP

Sheng et al. [26] Sheng et al. [26] + our DFP

Li et al. [20] Li et al. [20] + our DFP
Figure 9. Qualitative comparisons of different diversified style transfer methods. The first column (from top to bottom) shows inputs and

original outputs of [19, 26, 20]. The other columns (from top to bottom) show diverse outputs of [18, 30] and [19, 26, 20] (+ our DFP).

we have analyzed in Section 4, our diversity may affect the

content information from F̂c (Eq. (5)), so the content struc-

ture will be overwhelmed by the style patterns when the

value of λ is too high, as validated in the last two columns.

Therefore, the tradeoff between stylization strength (α) and

diversity strength (λ) should be considered. Nevertheless,

in practice, users only need to first determine the optimal

stylization strength α (usually the default one) for different

methods, and then adjust the appropriate λ values to keep

the quality. Besides, in each method, our results have ver-

ified that the constant λ value can work stably on different

content and style inputs.

Locations to Insert the Orthogonal Noise Matrix. In

Section 4, we have mentioned three places to insert the or-

thogonal noise matrix in Eq. (6), i.e., between D
1

2

s and ET
s ,

between ET
s and F̂c, and on the right side of F̂c. We conduct

the same experiments for each of them and find that there is

no difference in qualitative comparisons. But in quantitative

comparisons, e.g., run-time and computation requirements,

there are some differences. This is mainly due to the dif-

ferent computation of matrix multiplication caused by the

different size of noise matrix. As we have analyzed in Sec-

tion 4, when we insert the orthogonal noise matrix Z be-

tween D
1

2

s and ET
s , the size of Z is only (C−k)× (C−k),

where C is the number of channels and k is the number of

small singular values in D
1

2

s . For the other two cases, since

the shapes of ET
s and F̂c are (C − k)× C and C ×HcWc,

respectively (where Hc, Wc are the height and width of the

content feature), the size of Z should be C × C if we in-

sert it between ET
s and F̂c, and HcWc ×HcWc if we insert

it on the right side of F̂c. Generally, for the deepest level,

C − k < C < HcWc, so we eventually insert Z between

D
1

2

s and ET
s as this may consume the least computation and

run-time.

Relation between Orthogonal Noise Matrix and Gen-

erated Result. To verify the importance and necessity of

the orthogonal noise matrix Z in our DFP, we compare it

with the original random noise matrix N , and also discuss

the influence of its sampling distribution. The results are
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Table 2. Quantitative comparisons of different methods. We

measure diversity using average Pixel distance and LPIPS dis-

tance [34].

Method
Pixel

Distance
LPIPS

Distance

Li et al. [18] 0.080 0.175
Ulyanov et al. [30] 0.077 0.163

Li et al. [19] 0.000 0.000
Sheng et al. [26] 0.000 0.000

Li et al. [20] 0.000 0.000

Li et al. [19] + our DFP 0.162 0.431
Sheng et al. [26] + our DFP 0.102 0.264

Li et al. [20] + our DFP 0.091 0.203

shown in Fig. 8, as we can see, using the original random

noise matrix produces low quality results (see column 2 to

4 in bottom row). The results obtained by [19] and [26] are

just like combinations of texture and noise, which drown

out the content information. Compared with the former

two, [20] can maintain the content information as much as

possible even with the original random noise perturbation.

This may be because it consists of two steps, and the second

step removes noticeable artifacts to maintain the structure

of the content image. But as the result shows, the quality

is still significantly reduced. Similar to the former exper-

iments, we also adjust the values of α and λ for original

random noise perturbation, but the poor generation effect

still cannot be alleviated. To explore the influence of sam-

pling distribution of orthogonal noise matrix, we use uni-

form distribution instead of the standard normal distribution

for method [19] (see the last column in top row), and vary

the mean and standard deviation of normal distribution for

method [26] (see the last column in bottom row). As we

can see, the generated images do not show a significant dif-

ference from the default ones, which indicates that the key

factor affecting the result is the orthogonality of noise Z,

rather than its sampling distribution.

5.3. Comparisons

In this section, we incorporate our DFP into meth-

ods [19, 26, 20] and compare them with other diversified

style transfer methods [18, 30] from both qualitative and

quantitative aspects. For methods [18] and [30], we run the

author-released codes or pre-trained models with the default

configurations. For our methods, we use the default settings

as described in Section 5.1.

Qualitative Comparisons. We show qualitative com-

parison results in Fig. 9. We observe that [18] and [30] only

produce subtle diversity (e.g., slight changes in the faces),

which does not contain any meaningful variation. By con-

trast, for the methods with our DFP, the results show a dis-

tinct diversity (e.g., the faces, the hairs, the backgrounds,

and even the eyes). Compared with the original outputs, the

results obtained by incorporating our DFP are almost with-

out quality degradation.

Quantitative Comparisons. We compute the average

distance of sample pairs in pixel space and deep feature

space to measure the diversity, respectively. For each

method, we use 6 content images and 6 style images to get

36 different combinations, and for each combination, we

obtain 20 outputs. There are totally 6840 pairs (each pair

has the same content and style) of outputs generated by each

method, we compute the average distance between them.

In pixel space, we directly compute the average pixel dis-

tance in RGB channels, which can be formulated as follows:

dpixel(~x1, ~x2) =
||~x1 − ~x2||1

W ×H × 255× 3
, (10)

where ~x1 and ~x2 denote the two images to compute the pixel

distance. W and H are their width and height (they should

have the same resolution).

In deep feature space, we use the LPIPS (Learned

Perceptual Image Patch Similarity) metric proposed by

Zhang et al. [34]. It computes distance in AlexNet [14]

feature space (conv1 5, pre-trained on Imagenet [24]), with

linear weights to better match human perceptual judgments.

As shown in Table 2, [18] and [30] produce low diversity

scores in both Pixel and LPIPS distance. Without our DFP,

the original methods [19, 26, 20] cannot generate diverse re-

sults. By incorporating DFP, these methods show great di-

versity improvement. Note that since the method [26] (+ our

DFP) is still restricted by some semantic constraints when

transferring styles, and method [20] (+ our DFP) contains

a smoothing step to remove detailed effects, their diversity

scores are lower than those of method [19] (+ our DFP).

6. Conclusion

In this work, we introduce deep feature perturbation

(DFP) into the whitening and coloring transform (WCT) to

achieve diversified arbitrary style transfer. By incorporating

our method, many existing WCT-based methods can be em-

powered to generate diverse results. Experimental results

demonstrate that our approach can greatly increase the di-

versity while maintaining the quality of stylization. At this

stage, we only explore the WCT-based methods, but this

learning-free and universal paradigm may inspire a series of

more ingenious and effective works in the future. Besides,

WCT has also been widely used in many other fields, such

as image-to-image translation [4], GANs [27], etc. There-

fore, we believe our method may also provide a good inspi-

ration for these research fields.
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