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Abstract

Recently, deep neural networks are introduced as super-

vised discriminative models for the learning of 3D point

cloud segmentation. Most previous supervised methods re-

quire a large number of training data with human annota-

tion part labels to guide the training process to ensure the

model’s generalization abilities on test data. In compar-

ison, we propose a novel 3D shape segmentation method

that requires few labeled data for training. Given an input

3D shape, the training of our model starts with identify-

ing a similar 3D shape with part annotations from a mini-

pool of shape templates (e.g. 10 shapes). With the selected

template shape, a novel Coherent Point Transformer is pro-

posed to fully leverage the power of a deep neural network

to smoothly morph the template shape towards the input

shape. Then, based on the transformed template shapes

with part labels, a newly proposed Part-specific Density

Estimator is developed to learn a continuous part-specific

probability distribution function on the entire 3D space with

a batch consistency regularization term. With the learned

part-specific probability distribution, our model is able to

predict the part labels of a new input 3D shape in an end-to-

end manner. We demonstrate that our proposed method can

achieve remarkable segmentation results on the ShapeNet

dataset with few shots, compared to previous supervised

learning approaches.

1. Introduction

3D shapes can usually be described with three represen-

tations: voxel-based representations [16, 31, 2, 18, 28, 29],

mesh-based representations [30, 32, 22], and point cloud-

based representations [15, 17, 10, 26]. In this paper, we

mainly discuss the segmentation of 3D point cloud data as a

simple 3D representation. Given a 3D point could, the seg-
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Figure 1. In comparison to supervised method which predicts the

label of each point of input shape using a trained network, our

model aims to transfer the labels from the retrieved template to the

input shape based on the shape morphing and part-specific density

estimation modules.

mentation approach concerns the assignment of each point

with a semantic part label description. Recently, data-driven

and deep learning models have gained popularity and suc-

cess on learning 3D shape segmentation [15, 17, 10, 20]

via supervised training on an annotated shape segmenta-

tion dataset [3]. In contrast to traditional hand-craft shape

segmentation approaches [36, 19, 4], learning-based models

can generalize their ability from training data to resolve am-

biguities (e.g. structural variation, geometric complexity,

incompleteness, occlusions) in 3D shapes to reliably seg-

ment the 3D shape into meaningful parts [15, 23, 13].

The promise of deep learning naturally motivates re-

searchers to start with learning deep neural networks as a

classifier for 3D points towards supervised 3D segmenta-

tion [15]. Those methods leverage the power of deep neural

network to firstly encode 3D points into a high-dimensional

geometric feature space, and then map the feature to the

semantic part label [15, 17, 10]. To generalize the segmen-

tation ability, the deep learning models are usually trained

with a large scale well-annotated dataset in order to opti-

mize the parameters of a model through minimizing the

expectation of a categorical part classification loss across
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Figure 2. Our pipeline. For a given input 3D point cloud X, a template shape ZX firstly is retrieved from a template pool by template

selector (a). Coherent point transformer (b) morphs the retrieved template towards input shape. In (c), the Part-specific Density Estimator

takes the points of deformed templates as input to compute the continuous probability distribution function in 3D space. In (d), for each

point of input shape, its label can be predicted by Part-specific label predictor.

the entire training dataset [3]. PointNet and its variants

[17, 10, 8] demonstrated that supervised deep neural net-

works are efficient and effective for 3D point cloud seg-

mentation with experimental tests on various benchmark

datasets. However, it is practically challenging and costly to

annotate a large-scale training 3D point cloud dataset with

high-quality semantic part labels, which limits the applica-

bility of supervised learning based approaches in broader

3D segmentation applications.

In this paper, we firstly propose a novel model, named

Weakly Supervised Point Cloud Segmentation Networks

(WPS-Net), to realize the 3D point segmentation task as-

suming the existence of a few labeled training data. As

shown in Figure 1, in contrast to the supervised learning of a

discriminative model that firstly learns a high-dimensional

point geometric feature and then maps it to a discrete se-

mantic part label, our model aims to directly calibrate a spa-

tially continuous probability function based on a deformed

retrieved template to encode part semantic of a 3D point at

infinite resolution. Figure 2 illustrates the pipeline of the

proposed WPS-Net which consists of four major compo-

nents. The first component is “Template Selector.” In this

component, given an input 3D shape, WPS-Net starts with

identifying a similar 3D shape with part annotation from a

mini-pool of shape templates (e.g. 10 shapes). The second

component is “Coherent Point Transformer”. In this com-

ponent, a novel Coherent Shape Transformer is proposed

to smoothly morph the selected template shape towards the

input shape. The third component is “Part-specific Density

Estimator”. In this component, based on the transformed

template shape with part labels, a newly proposed Part-

specific Density Estimator is developed to learn a spatially

continuous probability function to encode part semantic of

a 3D point at infinite resolution with a batch consistency

regularization term. The fourth component is “Part-specific

Label Predictor.” In this component, for a given input shape,

the learned Part-specific density estimator is used to assign

the part label to each point on the shape. The WPS-Net is

able to train and predict the semantic part labels of a 3D

shape in an end-to-end manner. The main contributions of

our proposed method are listed as follows:

• We introduce a novel weakly supervised learning ap-

proach for 3D point cloud segmentation. To the best

of our knowledge, WPS-Net is a pioneering attempt to

3D point cloud segmentation through a weakly super-

vised learning paradigm.

• We introduce a coherent point transformer for this task

that can learn to predict a smooth geometric trans-

formation field to morph the template 3D shape to-

wards the input shape, which provides the possibility

of transferring labels from the retrieved template to in-

put shape.

• We introduce a part-specific density estimator that can

calibrate a spatially continuous probability function to

encode part semantic of a 3D point at infinite reso-

lutions based on the deformed template, allowing us

to further fill points from input shape into this density

function for labelling.

• We introduce a novel batch-consistency regularization

term in WPS-Net. Batch consistency term naturally
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enforces in-part similarity and inter-part dissimilarity

over the batch of input 3D shapes during the part-

specific density calibration process.

2. Related Works

Supervised learning-based 3D shape segmentation. In

recent years, deep learning-based methods have achieved

great access in various field [12, 1, 27, 40, 11]. Much

research attention have been paid to 3D point cloud seg-

mentation using learning-based methods. These methods

mainly focused on learning a robust point signature using

deep neural networks, followed by a classification network

to generate semantic part labels. Earlier efforts directly par-

titioned the input 3D point space into gridded voxels and

apply 3D CNN on regular voxels [39, 16] to learn point fea-

tures. To take the advantage of traditional 2D CNN for fea-

ture learning, researches [24, 25, 9] proposed to render 3D

point cloud into 2D images to facilitate 2D CNN for rep-

resentative feature learning. More recently, PointNet [15]

firstly proposed to directly learn point features on unordered

3D point sets. Following researches such as PointNet++

[17], SO-Net [10], SplatNet [23], PointCNN [13] and D-

FCN [34] focused on improving the performance by in-

corporating neighborhood information. Nevertheless, these

methods mostly directly predict 3D shape segmentation in

a supervised training process, thus require a large number

of well-labeled dataset for model training. By contrast, our

model does not directly determine the part label for each

point but tries to predict a part-specific continuous proba-

bility distribution function in the 3D space using a set of

sampled points in a weakly supervised way.

Weakly supervised learning-based 3D shape segmenta-

tion. Previous researches have explored co-analysis of a

group of 3D shapes for co-segmentation [5, 6, 33, 21].

These methods tried to extract common geometric features

from a group of shapes in a data-driven process, followed by

clustering algorithms to group the primitive patches of all

shapes into the similar part. Early researches [6, 14, 21, 36]

are mainly focused on extracting low-level features from

shape over-segmentation. Commonly used features include

scale-invariant heat kernel signatures (SIHKS) [36], shape

diameter function (SDF) [19], Gaussian curvature (GC) [4]

and so on. Recent efforts also tried deep neural network

for representative geometric feature extraction. For exam-

ple, Shu et al. [20] proposed an unsupervised 3D shape

segmentation algorithm by leveraging an Auto-Encoder

model to learn high-level features from the low-level ones.

These methods mainly focus on a combination of hand-

craft/learning-based features with clustering algorithms to

achieve unsupervised segmentation. Yuan et al. [38] pro-

posed ROSS for one-shot learning of 3D mesh shape seg-

mentation. In contrast, we propose a weakly supervised

learning paradigm for end-to-end 3D point cloud segmenta-

tion. Moreover, group consistence has been proved in these

methods to be an effective constraint to improve the seg-

mentation performance [33]. In our method, to further boost

the segmentation performance, a batch-consistency regular-

ization term is formulated to enforce in-part similarity and

inter-part dissimilarity over the batch of input 3D shapes on

training.

3. Our Approach

In this section, we introduce three modules for our

method. First, we introduce the coherent point transformer

in section 3.1. In section 3.2, we illustrate the process of

estimating the continuous part-specific probability distribu-

tion function. Section 3.3 discusses the details of batch-

consistency regularization term. The model configurations

and the settings for training are described in section 3.4.

3.1. Coherent Point Transformer

For a given 3D point cloud X ⊂ R
3, and a pool

of S templates {Zi}i=1,2,...,S , we denote ZX as a re-

trieved template for input shape X, where dist(X,ZX) =
min{dist(X,Zi)}i=1,2,...,S . dist(∗, ∗) : R3 × R

3 → R, is

a pre-set distance function defined on two point clouds. In

this paper, we use Chamfer Distance for template retrieval.

The coherent point transformer includes two parts: learning

shape descriptor and coherent point morphing architecture

as shown in Figure 3.

Figure 3. Coherent point transformer structure. For each point in

shape X, we concatenate two shape descriptors to its coordinate for

coherent drifts prediction, which is essential for keeping reason-

able part-categorical labels for each point during the deformation

process.

Learning Shape Descriptor. Given an input 3D shape

X with its retrieved template ZX, we firstly learn the shape

descriptors directly from the coordinates of 3D points. Let

(LX,LZx
) denotes the shape descriptors for input (X,Zx),

where LX,LZx
⊂ R

m, as shown in Figure 3. Due to the ir-

regularity of point cloud, we leverage the following encoder

network for feature embedding, which includes t successive

multi-layer perceptrons (MLP) with ReLu activation func-

tion {fi}i=1,2,...,t, such that: fi : R
ψi → R

ψi+1 , where ψi
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and ψi+1 are the dimensions of the input and the output of

the layer, respectively. The encoder network is defined as:

∀(X,Zx),

LX =Maxpool{ftft−1...f1(xj)}xj∈X (1)

LZX
=Maxpool{ftft−1...f1(xj)}xj∈ZX

(2)

Here, the symmetrical Maxpool function ensures an order-

invariant feature learning [15].

Coherent point morphing architecture. For the next

step, we define a deep neural network architecture for learn-

ing the coherent point drifts to align the template shape

with the input shape as shown in Figure 3. This archi-

tecture includes successive multi-layer perceptrons (MLP)

with ReLu activation function: {gi}i=1,2,...,s, such that:

gi : R
ηi → R

ηi+1 , where ηi and ηi+1 are the dimensions

of the input and the output of the layer. For each point

wi ∈ Zx, the predicted drift vector dwi is calculated as,

dwi = gsgs−1...g1([wi,LX,LZX
]) (3)

where [*,*] denotes the vector concatenation operation and

the deformed template shape Z′
x is formulated as,

Zx
′ = T (Zx) = {wi + dwi}wi∈ZX

(4)

In our coherent deformation transformer network, the co-

herency of predicted drifts is essential for preserving the

label correspondence between the template shape and the

deformed one, contributing to the weakly supervised nature

of our method. Our intention is to deform the template to

be as close as the target shape, while preserving reasonable

part categorical label on the template shape. Our network

can achieve this goal by concatenating the common global

shape descriptors [Lx,LZX
] with the coordinates of points

on the original template [37]. We define the similarity mea-

sure between the input point cloud X and the transformed

template point set Z′
X as the alignment loss function:

LAlignment =
∑

x∈X

min
y∈Z′

X

||x− y||22 +
∑

y∈Z′

X

min
x∈X

||x− y||22

(5)

Ideally, the deformed template Z′
X with part annotations

can geometrically align well with the input shape X. There-

fore, we use all deformed shapes with part labels for the

estimation of the following part-specific probability distri-

bution function.

3.2. Partspecific Density Estimator

We propose a part-specific continuous probability dis-

tribution function f for every possible 3D point x ∈ R
3

instead of only for points in the target shape. We use the

resulting function

F : R3 → {0, 1, ...,K − 1} (6)

Figure 4. Illustration of part-specific density fitting process. Based

on a given deformed template, we map each point in R
3 to a prob-

ability in two steps. Firstly, we leverage a MLP to learn a global

descriptor from the deformed template. Secondly, we concatenate

each point’s coordinates to the learned global descriptor as input

for further label prediction.

as the part-specific continuous function of the 3D object,

where K indicates the number of different part categories.

This function F can be implemented with a neural network

structure that assigns every location x ∈ R3 a probabil-

ity vector v ∈ [0, 1]K for all K part categories. Our so-

lution utilizes the deep neural network including multiple

MLP layers with ReLu activation function {hi}i=1,2,...,q ,

such that: hi : R
ζi → R

ζi+1 , where ζi and ζi+1 are the

dimension of the input and the output of the layer, to learn

the global descriptor LZ′

X
∈ Ω (space of global shape de-

scriptors of deformed templates) from the deformed tem-

plate ZX
′:

LZ′

X
=Maxpool{hq...h2h1(xj)}xj∈Z′

X
(7)

Based on the deformed template shape Z′
X with part la-

bels YX and the learned shape vector LZ′

X
as reference,

we define the following continuous probability distribution

function estimator τ ,

τ : R3 × Ω → [0, 1]K (8)

In this paper, we implement a deep neural network structure

to realize this function. We use the MLP layers with ReLu

activation function {τi}i=1,2,...,r, such that: τi : R
ωi →

R
ωi+1 , where ωi and ωi+1 are the dimensions of the input

and the output of the layer. ∀x ∈ R
3, LZ′

Xi

∈ Rtq ,

τ(x,LZ′

X
) = τr...τ2([x, τ1([x,LZ′

X
])]) (9)

, where [*,*] represents the vector concatenation operation.

We concatenate high dimensional feature with the coordi-

nate of 3D points as the input for each neuron layer τi of our

density estimator model. In this way, our density estima-

tor can theoretically learn a spatially continuous probability

function to encode part semantic of a 3D point at infinite
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resolutions. The “Continuity” of probability function con-

sequently guarantee the continuous part label assignment

τ(xi), τ(xj) ∈ R
K for neighbor points xi,xj ∈ R

3. For

the i-th sample Z′
Xi

in a training batch, i ∈ {1, 2, ..., |B|},

and its corresponding global descriptor LZ′

X
, we evaluate

mini-batch loss at each observed sample point xij ∈ Z′
Xi

,

j ∈ {1, 2, ..., N}, with corresponding label yij ∈ YXi
:

Lcross−entropy =
1

|B|

|B|∑

i=1

N∑

j=1

L(τ(xij),yij) (10)

, where L(∗, ∗) represents the cross-entropy classification

loss.

3.3. Batchconsistency Regularization

The similarity-based retrieval of a shape template in the

“Template Selector” component cannot guarantee the part

semantic consistency between the input shape and the tem-

plate shape. For example, the retrieved template shape

might have more part categories than the input shape, as

shown in the third columns in Figure 8. This inconsistency

of 3D point cloud segmentation unavoidably causes the er-

rors of probability density estimation, consequently lead to

the errors in part label assignment. To address this issue,

in this section, we introduce a batch consistency loss to

regularize our probability distribution estimator network, as

shown in Figure 5. For each part category k and each point

from {xij ∈ Z′
Xi
|yij = k}, we extract the part-specific fea-

tures by aggregating all point features in this category, cal-

culated as,

Lk
i =Maxpool{hq...h2h1(xij)|yij = k}xij∈Z′

Xi

(11)

And we can compute the part-specific average in-group fea-

ture for each part as: Lk = 1

|B|

∑|B|
i=1

Lk
i . Our correlation

loss is defined as:

Lcorr =

|B|∑

i=1

K∑

k1=1

∑

k2 6=k1

corr(Lk1 ,Lk2

i )

−

|B|∑

i=1

K∑

k=1

corr(Lk,Lk
i )

(12)

, where corr(*,*) represents the correlation between two

vectors. The first correlation term in the loss encourages

the shapes from different part categories to have a lower

correlation and the second term encourages the shapes from

same part categories to have a higher correlation. To put

them all together, our coherent point transformer network

and part-specific probability distribution estimator network

with batch-consistency regularization can be trained in an

end-to-end manner by minimizing the following loss func-

tion:

L = Lcross−entropy + λ1 ∗ Lalignment + λ2 ∗ Lcorr (13)

where λ1 and λ2 are hyper-parameters to control the bal-

ance of different loss terms.

Figure 5. Illustration of batch-consistency. For deformed tem-

plates in a batch, we accumulate their features for each part cat-

egory as a group of features. By comparing individual’s part fea-

tures with group’s part features, consistency is expected to be hold.

This loss helps adjusting the density estimation process to not sim-

ply rely on the deformed templates.

3.4. Training Paradigm

To learn the shape descriptor for input shape and tem-

plate shape as described in section 3.1, we use 5 MLP lay-

ers with dimensions (16, 64, 128, 256, 512) and a Maxpool

layer to convert it to a 512-dimensional descriptor. To learn

the coherent point drifts for aligning the template shape

with the input shape, we use 3 MLP layers with dimen-

sions (256, 128, 3). In our Part-Specific Density Estima-

tor module, we use another 5 MLP layers with dimensions

(16, 64, 128, 256, 512) to build our part-specific density es-

timator network. We use ReLU activation function and im-

plement batch normalization [7] for every layer except the

output layer. In our experiments, we set λ1 to 100 with an

exponential decay of 0.999, and we set λ2 to 0.5. Adam

optimizer with an initial learning rate of 1e-3 and an expo-

nential decay of 0.9995 was applied for model optimization.

Our model was implemented using Tensorflow framework.

It took about 6 hours to train our model per category on a

single Nvidia Tesla K80 GPU.

4. Experiments

In this section, we carry out experiments to demonstrate

the effectiveness of the modules in our method and evalu-

ate the 3D point cloud segmentation performance of WPS-

54508



Figure 6. Deformation results. For part A and B, we demon-

strate the deformed template shapes in comparison with their tar-

get shapes. For part B, we select two typical cases which might

increase the difficulty of further fitting part-specific density func-

tion as “failed” cases. In part C, we compare our deformation

result with the PointNet based auto-encoder.

Net. In section 4.1, we describe the dataset in our exper-

iments. Section 4.2 validates the effectiveness of our co-

herent point transformer. We demonstrate the superiority of

the proposed part-specific density estimator in section 4.3.

In section 4.4, we further show performance boost from

batch-consistency regularization. Comparison with super-

vised methods is demonstrated in section 4.6.

4.1. Dataset

We evaluate the proposed method on ShapeNet part

dataset [3]. This dataset includes 16,881 shapes from 16 ob-

ject categories. For each category, we randomly choose 10

objects with annotated labels to form a mini-pool of shape

templates. For a fair comparison, we report the performance

of our method on the test dataset following the official train

test split. The mean IoU (Intersection-over-Union) of each

category is calculated as an average value over all shapes in

that category.

4.2. Validation of Deformation network

Experiment Setting: In this part, we conduct experiments

to demonstrate the effectiveness of the coherent point trans-

former for 3D point cloud segmentation. As we mentioned

above, our part-specific probability density estimation net-

work is trained on the deformed template shapes with part

labels transferred from original templates. To guarantee the

label quality on these deformed shapes, our deformation

network is designed with the ability to produce deformed

shapes which can not only be aligned with original input

shape but also preserve reasonable correspondence between

deformed templates and original templates. To prove the

superiority of our coherent point transformer network, we

compared our method with a PointNet-based auto-encoder

network [3]. Both networks share the same encoder part.

We evaluated their deformation quality (Chamfer distance

between target shapes with transformed shapes) and the

coherency of the deformation process. Figure 6 shows

selected examples of the deformation results of both

methods.

Results and Discussion: To compare the deformation

quality of PointNet-based auto-encoder and our coherent

point transformer network, as indicated by the convergence

Chamfer distance (0.00168 and 0.00177 respectively), both

two models can reach a small Chamfer distance between

the deformed templates with the target shapes. As shown

in Figure 6 part A, our coherent point transformer tends to

predict smooth deformation field, which results in a high-

quality dense correspondence between the input template

and the deformed one. In comparison, part C shows that

PointNet based auto-encoder module produces noncontinu-

ous deformation field and then, fails to preserve such cor-

respondence. Our coherent point estimator provides our

method with the ability to transfer the part labels from the

template to the deformed shapes, which contributes to the

weakly supervised nature of segmentation network. Part

B demonstrates some cases which may cause problem for

learning part-specific density.

4.3. Validation of partspecific density estimator

Experiment Setting: In this experiment, we evaluate the

effectiveness of the proposed continuous density estimator

module for 3D point cloud segmentation. After generating

the deformed templates with part labels, the simplest way to

transfer labels to target shape is by nearest neighbor search-

ing strategy (NN). That is, for all point xij ∈ Xi, we gen-

erate its label prediction by referring the label of its near-

est point in the template shape Z′
Xi

. We use this labeling

strategy as a baseline for comparison with our continuous

probability distribution estimator module.

Method Chair Table Lamp

Nearest Neighbor Search 81.2 70.3 66.4

Ours, w/o batch consistency 82.3 71.7 68.1

Ours, w batch consistency 83.4 72.2 68.7
Table 1. Comparison of the IoU metric between NN (first row),

our continuous probability estimation network (second row) and

our model with batch-consistency (third row).

Results and Discussion: Table 1 lists the overall segmen-

tation performance of our method and the NN. As indicated
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by the IoU value on chair category, our continuous probabil-

ity estimation module achieves better segmentation perfor-

mance with an improvement of 1.3%. Though our method

gains the incremental IoU compared to the NN method, we

observed the following interesting label prediction by our

WPS-Net. As shown in Figure 7, the input shape has an arm

and leg in the middle while the template shape does not have

those two parts. Therefore, based on the NN’s prediction, it

is reasonable to see that those two parts are mis-labelled as

the “seat” since they are nearest neighbors as indicated in

the fourth column (two red circled regions). In contrast, our

WPS-Net gains its advantage of a probability based label

assignment strategy that predicts the correct labels for mid-

dle arm and leg of the input shape even though the template

shape does not have the corresponding parts as indicated in

last column (two red circled regions) of Figure 7.

Figure 7. Comparison of the segmentation results based on the de-

formed template between using Nearest Neighbors method and our

part-specific density estimator.

Figure 8. Comparison of the segmentation results between our

method with and without batch consistency.

# points IoU% # templates IoU%

512 79.6 5 77.9

1024 78.9 10 83.4

2048 83.4 20 85.7
Table 2. Comparison of the IoU metric of Chair category using

shapes with different number of sampled points (left) and using

different number of templates (right).

4.4. Validation of batchconsistency

Experiment Setting: In this experiment, we evaluate the

functional benefit of batch consistency loss that contributes

better segmentation of 3D point cloud. To demonstrate the

effectiveness of batch consistency loss module, we investi-

gate a few case studies that the template shape has more/less

parts than that of input shape shown in Figure 8 and the

overall quantitative result is shown in Table 1. We conduct

experiments on chair, table and lamp categories.

Results and Discussion: As indicated in row 2 and 3 in

Figure 8, the input shapes has three parts without arm part

but the template has an additional arm part. To align the

template shape with the input one, the arm part of the tem-

plate chair is forced to be deformed as the seat. In this way,

it transfers the “arm” label to the seat region, which con-

sequently leads to a bias probability estimation for part la-

bel description. As shown in fourth column of Figure 8,

without the rectification by batch consistency module, there

are quite a few points in the seat area (red circled regions)

that are mistakenly labelled as the arm. In contrast, with

batch-consistency rectification, a large portion of mistaken

label assignments can be rectified as shown in last column

of Figure 8 (red circled regions). As shown in Table 1, the

overall IoU improved from 82.3% to 83.4% with the batch-

consistency loss. Regarding the improvement of our batch-

consistency module, the quantitative performance looks not

quite significant. However, batch consistency adjustment is

specially designed for the case when we have more part cat-

egories in the template than in the target shape as shown in

the first case of row B in Figure 6. During our experiments,

most cases do not suffer this problem.

4.5. Studies on number of sampled points and num
ber of templates

Experiment Setting: In this experiment, we conduct two

experiments to verify our model’s performance using vari-

ous number of sampled points of 3D shapes and using var-

ious number of randomly chosen templates. For the first

experiment on number of sampled points in 3D shape, we

choose three different levels: 512, 1024 and 2048. For

the second experiment on number of randomly chosen tem-

plates, we choose three different levels: 5, 10 and 20.

Results and Discussion: As shown in Table 2, when the

number of sampled points in each shape decreases from

2048 to 1024, the IoU on Chair category drops 4.5%. But

the performance degradation is not obvious when sampling

points from 1024 to 512. When the number of templates

increases, the model’s performance can improve quickly.

4.6. Comparison with supervised methods

Experiment Setting: In this experiment, we evaluate the

overall segmentation performance of our model on more
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Figure 9. Randomly selected examples of the weakly supervised

3D point cloud segmentation results.

shape categories and compare the performance with cur-

rent state-of-the-art supervised methods. For a fair com-

parison, we trained supervised model for each shape cat-

egory independently using the same randomly selected 10

samples which are used as our template pool. We use all

the available dataset including annotated samples with tar-

get shapes and other supervised methods use the annotated

examples during training. However, our setting does not

require any ad-ditional information in comparison to su-

pervised methods. In addition, we report the performance

of PointNet model trained with all samples in the original

training dataset for reference. Since our method may de-

pend on the template selection, we rerun our model with

comparative methods 5 times on different randomly se-

lected template pools for chair category as an additional ex-

periment.

Categories Ours [15] [17] [35] [15]

#Samples 10 10 10 10 All

#Parameters 2.6M 3.5M 1.4M 6.9M 3.5M

Airplane 67.3 63.3 62.3 65.1 83.4

Bag 74.4 64.9 67.4 68.2 78.7

Cap 86.3 75.2 80.0 80.7 82.5

Chair 83.4 73.8 61.6 66.1 89.6

Lamp 68.7 63.8 57.8 60.2 80.8

Laptop 93.8 87.3 94.2 93.7 95.3

Mug 90.9 80.9 83.1 86.0 93.0

Table 74.2 72.2 72.2 72.5 80.6

Mean 79.8 72.7 72.3 74.1 85.5
Table 3. Quantitative result. Comparison with supervised methods

on randomly selected small training samples.

Results and Discussion: Table 3 shows the per-category

IoU for each model. As one can see from Table 3, with com-

parable number of parameters, our model achieves better

performance on all shape categories compared to the super-

vised method using same training examples. Our method

Methods Chair IoU%

PointNet [15] 73.3 ± 1.42

PointNet++ [17] 61.5 ± 1.48

PointConv [35] 67.2 ± 3.5

Ours 82.7 ± 0.38
Table 4. Quantitative result. Comparison with supervised meth-

ods on five randomly selected small training samples using Chair

category.

reports an improvement of 5.7% on category mean IoU over

the PointConv [35]. When compared with the PointNet us-

ing all training samples, our method falls behind with a rea-

sonable margin. When training size is small, state-of-the-

art supervised method PointConv behaves worse than other

methods. The model with high complexity might overfit the

small training data and loose predicting power for testing

dataset. Randomly selected examples are shown in Figure

9. Table 4 confirms that our method is more stable than

other methods given different templates.

5. Future work

Assuming a small number of annotated templates, a

more efficient design of using label information from the

pool of templates worth more analysis in the future work.

In the current work, for a given target 3D shape, we de-

fine a global geometric similarity metric to only retrieve the

most similar template from the pool of the annotated shapes,

but we eliminate the possible useful information from other

less similar templates. In practice, we notice that those less

similar templates can also contribute the valuable label in-

formation based on their local parts/structures, thus further

enhancing the performance of few-shot learning of part-

specific probability space. In the future work, researches on

the deformation of a group of templates towards the target

shape to better combine the information from all templates

in the annotated pool will be conducted.

6. Conclusion

We introduce a novel weakly supervised paradigm for

learning 3D point cloud segmentation. For this quite chal-

lenging task, we accordingly propose a pipeline including

1) coherent point transformer to coherently morph the re-

trieved template towards input shape while maintaining the

part correspondence, 2) a continuous probability distribu-

tion estimation network to encode part label description

of a 3D point of the deformed template and 3) the batch-

consistency regularization loss to further enforce in-part

similarity and inter-part dissimilarity. We experimentally

verified the effectiveness of each module and achieved a re-

markable weakly supervised 3D point cloud segmentation

result on the ShapeNet 3D point cloud segmentation dataset.
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