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Abstract

Event cameras sense intensity changes and have many

advantages over conventional cameras. To take advantage

of event cameras, some methods have been proposed to re-

construct intensity images from event streams. However,

the outputs are still in low resolution (LR), noisy, and un-

realistic. The low-quality outputs stem broader applica-

tions of event cameras, where high spatial resolution (HR)

is needed as well as high temporal resolution, dynamic

range, and no motion blur. We consider the problem of re-

constructing and super-resolving intensity images from LR

events, when no ground truth (GT) HR images and down-

sampling kernels are available. To tackle the challenges,

we propose a novel end-to-end pipeline that reconstructs

LR images from event streams, enhances the image quali-

ties, and upsamples the enhanced images, called EventSR.

For the absence of real GT images, our method is pri-

marily unsupervised, deploying adversarial learning. To

train EventSR, we create an open dataset including both

real-world and simulated scenes. The use of both datasets

boosts up the network performance, and the network archi-

tectures and various loss functions in each phase help im-

prove the image qualities. The whole pipeline is trained

in three phases. While each phase is mainly for one of

the three tasks, the networks in earlier phases are fine-

tuned by respective loss functions in an end-to-end man-

ner. Experimental results show that EventSR reconstructs

high-quality SR images from events for both simulated and

real-world data. A video of the experiments is available at

https://youtu.be/OShS_MwHecs.

1. Introduction

Event cameras are bio-inspired sensors that sense the

changes of intensity at the time they occur and produce

asynchronous event streams [24, 44, 18], while conven-

tional cameras capture intensity changes at a fixed frame

rate. This distinctive feature has sparked a series of meth-

Figure 1: Reconstructing realistic HDR SR intensity image from

pure events. EventSR reconstructs LR HDR intensity image, re-

stores realistic LR image and finally generates SR image (with

scale factor of ˆ4) from events in phase 1,2 and 3, respectively.

ods developed specific for event cameras [37], and only

recently, generic learning algorithms were successfully ap-

plied to event-based problems [44, 53, 46, 32, 7].

Event cameras (e.g., DAVIS 240) convey clear advan-

tages such as very high dynamic range (HDR) (140dB)

[24], no motion blur and high temporal resolution (1µs),

and it has been shown that an event camera alone is suf-

ficient to perform high-level tasks such as object detection

[27], tracking [14], and SLAM [19]. In addition, as its po-

tential, event streams might contain complete visual infor-

mation for reconstructing high quality intensity images and

videos with HDR and no motion blur. However, state-of-

the-arts (SOTA) [44, 32, 29, 3] for intensity image recon-

struction suffer due to accumulated noise and blur (out of

focus) in stacked events and low resolution (LR) of event

cameras. The active pixel sensor (APS) images are with

low dynamic range, LR and blur. The reconstructed im-

ages thus typically are in LR and with artifacts. Although

[19, 35] focused HR for event cameras, namely spherical

HR image mosaicing and HR panorama of events, respec-

tively, they did not consider image-plane HR intensity im-

age reconstruction and its perceptual realisticity.

In this work, we strive to answer the question, ‘is it pos-
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sible to directly super-resolve LR event streams to recon-

struct image-plane high quality high resolution (HR) inten-

sity images?’ The challenges aforementioned render the re-

construction of HR intensity images ill-posed. The problem

of reconstructing, restoring (e.g. denoising/deblurring), and

super-resolving intensity images from pure event streams

has not been convincingly excavated and substantiated. We

delve into the problem of reconstructing high-quality SR in-

tensity images with HDR and no motion blur.

For conventional camera images, deep learning (DL)

based methods have achieved significant performance gains

on single image super-resolution (SISR) using LR and HR

image pairs [36, 23, 45]. Most of the works assume that

the downsampling methods are available and LR images are

pristine. When it comes to event cameras, either stacked

events or APS images are noisy and blurred, and GT HR

images are unavailable, let alone the degradation models. It

is less clear if such DL methods work for event cameras.

Inspired by the development of DL on image translation

[54, 43], denoising/debluring [49, 22], and SISR [47, 52],

and some recent successes in DL on event camera data

[53, 44], we probe unsupervised adversarial learning to the

problem of reconstructing HR intensity images from LR

event streams. The results obtained demonstrate the effi-

cacy of our method. To the best of our knowledge, this is the

first work for recontructing HR intensity images by super-

resolving LR event streams. The proposed pipeline consists

of three major tasks. First, 1) we reconstruct LR images

from LR event streams. However, these reconstructed im-

ages are usually noisy, blurred and unrealistic. 2) So, we

then restore (deblur/denoise) realistic LR intensity images

from events. 3) Finally, we super-resolve the restored LR

images to SR images from events as shown in Fig. 1. Our

framework is an end-to-end learning approach and, for more

efficient training, we propose phase-to-phase network train-

ing strategy. The losses of later phases are back-propagated

to the networks of earlier phases. The various loss func-

tions and detailed network architectures are also important

to best qualities. We build an open dataset containing 110K

images for event to SR image reconstruction, using an event

camera simulator [31], event camera dataset [28], and also

RGB SR dataset [48, 41]. The conjunctive and alternative

use of both real-world and simulated data for EventSR ef-

fectively boosts up the network performance. Experimental

results using both the simulated dataset [44] and real-world

dataset [28] show that EventSR achieves significantly better

results than the SOTAs [44, 3, 29]. In summary, our contri-

butions are: 1) the first pipeline of reconstructing image-

plane HR intensity images from LR events considering im-

age restoration, 2) an open dataset to train EventSR for

event-based super-resolution and the skills of using it for

high performance training, 3) the proposed detail architec-

ture, loss functions and end-to-end learning strategy, and 4)

better results than the SOTA works for image reconstruc-

tion. Our dataset is open at https://github.com/

wl082013/ESIM_dataset.

2. Related Works

Events to intensity image reconstruction The first attempt

of reconstructing intensity images from events was done by

[8] using rotating visual interpretations. Later on [18] tried

to reconstruct 2D panoramic gradient images from a rotat-

ing event camera and [19] further delved into reconstruct-

ing HR masaic images based on spherical 3D scenes. Be-

sides, Bardow et al. [3] proposed to estimate optical flow

and intensity changes simultaneously via a variational en-

ergy function. Similarly, Munda et al. [29] regarded image

reconstruction as an energy minimization problem defined

on manifolds induced by event timestamps. Compared to

[29], Scheerlinck et al. [37] proposed to filter events with

a high-pass filter prior to integration. Recently, DL-based

approaches brought great progress on intensity image and

video reconstruction. Wang et al. [44] proposed to use GAN

[15, 4, 43] to reconstruct intensity images and achieved the

SOTA performance. In contrast, Rebecq et al. [32] ex-

ploited recurrent networks to reconstruct video from events.

They also used an event sensor with VGA (640ˆ480 pixels)

resolution to reconstruct higher resolution video, however,

the problem is essentially different from our work.

Deep learning on event-based vision Reinbacher et al.

[35] considered sub-pixel resolution to create a panorama

for tracking with much higher spatial resolution of events,

however, not of intensity image reconstruction. Alonso

et al. [1] further used an encoder-decoder structure for

event segmentation. In contrast, Zhu et al. [53] utilized an

encoder-decoder network for optical flow, depth and ego-

motion estimation via unsupervised learning. Besides, Can-

nici et al. [7] refined YOLO [33] for event-based object de-

tection. Moreover, [46] and [6] both utilized CNNs for hu-

man pose and action recognition. Meanwhile, to analyze

event alignment, Gallego et al. [12, 11] proposed some loss

and optimization functions,which are further applied to mo-

tion compensation [39], flow estimation [53], etc.

Deep learning on image restoration/enhancement Image

restoration addresses the problem of unsatisfactory scene

representation, and the goal is to manipulate an image in

such a way that it will in some sense more closely depict

the scene that it represents [34] by deblurring and denois-

ing from a degraded version. While the objective of image

enhancement is to process the image (e.g. contrast improve-

ment, image sharpening, super-resolution) so that it is bet-

ter suited for further processing or analysis [2]. Recently,

CNN has been broadly applied to image restoration and en-

hancement. The pioneering works include a multilayer per-

ception for image denoising [5] and a three-layer CNN for

image SR [9]. Deconvolution was adopted to save computa-
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Figure 2: An illustration of the proposed EventSR consisting of three phases: event to image reconstruction (Phase 1), event to image

restoration (Phase 2), and event to image super-resolution (Phase 3) via unsupervised adversarial learning. With well designed training and

test dataset, EventSR not only works well for simulated but also for real-world data with HDR effects and motion blur.

tion cost and accelerate inference speed [10, 38]. Very deep

networks were designed to boost SR accuracy in [20, 25].

Dense connections among various residual blocks were in-

cluded in [51]. Similarly, CNN- and GAN-based methods

were developed for image denoising in [26, 22, 47, 52].

3. Proposed Methods

Our goal is to reconstruct SR images ISR from a stream

of events E . To feed events to the network, we consider

merging events based on the number of incoming events

to embed them into images as done in [44, 53]. We then

propose a novel unsupervised framework that incorporates

namely, event to image reconstruction (Phase 1), event to

image restoration (Phase 2), and event to image super-

resolution (Phase 3) as shown in Fig. 2. We train the whole

system in a sequential phase-to-phase manner, than learning

all from scratch. This gradually increases the task difficulty

to finally reconstruct SR images. In each phase, the net-

works of earlier phases are updated thus in an end-to-end

manner. More details are given in Sec. 3.2.

3.1. Event embedding and datasets

Event embedding To process event streams using CNNs,

we need to stack events into an image or fixed tensor repre-

sentation as in [44, 53]. An event camera interprets the in-

tensity changes as asynchronous event streams. An event e

is represented as a tuple pu, t, pq, where u “ px, yq are pixel

coordinates, t is the timestamp of the event, and p “ ˘1 is

the polarity indicating the sign of brightness change. A nat-

ural choice is to encode the events in a spatial-temporal 3D

volume or voxel grid [53, 44]. Here, we consider repre-

senting 3D event volume by merging events based on the

number of events as shown in Fig 3. We reduce event blur

(out of focus) by adjusting event sharpness and also vari-

ance (contrast) as in [11]. The first Ne events are merged

into frame one, and next Ne are merged into frame 2, which

Raw event streams Focus compensation 

S1
S2

S3

S4

Img sharpening 

Event stacking 

Img variance

RW events 

Event embedding module 

Phase1 Phase2 Phase3

ESIM dataset [44] Ref Img [28] Event camera dataset [28]

ESIM  [44]

Frame 1 
Frame 2 

Frame 3 
Frame 4 

SR img [41,48]

SR-RWESIM-RW ESIM-SR1/SR2 Ev-RW Ev-RW (HDR)

ESIM

Figure 3: An illustration of event embedding and dataset creation

for training EventSR. More details are in the main context.

is repeated up to frame n to create one stack with n frames.

Thus, the stack that contains nNe events will be fed as in-

put to EventSR. In Fig 3, S1, S2, S3 and S4 are the frames

containing different number of events Ne, 2Ne, 3Ne, 4Ne,

respectively. The event embedding method guarantees rich

event data as inputs for EventSR and allows us to adaptively

adjust Ne in each frame and n in one stack.

EventSR dataset One crucial contribution of this work is

to build a dataset including both simulated and real-world

scenes for training EventSR. As mentioned in Sec. 1, real

events are noisy and out of focus. Besides, real APS im-

ages are degraded with blur, noise and low dynamic range.

Therefore, training with only real-world data is not optimal,

also shown in [44], and not enough to reconstruct SR im-

ages. We propose a novel EventSR dataset including both

real and simulated events. We utilize both data conjunc-

tively and alternatively in each phase of training as shown

in Fig. 3 and Table. 1, and demonstrate that it works well.

For the simulated data, there are three categories for dif-

ferent purposes. First, we use the dataset proposed by [44]

for comparisons in intensity image reconstruction. Second,

in order to better handle the ill-posed problem caused by

real-world data [44], we utilize the reference color images
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Table 1: Data source used for training EventSR. (R/S for

real/synthetic, P1/P2/P3 for phase 1/2/3, Eval for numerical eval-

uation, Gen. for generalization to real data, X/ ✗for yes/no, and

✔ indicates very crucial for training EventSR.)

Data name Resolution R/S P1 P2 P3 Eval Gen.

ESIM data [44] 256x256 S X X X X ✗

ESIM-RW 256x256 S ✔ ✔ X ✗ X

ESIM-SR1 256x256 S X X X ✗ X

ESIM-SR2 1024x1024 S X X ✔ X ✗

Ev-RW(HDR) 256x256 R ✗ ✔ ✗ X X

SR-RW 1024x1024 R ✗ ✔ ✔ ✗ X

from the event camera dataset [28]. This brings a simulated

dataset called ESIM-RW (around 60K) using the event sim-

ulator(ESIM) [31]. The networks trained using the dataset

generalises well to real event data. We also take the stan-

dard RGB SR dataset [48, 41] to make ESIM-SR dataset

(around 50K). However, note that ESIM generates multiple

synthetic events and APS images (cropped and degraded)

given one HR color image, which renders the SR problem

without real GT, thus making it difficult to evaluate the qual-

ity of reconstructing SR images from events. We use ESIM

to create ESIM-SR1 dataset with image size (256 ˆ 256)

for training phase 1 and phase 2. To numerically evalu-

ate the SR quality, we create ESIM-SR2 dataset, where we

set ESIM to output ‘HR’ APS images with larger size (e.g.

1024x1024) as shown in Table. 1, 1 which are then down-

sampled (e.g. bicubic) to smaller size (e.g. 256x256) as LR

images. However, reconstructing LR images up to the qual-

ity level of these ‘HR’ APS images does not achieve our

goal since we want to generate realistic SR images. Thus,

we exploit a real-world dataset for phase 3. For the real-

world dataset, we directly make Ev-RW dataset using the

event camera dataset [28] including general, motion blur

and HDR effects. It has been shown that using real event

and APS pairs for reconstructing SR images is difficult [44].

Instead, in phase 1, we use ESIM-RW dataset, which is cru-

cial for training EventSR. In phase 2, we first refine the real

APS images through phase 1 to get clean APS images (the

reason is given in Eq. (4)), then use them for event to im-

age restoration. Lastly, for phase 3, we convert the RGB

SR images to grayscale as SR-RW dataset, and it turns out

they are crucial for training EventSR. The trained EventSR

generalizes well for both simulated and real data, and also

the data with HDR effects as shown in Fig. 3 and Table. 1.

3.2. Loss functions and training strategy of EventSR

As shown in Fig. 2, EventSR consists of three phases:

event to image reconstruction, event to image restoration

and event to image super-resolution. EventSR includes

three network functionals G, F , and D in each phase.

Event to image reconstruction (Phase 1) In order to ob-

1Different from generic SR problems, these ‘HR’ APS images are in

low quality (unclear edges and corners) due to the inherent properties of

event camera. They, however, can be used to evaluate the quality of SR.

tain SR images, we first reconstruct images from the event

streams. Our goal is to learn a mapping ILR “ GrpEq,

aided by an event feedback mapping E “ FrpILRq, and the

discriminator DrpILRq. The inputs are unpaired training

events E and the LR intensity images ILR.

Event to image restoration (Phase 2) Since the recon-

structed images are noisy, blurry, and unrealistic, we then

aim to restore (denoise/ deblur) images using both events E

and clean LR images IcLR. The goal of phase 2 is to learn

a mapping IcLR “ GdpGrpEqq, an event feedback map-

ping E “ FdpIcLRq, and the discriminator DdpIcLRq. The

inputs are unpaired events E and the clean images IcLR.

Event to image super-resolution (Phase 3) We then recon-

struct SR images from events, utilizing the stacked events E

and real-world HR images IHR. The problem is to learn a

mapping ISR “ GspGdpGrpEqqq, an event feedback map-

ping E “ FdpISRq, and the discriminator DdpISRq.

3.2.1 Loss functions for EventSR training

The loss functional for each phase is defined as a linear

combination of four losses as:

L “ LAdvpḠ,Dq ` λ1LSimpḠ, F q ` λ2LIdpḠq ` λ3LV arpḠq

(1)

where LAdv , LSim, LId, LV ar are the discriminator, event

similarity, identity, and total variation losses, respectively.

Note D and F are the relevant networks of each stage, and

Ḡ is an accumulated one i.e. Gr, GdpGrq, GspGdpGrqq, in

phase 1, 2, and 3. The loss for phase 1,2 and 3 is denoted as

Lr, Ld and Ls, respectively.

Adversarial loss LAdv Given stacked events E , the genera-

tor Ḡ learns to generate what are similar to given the dataset

i.e. the reconstructed, the restored, and the super-resolved,

respectively. The discriminator D in this case learns to dis-

tinguish the generated images from the given target images

via discriminator loss LD. The adversarial loss is:

LAdvpḠ,Dq “ ´Erlogp1 ´ DpḠpEqqqs. (2)

We observe standard GAN training is difficult in phase 3.

To stabilize the training and make optimization easier, we

use the adversarial loss based on the Relativistic GAN [17].

Event similarity loss LSim Since events are usually

sparse, we found using pixel-level loss too restrictive and

less effective. Here, we propose a new event similarity loss

that is based on the interpolation of the pixel-level loss and

the perceptual loss based VGG19 inspired by [16]. Namely,

we measure the similarity loss of the reconstructed events

F pḠpEqq and the input events E . We linearly interpolate

the pixel-wise loss like L2 and the perceptual loss as:

LSimpḠ, F q “ E

”

α||F pḠpEqq ´ E ||2`

p1 ´ αq
1

CiWiHi

||ΦipF pḠpEqqq ´ ΦipEq||2

ı (3)
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where Φi is the feature map from i-th VGG19 layer, and Ci,

Hi, and Wi are the number of channel, height, and width of

the feature maps, respectively.

Identity loss LId For better learning from events, and also

to avoid brightness and contrast variation among different

iterations, we utilize the identity loss LId. Besides, since

Ev-RW APS images are noisy, we use LId to optimize Gr

as a denoiser using clean synthetic APS images. When Gr

is trained, the Ev-RW APS images are fed to the denoiser to

get clean real-world images IcLR to train Gd in phase 2.

LIdpḠq “ Er||ḠpIq ´ I||2s (4)

where I and Ḡ are the target image and the generator in

each phase. Since there is the upsampling operation in Gs

of phase 3, we propose to use the downsampled HR images

as input to Gs. The identity loss helps preserve the shading

and texture composition between the ḠpIq and I.

Total variation loss LV ar Since stack events are sparse,

the generated images are spatially not smooth. To impose

the spatial smoothness of the generated images, we add a

total variation loss:

LV arpḠq “ Er||∇hḠpEq ` ∇wḠpEq||2s, (5)

where ∇h and ∇w are the gradients of Ḡ.

3.2.2 Learning strategy and network structure

End-to-end learning We have described the pipeline of

reconstructing, restoring, and attaining SR images from

events. We then explore how to unify three phases and train

EventSR in an end-to-end manner. Under the unified learn-

ing, the second phase becomes auxiliary to the first and the

third stage auxiliary to the second and the first. The total

loss is:

L
total “ L

r ` L
d ` L

s (6)

Phase-to-phase learning Rather than learning all network

parameters from scratch all together, to facilitate the train-

ing, we propose a learning strategy called phase-to-phase

learning where we start with an easy task and then gradu-

ally increase the task difficulty. Specifically, we first start

with Gr with Dr, Fr. We then strengthen the task diffi-

culty by fusing Gr and Gd. We train Gd and Dd, Fd from

scratch, meanwhile, fine-tuning Gr. Note each loss term

has Ḡ which is the cascaded reconstruction function i.e.

GdpGrq in the phase 2. The loss gradients back-propagated

to Gr, and Dr, Fr are also updated respectively. We lastly

fuse Gs with both Gr and Gd from events. We train the

Gs, Ds, Fs from scratch, while fine-tuning both Gr, Gd si-

multaneously. The generation function Ḡ “ GspGdpGrqq.

Network Architecture As shown in Fig. 2, EventSR in-

cludes three generators, Gr, Gd and Gs, and three discrimi-

nators, Dr and Dd and Ds. For convenience and efficiency,

we design Gr, Gd to share the same network structure. For

Gs, we adopt the SOTA SR networks [45, 23]. We also set

Dr, Dd, and Ds to share the same network architecture. To

better utilize the rich information in events, we also design

an event feedback module including Fr, Fd, and Fs, shar-

ing the same network structures based on ResNet blocks.

However, for Fs, it has down-sampling operation, so we set

the stride with 2 instead. Through the event feedback mod-

ule, the generators learn to fully utilize the rich information

from events to reconstruct, restore, and super-resolve im-

ages from events.

4. Experiments and Evaluation

Implementation and training details To facilitate the effi-

cient training of our network, we utilize the proposed phase-

to-phase training strategy to achieve the goal of end-to-end

learning. In phase 1, we train Gr and Dr with feedback net-

work Fr. We set α “ 0.6 in Eq. 3 and λ1 “ 10, λ2 “ 5 and

λ3 “ 0.5 in Eq. 1. We then train GdpGrpEq) and Dd from

scratch with Fd in phase 2. We set the λ1 “ 10, λ2 “ 5 and

λ3 “ 2 in Eq. 1. In phase 3, we train and GrpGdpGspEqqq
from scratch with Fs. The parameters in this phase are set

with λ1 “ 10, λ2 “ 5 and λ3 “ 3 in Eq. 1. We initialize the

network with dynamic learning rate. we set the batch size of

1 for single GPU, and augment the training data by random

rotation and horizontal flipping. We use Adam solver [21]

with β1 “ 0.9 and β2 “ 0.999 to optimize our framework.

3 stacks (Ne “ 10K events per stack) are used to get an

event image. We assess the quality of each phase outputs

using the SSIM, FSIM, and PSNR. To compare with SOTA

works [32, 29, 3], we also use LPIPS [50] for measuring the

image quality. For all datasets, in order to measure the sim-

ilarity, each APS image is matched with corresponding re-

constructed images with the closest timestamp. We mainly

focus on scaling factor of ˆ4 since it is more challenging

and meaningful as studied in SOTA SR works [45, 23].

4.1. Evaluation on simulated datasets

We first compared with [44, 32], which is supervised-

learning-based, using dataset proposed in [44]. Figure 4

shows qualitative results on event to image reconstruction

(phase 1), restoration (phase 2), and SR with scaling factor

of 4 (phase 3). It is shown that EventSR is able to recover

the lattices and alleviates the blurry artifacts, which can be

visually verified in the cropped patches (second row). Be-

sides, the generated LR images in phase 1 and 2 are close

to APS image. Table. 2 shows the quantitative evaluation of

phase 1 and 2 results and comparison with [44, 32]. It turns

out that our phase 1 (Ours-Rec (n “ 3)) is comparable to

[44, 32] regarding image reconstruction. Since the stacked

event images are noisy and out of focus, the reconstructed

images are also noisy, blurred and unrealistic. However, our

phase 2 successfully handles these problems and achieves
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APS Stacked events E2VID [32] Wang [44] Phase 1 Rec. Phase 2 Rest. Phase 3 SR(x4)

Figure 4: Visual comparison on ESIM dataset [44]. The first row shows our results and the second row shows the cropped patches. EventSR

achieves similar performance regarding phase 1 and better results in phase 2.

APS events Phase 1 Phase 2 Phase 3(x4)

Figure 5: Visual results on our open ESIM-SR dataset. First row

shows our results and the second row shows the cropped patches.

Figure 6: Results on our ESIM-RW dataset. EventSR recovers

significant visual structure from events. With ESIM-RW dataset

for training EventSR, it also works well on real-world events.

Table 2: Quantitative comparison of phase 1 and 2 with [44, 32]

(supervised) based on dataset [44]. Our phase 1 achieves compara-

ble results with [44, 32] and phase 2 achieves much better results.

PSNR (Ò) FSIM (Ò) SSIM (Ò)

E2VID [32] 22.74˘1.96 0.84˘0.06 0.75˘0.10

Wang [44](n “ 1) 20.51˘2.86 0.81˘0.09 0.67˘0.20

Wang [44](n “ 3) 24.87˘3.15 0.87˘0.06 0.79˘0.12

Ours-Rec (n “ 3) 23.26˘3.60 0.85˘0.09 0.78˘0.24

Ours-Rest (n “ 3) 26.75˘2.85 0.89˘0.05 0.81˘0.23

much better results than [44, 32] and phase 1.

Evaluation on ESIM-SR dataset We also validate

EventSR on our ESIM-SR dataset. Figure 5 shows the qual-

itative results on ESIM-SR1 dataset. Our method can re-

cover very complex objects such as human face. We can see

EventSR could utilize the high-frequency information (e.g.

edge/corner) in the events to reconstruct SR images better

than APS images (second row). As mentioned in Sec. 3.1,

there are no GT images for ESIM-SR1, thus making quan-

titative evaluation of SR images difficult. However, we use

the ESIM to output ‘HR’ APS images (1024 ˆ 1024) and

Table 3: Quantitative evaluation of phase 3 on our ESIM-RW

dataset with BI degradation model.

PSNR (Ò) SSIM (Ò)

Bicubic 44.27˘2.56 0.98˘0.19

Ours-Phase.3 SR x4 (n “ 3) 47.68˘2.17 0.99˘0.12

Table 4: Quantitative comparison of phase 1 (Rec.) of EventSR

with state-of-the-art works based on Ev-RW dataset [28].

LPIPS (Ó) FSIM (Ò) SSIM (Ò)

HF [37] 0.53 – 0.42

MR [29] 0.55 – 0.46

E2VID [32] 0.42 – 0.56

Wang [44](n “ 3) – 0.85˘0.05 0.73˘0.16

Ours-Rec (n “ 3) 0.35 0.86˘0.07 0.75˘0.20

Ours-Rest (n “ 3) 0.32 0.88˘0.09 0.78˘0.18

then downsample (e.g. bicubic) them to LR images with

scale factor of 4 (ESIM-SR2 dataset). So, we could quanti-

tatively evaluate the quality of EventSR on SR as shown Ta-

ble. 3. Although the ‘LR’ images do not really differ from

‘HR’ images (high PSNR and SSIM values), our method

outperforms the BI method, showing better performance.

Results on ESIM-RW dataset We also evaluate the perfor-

mance of EventSR on our ESIM-RW dataset as mentioned

in Sec. 3.1. This novel dataset is made using the reference

color images from event camera dataset [28], aiming to en-

hance the performance of EventSR on real-world data. We

train Gr of phase 1 using this dataset, and surprisingly Gr

performs well not only on ESIM-RW events but also on real

world events. Figure 6 shows the experimental results on

our ESIM-RW dataset. EventSR can recover the correct

lines and textures from events, which can be visually ver-

ified in the cropped patches in the second row.

4.2. Evaluation on realworld dataset

Evaluation on Ev-RW dataset We demonstrate EventSR

shows more impressive results on real-world data. As men-

tioned in Sec. 3.1, using real-world data alone is not able

to handle the challenges in three phases. We show that

training Gr in phase 1 with ESIM-RW dataset and Gd with

clean real-world APS images in phase 2 are more advanta-

geous. Note that since we use LId in phase 1, we obtain

clean RW APS images through Gr to get clean RW APS
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APS Stacked events E2VID [32] Wang [44] Phase 1 Rec. Phase 2 Rest. Phase 3 SR(x4)

Figure 7: Visual comparison on Ev-RW dataset [28]. With phase 1 trained using ESIM-RW, our method is capable of reconstruct the visual

features like edge and corner, etc, and achieves better performance.

APS Stacked events Phase 1 Rec. Phase 2 Rest. Phase 3 SR(x4)

Figure 8: Experimental results on HDR effects with event camera dataset [28]. EventSR also works well on reconstructing HDR images.

Stacked Events Blurry APS Tao et al. [40] Pan et al. [30] Phase.2 Rest. Phase.3 SR(x4)

Figure 9: Qualitative results for motion blur on RW dataset [28]. EventSR achieves better quality than Tao et al. [40] and Pan et al. [30].

images before training phase 2. Figure 7 shows the exper-

imental results on Ev-RW dataset. In phase 1, our method

can successfully reconstruct shapes, building, etc, however,

the reconstructed images are quite noisy, blurry and unre-

alistic. In phase 2, the EventSR could restore realistic LR

images from events. This indicates that restoring realistic

images from events in phase 2 is a very crucial step for SR

image reconstruction. Although real events are noisy, in

phase 3, EventSR can recover the high-frequency structures

(e.g. lines and textures) and non-blurry SR images from

events. The cropped patches in the second and forth rows

clearly depict the effectiveness of each stage, in contrast to

the APS images. Table. 4 quantitatively shows EventSR

achieves better results than the prior-arts [44, 32, 29, 3] re-

garding phase 1. Our unsupervised method shows lower

LPIPS and higher SSIM/FSIM scores than the supervised

methods, indicating better reconstruction in phase 1.

High dynamic range image In this work, it is apparently

shown that events have rich information for HDR image re-

construction, restoration, and super-resolution. Although

8321



Stacked events SR(DeblurGAN) SR (EDSR) Phase 3 SR(x4)

Figure 10: Visual comparison using existing deblur and SR nets.

some parts of the scenes are invisible in APS images due

to the low dynamic range, many events do exist in those re-

gions, and EventSR can fully utilize the rich information

contained in events to reconstruct HDR SR images. We

evaluate the HDR effects [28] with Gr (phase 1) trained

with ESIM-RW dataset and with Gd (phase 2) trained using

Ev-RW dataset. Figures 8 and 1 show that EventSR suc-

cessfully reconstructs HDR SR images from pure events.

Although in phase 1 the reconstructed images are noisy,

blurry and unrealistic, phase 2 recovers the correct shapes

and textures of wall poster and boxes. In phase 3, the right

structure and informative details are recovered, which can

be verified in the cropped patches in second and forth rows.

Motion deblur We also demonstrate that EventSR can re-

store deblurred images from events. As shown in Fig. 9, we

visually compare our approach with Tao et al. [18] and Pan

et al. [30] (energy minimization) based on Ev-RW blur ef-

fects [28]. Although, the APS image is blurry, our method

can restore sharp and realistic images (clear edge, corner,

texture, etc) from events in phase 2, which is further en-

hanced to the non-blurry SR image from events in phase 3.

4.3. Ablation study

To validate the effectiveness of the proposed loss func-

tions in EventSR, we compare different network structures

by removing loss functions selectively.

Remove Fs and Ds We remove Gs and Ds, namely remov-

ing Ls

Adv
and Ls

Sim
. We map the embedded events to clean

LR images and reconstruct SR images using GspGdpGrqq.

However, without Fs and Ds, some noise in the events are

mapped to the SR images, affecting visual quality.

Remove Fd and Dd We also remove Fd and Ds from

EventSR, namely, removing Ld

Adv
and Ld

Sim
. We use

EventSR for event to SR image reconstruction, where the

forward network is GspGdpGrqq and Fs is the feedback net-

work. We load the pre-trained Gr and Gd and add them to

Gs. However, without Ld

Adv
and Ld

Sim
, the Gd is unable to

get the clean images from events.

Remove Fr and Dr We lastly remove Fr and Dr, namely

Lr

Adv
and Lr

Sim
. However, it shows that Ir is always with

undesired artifacts and training is unstable. It is hard to re-

construct SR images from events without these losses.

5. Discussions

Computational cost, observation window, and latency

Our model has around 17M parameters, which is less than

some SOTA SR DNNs, such as EDSR [25], RDN [51],

thus the training time is comparable with others. The infer-

ence time is around 300 „ 500ms on average when using

NVIDIA 1080 Ti GPU. In our experiments, 10K events are

gathered in 5 ms time duration on average. Events can be

stacked with the fixed observation window as SBT in [44].

Using the existing deblur and SR nets One might think

that the SR results can achieved by directly using the ex-

isting deblur and SR networks after phase 1. However, we

need to clarify that our method is not just combining net-

works in a naive way and the phase 2 is not just to deblur

but to restore. To verify this, we replace phase 2 and 3 with

pretrained SOTA deblur and SR networks (e.g. DeblurGAN

[22] and EDSR [25]). As in Fig. 10, one can clearly see

that the proposed method (4th column) is superior to such a

naive combination. Without continuously utilized event in-

formation, applying existing deblur and SR nets magnifies

the noise level and fails to enhance the image quality.

SR video from events In this work, we focus on super-

resolving HR images from LR events and we do not fully

consider the temporal consistency for video. However, we

will investigate enforcing temporal consistency for super-

resolving video from events in our future work.

6. Conclusion and Future Work

In this paper, we presented the first and novel frame-

work for event to SR image reconstruction. Facing up with

the challenges of no GT images for real-world data in all

three phases, we proposed EventSR to learn a mapping from

events to SR images in an unsupervised manner. To train

EventSR, we made an open dataset including both simu-

lated and real-world scenes. The conjunctive and alternative

use of them boosted up the performance. Experimental re-

sults showed that EventSR achieved impressive results even

on phase 1 and phase 2, and desirable results in phase 3.

However, in this work, we have not deeply considered how

the forms of event stacks affect the overall performance of

EventSR. We will investigate better ways to embed events

as input to EventSR as in [13, 42] and its potential applica-

tions to other tasks in the following work. Besides, we are

also aiming to reconstruct SR video from event streams.
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