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Abstract

It is challenging in learning a makeup-invariant face ver-

ification model, due to (1) insufficient makeup/non-makeup

face training pairs, (2) the lack of diverse makeup faces,

and (3) the significant appearance changes caused by cos-

metics. To address these challenges, we propose a unified

Face Morphological Multi-branch Network (FM 2u-Net)

for makeup-invariant face verification, which can simul-

taneously synthesize many diverse makeup faces through

face morphology network (FM-Net) and effectively learn

cosmetics-robust face representations using attention-based

multi-branch learning network (AttM-Net). For challenges

(1) and (2), FM-Net (two stacked auto-encoders) can syn-

thesize realistic makeup face images by transferring specific

regions of cosmetics via cycle consistent loss. For chal-

lenge (3), AttM-Net, consisting of one global and three lo-

cal (task-driven on two eyes and mouth) branches, can ef-

fectively capture the complementary holistic and detailed

information. Unlike DeepID2 which uses simple concate-

nation fusion, we introduce a heuristic method AttM-FM,

attached to AttM-Net, to adaptively weight the features of

different branches guided by the holistic information. We

conduct extensive experiments on makeup face verifica-

tion benchmarks (M-501, M-203, and FAM) and general

face recognition datasets (LFW and IJB-A). Our framework

FM 2u-Net achieves state-of-the-art performances.
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Figure 1. (a) Faces with and without facial cosmetics. The same

identity is circled. (b) The bar chart shows the recognition ac-

curacy of the four models on the three makeup face recognition

datasets, while the dotted green line shows the average accuracy

of the models on the general face recognition dataset LFW [23].

1. Introduction

This paper studies the task of face verification, which

judges whether a pair of face images are the same person

or not. Despite significant progress has been made by re-

cent deep networks, the general recognition models of such

a face task, may not be robust to the makeup faces [15]. On

the one hand, we can apparently observe huge visual con-

trasts of the same identities with and without facial cosmet-

ics in Fig. 1 (a). Furthermore, the perceptual and psycho-

logical studies in [38] show that the heavy facial makeup

can significantly change facial characteristics, making it

challenging and unbelievable to recognize face identities.

In addition, we evaluate several popular face recognition

models on face recognition datasets, results in Fig. 1 (b)

demonstrate a dramatic drop when involving the challenge

of makeup. This brings us a natural prospect in learning a

robust model for makeup-invariant face verification task.

Recent efforts to address this problem have resorted

to synthesizing the non-makeup faces by makeup removal

models [28, 7, 29, 13] to help general face models, rather

than directly learning a makeup-invariant facial represen-

tation as done in this paper. Unfortunately, it is non-

trivial to efficiently and effectively learn towards removing

makeup, a synthesizer, e.g., Generative Adversarial Net-
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works (GANs). For instance, it is well known that train-

ing GANs may suffer from the problem of model collapse.

Even worse, the casual nature of makeup faces makes it dif-

ficult to learn a good synthesizer. In particular, we high-

light the following challenges: (1) Lack of sufficient paired

makeup/non-makeup faces: It requires prohibitive cost in

collecting such large-scale paired makeup face images. (2)

Lack of makeup faces with diverse facial regions. One may

apply various makeup styles to multiple facial regions, e.g.,

eyelash, nose, cheek, lip, and acne, as shown in Fig. 1 (a).

(3) Huge visual differences caused by cosmetics. As in Fig.

1 (a), the heavy cosmetics, especially on eyes and mouth

regions, greatly degrade the performance of general face

recognition models (Fig. 1 (b)).

To this end, this paper presents an end-to-end makeup-

invariant face verification model – Face Morphological

Multi-branch Network (FM 2u-Net). It is composed of

Face Morphology Network (FM-Net) and Attention-based

Multi-branch Network (AttM-Net), in addressing the afore-

mentioned three problems. Particularly,

FM-Net. To address the data problem (Challenges (1) and

(2)), we propose the FM-Net to synthesize large-scale and

diverse makeup faces. Typically, since heavy cosmetics are

usually covered on local patches, i.e., key facial compo-

nents such as eyes and mouth, it motivates us to synthe-

size faces directly from these local parts. Specifically, the

FM-Net learns a generative model that transfer the key fa-

cial components of two inputs via a cycle consistent man-

ner [63]. Functionally, FM-Net stacks two auto-encoders

to generate high-quality faces covered by diverse cosmet-

ics, guided by makeup swapping loss, cycle consistent loss,

prediction/recognition loss, and ID-preserving loss.

AttM-Net. To achieve a cosmetics-robust model (Chal-

lenge (3)) and reduce the significant visual changes on local

patches (e.g., eyes in Fig. 1 (a)), the proposed AttM-Net ex-

plicitly considers the features of such regions. Specifically,

AttM-Net contains four sub-networks to learn the features

from the whole face and three facial regions (two eyes and

mouth). Furthermore, AttM-Net is learned in an end-to-

end manner and we also propose a novel heuristic attention

fusion mechanism AttM-FM, which can adaptively weight

different parts (global and local) for each particular face.

Contributions. (1) This paper, for the first time, pro-

poses a novel end-to-end face morphological multi-branch

network (FM 2u-Net) which can simultaneously synthe-

size large-scale and diverse makeup faces using face mor-

phology network (FM-Net) and effectively learn cosmetics

robust face representations through attention-based multi-

branch learning network (AttM-Net). (2) FM-Net has two

stacked weight-sharing auto-encoders, to synthesize real-

istic makeup faces by transferring makeup regions of the

input faces. (3) AttM-Net contains three local and one

global streams to capture the complementary holistic and

detailed information. Unlike the simple concatenation fu-

sion used by DeepID2, we propose a new heuristic atten-

tion fusion mechanism AttM-FM to adaptively weight the

features for one particular face. (4) To thoroughly investi-

gate the problem of learning a makeup-invariant face model,

we bring three new datasets to the community, which are

rephrased from the several existing datasets: the M-501

[15] dataset is extended by including additional challenging

paired makeup/non-makeup images, crawled online. Fur-

thermore, some makeup faces are added to general face

recognition datasets (LFW [23] and IJB-A [26]). Exten-

sive experiments are evaluated on these datasets to show

that our FM 2u-Net model achieves state-of-the-art perfor-

mances on these benchmarks.

2. Related Work

Face Recognition. Various deep learning methods have

been proposed for general face recognition in the wild, such

as FaceNet [40], LightCNN [54], VGGface2 [5], neural ten-

sor networks [19, 21], etc.. Apart from that, some works fo-

cus on specific challenges of face recognition, such as pose

[33, 47, 10], illumination [59, 18], occlusion [53], etc.. Un-

like the extensive explorations of the aforementioned chal-

lenges, less attention is paid to one important problem, cos-

metics as shown in Fig. 1. It motivates this work to explore

effective solutions on makeuped faces.

Makeup Face Verification. Cosmetics bring enormous

challenges for face verification task, due to significant facial

appearance changes. Recent works of analyzing makeup

faces focus on makeup transfer [46, 14, 39, 32, 6] and

makeup recommendation [31, 9, 3, 2]. Few efforts are made

on learning a makeup-invariant face verification model. The

deep models for general face recognition may not be ro-

bust to heavy makeup (e.g., Fig. 1 (b) ). To achieve a cos-

metics robust face recognition system, Sun et al. [45] pro-

posed a model pre-trained on free videos and fine-tuned on

small makeup datasets. To alleviate negative effects from

makeup, Li et al. [29] generated non-makeup images from

makeup ones using GANs, and then used the synthesized

non-makeup images for recognition. Unlike them, we in-

troduce a unified FM 2u-Net to effectively improve the per-

formance of makeup face verification, which can synthesis

many high-quality images with abundant makeup style and

extract more cosmetics-robust facial features.

Face Morphology. Recently Sheehan et al. [42] suggested

that the increased diversity and complexity in human facial

morphology are the primary medium of individual identifi-

cation and recognition. And now face morphology has been

used to build a photo-realistic virtual human face [4], face

detection [16], 3D face analysis [50], etc.. In this work,

we aim to generate realistic facial images while keeping the

identity information through FM-Net.

Patch-based Face Recognition. While global-based
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Figure 2. Overview of the proposed FM
2
u-Net architecture

which contains FM-Net and AttM-Net. FM-Net can synthesize

realistic faces with diverse makeup information, and AttM-Net fo-

cuses on generating makeup-invariant facial representations. Dur-

ing testing, we directly send the inputs into the trained AttM-Net

and use the fused features to perform face verification.

face representation approach prevails, more and more re-

searchers attempt to explore local features [43, 24, 58],

which are believed more robust to the variations of facial ex-

pression, illumination, and occlusion, etc.. For example, at

a masquerade party we can identify an acquaintance by the

eyes, which are the only visible facial components through

mask. Motivated by this, we design AttM-Net to aggregate

global and local features by fusion module.

Data Augmentation. Deep models are normally data hun-

gry, therefore, data augmentation has widely been used to

increase the amount of training data [27, 36], including flip-

ping, rotating, resizing, etc.. Apart from those general data

augmentation methods, in the field of face recognition, 3D

models [61, 34, 49] and GANs [12, 30, 48, 61] are widely

used to synthesizes faces with rich intra-personal variations

such as poses, expressions, etc.. Note that the idea of syn-

thesizing new images to help recognition has been explored

and verified in many tasks, e.g., person re-id [37, 62], and

one-shot learning [51, 8]. In this work, we propose a spe-

cialized data augmentation for cosmetics-robust face veri-

fication. Specifically, we propose FM-Net that can synthe-

size new faces by swapping the facial components which

are usually covered by heavy cosmetics. Unlike [20] which

randomly selects the swapping targets in an offline fashion,

we choose the swapping targets from similar faces in an

end-to-end (online) way via the proposed generative model.

3. Face Morphological Multi-branch Network

Face Verification. Suppose we have the makeup dataset

Dm = {(Ii, zi)}
N

i=1 of N identities, and a large-scale aux-

iliary dataset Ds = {(Ij , zj)}
M

j=1, i.e., CASIA-WebFace

[56]. We use Ii to indicate the makeup/non-makeup face

images of the person zi. Given a testing face pair (Ii , Ij ) ∈
Dm, where one is with cosmetics and the other is not, our

goal is to verify whether zi = zj .

Face Morphology. Normally, heavy makeup is applied to

eyes and mouth regions, which greatly affects the accuracy

of face verification. Thus we focus on the key facial patches

(left eye, right eye, and mouth), which are generated by the

32 × 32, 32 × 32 and 16 × 48 bounding boxes centered

at three landmarks via MTCNN [57] respectively. Here,

we simplify the symbol of face image (Ii, zi) as I
zi , and

denote Izizj as a face morphological image with identity zi,

where makeups in the key patch P
zj of I

zj is transferred

to the corresponding patch P
zi of I

zi . Note that we can

produce three different variations of I
zizj since there are

three handpicked key patches. In this work, we use I
zizj to

refer to any of them in general.

Our Framework. To tackle the data problem and achieve

makeup-invariant face recognition, we propose a uni-

fied face morphological multi-branch network (FM 2u-

Net), which includes two modules: face morphology net-

work (FM-Net), and attention-based multi-branch network

(AttM-Net). The FM-Net can conduct the face morpho-

logical operations to synthesize some realistic faces cov-

ered with diverse cosmetics; and AttM-Net, which consists

of four (one global and three local) branches, can effec-

tively capture the discriminative local and global features

and then fuse them to generate a cosmetics-robust represen-

tation guided by the global branch through feature fusion

module. The whole framework is shown in Fig. 2, and it

is trained in an end-to-end manner by optimizing the loss

functions of both modules,

{Ω,Θ} = argmin
Ω,Θ

LFM−Net (Ω) + λLAttM−Net (Θ) (1)

where LFM−Net (Ω) and LAttM−Net (Θ) are the losses for

FM-Net and AttM-Net respectively; Ω and Θ indicate the

corresponding parameters; λ is a trade-off hyper-parameter.

3.1. Face Morphology Network

As introduced in Sec. 1, the data problem (lack of suffi-

cient and diverse makeup/non-makeup paired training data)

makes the cosmetics-robust face recognition very challeng-

ing. It is observed that the cosmetics are normally covered

in three local facial regions (two eyes and mouth) in Fig. 1

(a). It motivates us to synthesize abundant, diverse and real-

istic makeup faces by transferring the makeup patches (two

eyes and mouth) between two similar faces. The images

generated in such way can not only keep the identity infor-

mation of most facial regions, but also increase the diver-

sity of makeup information by introducing the local patches

with cosmetics. To achieve this, we naturally turn to gener-

ative models. However, there are no ground truths of realis-

tic faces with such swapped facial components, to guide this

generating process. Thus we use the sets of original images

and facial patches as supervision information, and employ

cycle consistent loss [63] to guide realistic makeup face

generation. In this work, we propose a generative model,

Face Morphology Network (FM-Net), to achieve this.

FM-Net is stacked by two weight-sharing auto-encoders.

We summarize the data flow of FM-Net: for the image
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I
zi ∈ Dm , we compute its most similar Top-K facial im-

ages Izk ∈ D1, where D = Dm∪Ds , by comparing the sim-

ilarity between the features extracted from the face recogni-

tion model φ (·), which is the LightCNN-29v2 [54, 1] pre-

trained on Ds here.

As illustrated in Fig. 2, given an input image I
zi , its cor-

responding Top-K image I
zk and their key patch locations,

the first auto-encoder F learns the mapping as face mor-

phology operation 2 (Izi , Izk)→ (Izizk , Izk zi ). Specifically,

(Izizk , Izk zi ) is generated from (Izi , Izk ) by swapping the

cosmetics between patches of P
zi and P

zk , and we use

P
zizk and P

zkzi to denote the transferred patches in I
zizk

and I
zk zi , respectively. Motivated by cycle consistent loss,

we reconstruct the original faces using the second auto-

encoder (whose weights are shared with the first one) via the

same projection F : (Izizk , Izk zi ) →
(

Î
zi , Îzk

)

, where Î
zi

and Î
zk are the reconstructed version of the original images

I
zi and I

zk , and we let P̂zi and P̂
zk to indicate the recon-

structed regions in Î
zi and Î

zk , respectively. Clearly, the in-

termediate generated paired faces (Izizk , Izk zi ) are the syn-

thetic faces with one of facial makeups transferred. These

synthetic realistic faces can greatly enlarge training data and

introduce more diverse makeup changes.

To synthesize realistic faces, FM-Net consists makeup

swapping loss, cycle consistent loss, prediction/recognition

loss, ID-preserving loss, and a regularization term.

Makeup Swapping Loss. The makeup swapping loss con-

strains the local patch swapping process across face images.

To accurately introduce the abundance of makeup informa-

tion to the facial parts, it encourages the selected patches to

stay the same among the swapping process:

Lpatch =
∑

i,k

(|Pzizk −P
zk |+|Pzk zi −P

zi |

+
∣

∣

∣
P̂

zi −P
zk zi

∣

∣

∣
+
∣

∣

∣
P̂

zk −P
zizk

∣

∣

∣

)

(2)

Cycle Consistent Loss. Aiming to remain the generated

faces keeping original identity features, we constrain the re-

constructed faces from the second auto-encoder as similar

as inputs, so we use the cycle consistent loss as constraint,

Lcycle =
∑

i,k

(
∣

∣

∣
I
zi − Î

zi

∣

∣

∣
+
∣

∣

∣
I
zk − Î

zk

∣

∣

∣

)

(3)

Prediction/Recognition loss. We here use cross-entropy

loss for face recognition to learn discriminative and

identity-sensitive features, which supervise the identity of

generated images:

1For simplicity, we use Izk to refer to any of Top-K images in general.
2To ease understanding, we omit the symbols of the input coordinates

for patches.

Figure 3. AttM-Net learns the makeup-invariant and identity-

sensitive features, which contains AttM-RM and AttM-FM. To ob-

tain cosmetics-robust facial representations, AttM-RM focuses on

the facial patches often wearing makeup and AttM-FM discovers

the more discriminating channels to generate final fusion feature.

Lpre = −
1

N

∑

[

zilog

(

eφ̃(I
zizk )

∑

eφ̃(I
zizk )

)

+zklog

(

eφ̃(I
zk zi )

∑

eφ̃(I
zk zi )

)]

(4)

where φ̃ (·) indicates the feature extractor φ (·) followed by

one FC layer for classifier.

ID-preserving Loss. It is important to make the gener-

ated faces keep the identity information, thus we require the

identity prediction of the generated image to be consistent

with the original face. Inspired by the perceptual loss [25]

in the image generation task, we use the ID-preserving loss:

Lid = |φ (Izi)− φ (Izizk)|+|φ (Izk )− φ (Izk zi )| (5)

FM-Net Loss. Combining the aforementioned losses, FM-

Net loss is defined as:

LFM−Net (Ω) = µ1Lpatch (Ω)+µ2Lcycle (Ω)

+µ3Lpre (Ω)+µ4Lid (Ω)+µ5P (Ω) (6)

where {µ1, µ2, µ3, µ4, µ5} are the weights, P (·) indicates

the L2 regularization term.

3.2. Attention­based Multi­branch Network

Since cosmetics can significantly change facial appear-

ance, it is difficult to learn cosmetics robust face repre-

sentations, where seriously degrades the performance of

makeup-invariant face verification. It is observed that heavy

cosmetics are mainly applied to key local facial patches

(two eyes and mouth). This motivates us in learning

cosmetics-robust identity features on these local patches. To
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achieve this, in this work, we propose the AttM-Net, con-

sisting of an attention-based multi-branch recognition mod-

ule (AttM-RM) and a feature fusion module (AttM-FM),

as in Fig. 3. The AttM-Net contains four networks to ex-

tract one global and three local (tow eyes and mouth) fea-

tures, and AttM-FM fuses these feautres under the guidance

learned from the global one, making it possible to dynam-

ically weight the contributions of four features to the final

verification decision.

Attention-based Multi-branch Recognition Module. It is

not new to use both global and local features for face recog-

nition problem. One representative method is DeepID2

[44] which works on general face recognition and achieves

impressive performance using both global faces and local

patches. However, DeepID2 does not have clear guidance

on which local patches are discriminative. Thus DeepID2

randomly selects 200 local patches for training, which is a

quite brutal force. To achieve cosmetics-robust face verifi-

cation, clearly, the cosmetics are mainly covered on three

key facial components (two eyes and mouth), motivating us

to focus on these three patches. Therefore, AttM-RM has

four networks of Patch-Net which all use LightCNN-29v2

[54] as the backbone shown in Fig. 3. These four networks

generate one global feature (fGlobal ) and three local features

(fLeye , fReye and fMou ).

Feature Fusion Module. Unlike DeepID2 which uses sim-

ple concatenation for feature fusion, our AttM-FM per-

forms the fusion of the features from those four streams

in a heuristic way (attention). Different from previous

works [36, 55] as well, we employ the global features

fGlobal to guide the refinement of features from other local

branches, which encourages them to discover the channels

containing more discriminative and makeup-invariant fea-

tures. Specially, we first utilize the features from the global

branch to compute weights α = ϕ(W · fGlobal), where

α = {α1, α2, α3, α4} ∈ R
4×1 , W∈ R

4×C×H×W is the

weight of the convolution layers with 1×1 kernels; here C ,

H and W represent the input feature channels, height and

width respectively. ϕ (·) indicates the activation function,

i.e., ReLU. Then the fused feature fcls is the concatenation

of weighted four features:

fcls = [α1fLeye ; α2fReye ; α3fMou ; α4fGlobal] (7)

Face Recognition Loss. Since this work is finally for face

recognition, the cross-entropy loss is performed on the four

features (from four streams) and the fused one fcls :

LAttM−Net = γ1Lleye+γ2Lreye+γ3Lmou

+γ4Lglobal+γ5Lcls (8)

where Lleye , Lreye , Lmou and Lglobal are the face recog-

nition loss functions for four streams, and Lcls is classifi-

cation loss working on the fused feature fcls from the final

layer of the AttM-Net. {γ1, γ2, γ3, γ4, γ5} are the weights.

For the inference process, given one aligned test face pair,

Figure 4. Sample image pairs of the extended makeup dataset. The

first row images are the faces without makeup, the second row

images are the corresponding makeup faces of the same person. In

addition to makeup, this dataset may also have the facial images

of large areas of acne, glasses occlusion, head posture changes and

so on. The same person is circled by a blue dash line.

we directly apply AttM-Net to extract image features, and

use the fused feature fcls to compute the similarity score.

4. Experiment

4.1. Datasets and Settings

Makeup Dataset. (1) M-501: Guo et al. [15] proposed

a makeup face database containing 1,002 face images (501

pairs). (2) M-203: This dataset collected in [45] contains

203 pairs corresponding to a female individual. (3) FAM:

Face Makeup (FAM) Database [22] involves 519 subjects,

222 of them are male and the remaining 297 are female.

(4) Extended makeup dataset (Extended): We triple the

test data of M-501 by collecting more paired makeup/non-

makeup faces from the Internet as shown in Fig. 4. Note

that we only enlarge the test set while the training set

stays the same. Each subject has two images in the above

datasets: one is with makeup and the other is not.

Extended general face datasets. We introduce LFW+ and

IJB-A+ datasets which are the extension of the general face

datasets (LFW [23] and IJB-A [26]) by adding makeup

face images. (1) LFW+: This dataset consists of original

LFW (13,233 faces) and the 2,726 testing images from four

makeup dataset. Thus, we test 10 splits in total, and each

split includes 600 pairs from LFW and makeup datasets,

respectively (total 1200 pairs); each split has half positive

and half negative pairs. (2) IJB-A+: IJB-A dataset contains

5712 images and 2085 videos from 500 subjects, with an av-

erage of 11.4 images and 4.2 videos per subject. We follow

the original IJB-A testing standards and extend the testing

data with four makeup testing data.

Implementation details. We use Pytorch for Implemen-

tation, and utilize SGD to train our models. Dropout is ap-

plied after the last fully connected layer with the ratio of 0.5.

The input images are resized to 144×144 firstly, then ran-

domly cropped to 128×128. We apply face morphological

operation to extend the training data with K = 20. The ini-

tial learning rate of fully connected layers is set as 0.01 and

other layers as 0.001, they are gradually decreased to zero

from the 80th epoch, and stopped after the 150th epoch. We
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Method M-501 M-203 FAM Ext

FR#

CSML [35] – – 62.40 –

FaceNet [40] 92.92 91.32 87.51 90.26

MTNet [52] 92.78 91.47 85.22 89.39

VGGFace2 [5] 93.16 91.23 87.81 91.92

LightCNN [54] 94.21 91.50 86.30 90.03

ArcFace [11] 93.67 92.39 88.52 92.17

AdaCos [60] 92.89 92.41 88.73 91.92

MFR∗

CorrNet [22] – – 59.60 –

PCA+PLS [15] 80.50 – – –

TripletNet [45] 82.40 68.00 – –

BLAN [29] 94.80 92.30 88.10 –

Our FM
2
u-Net 98.12 94.34 90.43 96.56

Table 1. Results on four Makeup datasets. Ext represents the ex-

tended makeup dataset. FR#: general face recognition (FR) mod-

els. MFR∗: makeup face recognition (MFR) models.

set the mini-batch size as 64, λ=1, µ1=5, µ2=1, µ3 = 1,

µ4 = 2 and µ5= 5e−4, γ1, γ2, γ3, γ4 are equally as 1 and γ5
as 2. Our model is trained by one NVIDIA GeForce GTX

1080Ti GPU. On M-501 and FAM, our models converge

with 140 epochs (around 15 hours), and converges at 130th

epoch on M-203 (about 12 hours).

Evaluation metrics. (1) Makeup face verification task:

we use five-fold cross validation for our experiments as

[15, 45, 22]. In each round, there are 4/5 individuals or

face pairs in the training set, and the remaining 1/5 for test-

ing, and there is no overlapping between training and test

sets. All the positive pairs are involved during the test and

the same number of pairs of negative samples is randomly

selected. For example, in the M-501 dataset, there are about

200 paired faces for testing each round, including positive

and negative pairs. The averaged results are reported over

five rounds to measure the performance of algorithms. (2)

General face verification task: We use ten-split evaluations

with standard protocols as [5, 26], where we directly ex-

tract the features from the models for the test sets and use

cosine similarity score. For LFW+, we test our algorithm

on 12000 face pairs and mean accuracy is reported. In the

IJB-A+ dataset, for 1:1 face verification, the performance is

reported using the true accept rates (TAR) vs. false posi-

tive rates (FAR), and the performance is reported using the

Rank-N as the metrics for 1:N face identification.

4.2. Results on Makeup Face Recognition Datasets

We evaluate several competitors including general and

makeup-based face recogntion methods on four makeup

datasets. All results are shwon in Tab. 1.

Comparisons with general face recognition methods.

To make a fair comparison, we re-train all the compared

general FR models with the same data (including syn-

thetic makeup data from FM-Net). Compared with existing

methods, FM 2u-Net model gets 96.56% on the extended

Figure 5. Samples of the synthesized images with makeup and

non-makeup. The same person is identified by blue dash circles.

makeup dataset, which has remarkable verification accuracy

improvement. FM 2u-Net model is clearly better than those

widely used general face recognition networks, indicating

that AttM-Net is a more effective way of learning makeup-

invariant face features adaptively fused by four branches.

Comparisons with the state-of-the-art. As shown in Tab.

1, FM 2u-Net achieves the verification accuracy of 98.12%

on M-501, showing 3.32% and 15.72% improvement over

BLAN [29] and TripletNet [45] respectively. In addition,

FM 2u-Net significantly outperforms BLAN: 94.34% vs.

92.30% on M-203 and 90.43% vs. 88.10% on FAM. Com-

pared with the BLAN, which uses GANs to remove the cos-

metics from makeup faces, we enrich the makeup training

samples through the swapping of local regions, and let the

network generate discriminative features learning from the

parts often with heavy cosmetics.

4.3. Results on General Face Recognition Datasets

It is important to evaluate our method on general face recog-

nition datasets. We compare FM 2u-Net with some main-

stream models built for general face recognition on LFW+

and IJB-A+ datasets. From Tab. 2, our model achieves

the highest face verification accuracy of 97.89% on LFW+.

FM 2u-Net can also significantly outperform all existing

methods on IJB-A+ for both 1:1 verification and 1:N iden-

tification tasks. Such experimental results show the strong

generalization capability of our method and usefulness in

real applications. The superior performance results from (1)

the realistic big diverse makeup data generated by FM-Net

and (2) the strong feature learning capacity of AttM-Net.

4.4. Ablation Study

4.4.1 Qualitative Results

Quality of synthesized images. (1) Figure 5 shows the syn-

thetic images by our model. We can see that these images

introduce diversity to the local patches, while the remaining

areas are kept the same as original input faces. Note that the

synthetic faces are realistic and the transferred makeup fa-

cial areas are very smooth. (2) To evaluate the quality of our

synthesized images, we compare FM-Net with other gener-

ative models, such as CycleGAN [63], AttGAN [17], Beau-
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Method LFW+ IJB-A+ (1:1 Verification) IJB-A+ (1:N Identification)

FAR=0.001 FAR=0.01 FAR=0.1 Rank-1 Rank-5

FaceNet [40] 93.87 85.2 ± 1.1 88.5 ± 0.5 89.5 ± 0.2 91.0 ± 0.6 94.9 ± 0.1

MTNet [52] 91.11 81.4 ± 1.8 85.7 ± 0.6 87.7 ± 0.2 83.7 ± 0.7 85.8 ± 0.2

VGGFace2 [5] 93.21 85.1 ± 1.3 88.9 ± 0.6 90.8 ± 0.1 92.5 ± 0.3 94.9 ± 0.1

LightCNN [54] 92.56 85.7 ± 1.2 88.1 ± 0.8 89.4 ± 0.1 90.4 ± 0.3 93.2 ± 0.2

ArcFace [11] 94.98 86.0 ± 1.5 89.8 ± 0.7 91.2 ± 0.2 92.9 ± 0.5 95.6 ± 0.2

AdaCos [60] 95.12 86.3 ± 1.3 89.7 ± 0.9 91.1 ± 0.1 93.1 ± 0.3 95.3 ± 0.1

Our FM 2u-Net 97.89 88.4 ± 1.5 91.2 ± 1.1 92.2 ± 0.2 94.1 ± 0.2 96.5 ± 0.1
Table 2. Results on general face recognition datasets.

tyGAN [28], As shown in Fig. 6 (a), compared with FM-

Net, there are more incur artifacts (noise, deformed parts)

in images generated from other models, which are not nec-

essarily good for face recognition. (3) For face recogni-

tion, we expect the synthetic faces not only look realistic

but preserve the identity information. Fig. 6 (b) visualizes

the distributions of original and synthetic data using sample

images in the M-501 dataset via t-SNE. One color repre-

sents one identity. We can see the synthetic data are clus-

tered around the original images with the same identities.

It means our generation method can effectively preserve the

identity information, which is essential to train a face recog-

nition model.

(a) (b)
Figure 6. (a) Comparison with other generative models. (b) Visu-

alization of 7 paired makeup/non-makeup images (drawn as stars)

and synthesized images (drawn as dots) using t-SNE. One color

indicates one identity.

Impact of loss functions of FM-Net. To synthesize real-

istic makeup faces, FM-Net uses four key losses: (a) com-

ponent swapping loss (patch loss), (b) cycle consistent loss,

(c) prediction loss and (d) ID-preserving loss as detailed in

Sec. 3.1. To verify the impact of these losses, we remove

these losses respectively during training and present the re-

sults in Fig. 7. Without loss (a), the patch swapping is not

conducted at all, showing that loss (a) is the essential one

for swapping patch. Removing loss (b), (c), (d), the quality

of synthetic faces all degrades to different extends. In par-

ticular, removing loss (b), the synthetic faces become very

blurry. It shows the usefulness of all the proposed losses.

Interpretation of the learned models. Grad-CAM [41]

is a good tool to interpret the learned CNN models via vi-

sualization. Given the learned CNNs, it can visualize the

Figure 7. Ablation study for the losses of FM-Net. The above gen-

erated images are transferred the left eyes according to the inputs.

Figure 8. The visualization of discriminative areas of baseline

model and the global branch of FM 2
u-Net using Grad-CAM [41].

discriminative areas of the test images. In Fig. 8, we vi-

sualize a group of faces with makeup based on the learned

features of global branch in AttM-Net model and baseline

model (the pre-trained LightCNN-29v2 model fine-tuned

on makeup data). Compared with the baseline model, our

global branch focuses more on the facial areas with less

makeup, such as cheeks, nose, forehead, etc., rather than

the areas (eyes and mouth) with heavy makeup. It means we

can find the discriminative area and ignore those confusing

areas (heavy makeup areas), thus our model successfully

learns the makeup-robust facial representations.

4.4.2 Quantitative Results

The efficacy of different modules in FM 2u-Net. In Tab. 3,

we list three variants of FM 2u-Net: ‘Baseline’: use the makeup
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Method M-501 LFW+

Baseline 94.21 94.01

w.o. FM-Net 95.22 95.34

w.o. AttM-Net 95.98 96.07

Our FM
2
u-Net 98.12 97.89

Table 3. Results of ablation study on two datasets. ‘w.o.’ means

removing this part module from the whole framework FM
2
u-Net.

data to fine-tune LightCNN-29v2 model which is pre-trained on

CASIA-WebFace; ‘Without (w.o.) FM-Net’: train AttM-Net on

the original training data without synthetic images; ‘Without (w.o.)

AttM-Net’: use LightCNN-29v2 to learn the features from FM-

Net outputs. we compare the performance of the aforementioned

variants of our model on a makeup (M-501) and a general face ver-

ification (LFW+) dataset. It is obvious that FM 2u-Net greatly

outperforms ‘w.o. FM-Net’ and ‘w.o. AttM-Net’ in Tab. 3:

98.12% vs. 95.22% and 98.12% vs. 95.98% on M-501, showing

the effectiveness of FM-Net and AttM-Net.

Method M-501 LFW+

FM-Net

Variants

Hard Replacement 97.14 95.91

Random Noise Patch 96.48 96.24

Random Patch 96.92 96.84

Other

Generative

Models

CycleGAN [63] 87.89 92.12

AttGAN [17] 93.46 94.01

BeautyGAN [28] 91.38 94.24

BeautyGlow [7] 94.07 95.90

LADN [13] 92.36 94.62

Our FM
2
u-Net 98.12 97.89

Table 4. Results of the variants of FM-Net in FM
2
u-Net and re-

sults compared with other generative models.

The efficacy of FM-Net. To further study FM-Net, we also

compare it with the variants ‘Hard Replacement’ (we do

not use the auto-encoder to softly generate the new makeup

faces, instead, we swap facial components in a hard copy-

and-paste way among face images.), ‘Random Noise Patch’

(expand the training data by adding random noise to the

three key regions) and ‘Random patch’ (using FM-Net, we

randomly choose local patches to swap rather than the three

handpicked key patches (two eyes and mouth)). In Tab.

4, compared with ‘Hard Replacement’ and ‘Random Noise

Patch’, our method achieves superior performance, mean-

ing that FM-Net generated faces can capture more diversity

and preserve the ID information. Using ‘Random Patch’

leads to a performance decrease, which demonstrates that

the careful chosen facial regions are very discriminative.

It is well known that the synthesized images by GANs

are generally not helpful to recognition, despite impressive

visual results achieved by GANs. We also conduct some

quantitative experiments compared with other generative

models, such as, CycleGAN [63], AttGAN [17], Beauty-

GAN [28], BeautyGlow [7], and LADN [13]. For fairness,

we utilize AttM-Net to extract facial features for all gener-

ative models. The results in Tab. 4 confirms that FM-Net

can generate higher quality training data, and such swap-

ping among facial patches introduces more diverse makeup

changes which is useful to learn makeup-invariant features.

Method M-501 LFW+

Single

Branch

Left Eye 70.31 67.55

Right Eye 72.49 68.93

Mouth 66.17 61.28

Global Face 96.03 96.24

Fusion

Concatenation 97.44 97.20

Average 96.65 97.18

Score 97.03 96.81

Our FM
2
u-Net 98.12 97.89

Table 5. Results of the variants of AttM-Net in FM
2
u-Net.

The effectiveness of AttM-Net. We conduct the individ-

ual network evaluation (‘Single Branch’: we train four net-

works independently and evaluate the performance of each

network (Left Eye/Right eye/Mouth/Global Face Verifica-

tion)) to demonstrate that the features from four branches in

AttM-Net are complementary to each other. In Tab. 5, the

global feature works better than other local features because

global features can capture more information, and two eyes

are more discriminative than the mouth area. To verify the

effectiveness of AttM-FM fusing the features from different

branches, we compare with other widely used fusion meth-

ods: concatenation fusion, average fusion, and score fusion.

We can see that our FM 2u-Net (attention fusion) outper-

forms all the competing fusion methods. It is also observed

that the fusion of four networks in any fusion method works

better than the individual network, showing the strong com-

plementarity of the four networks/patches.

5. Conclusions

This paper proposes FM 2u-Net to learn makeup-

invariant face representation. FM 2u-Net contains FM-Net

and AttM-Net. FM-Net can effectively synthesize many di-

verse makeup faces, and AttM-Net can capture the comple-

mentary global and local information. Besides, AttM-Net

applies AttM-FM to adaptively fuse the features from the

different branches. Extensive experiments are conducted

and results show our method can achieve competitive per-

formance on makeup and general face recognition bench-

marks. We also do ablation studies to verify the efficacy of

each component in our model.
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