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Abstract

Human parsing is for pixel-wise human semantic un-

derstanding. As human bodies are underlying hierarchi-

cally structured, how to model human structures is the

central theme in this task. Focusing on this, we seek

to simultaneously exploit the representational capacity of

deep graph networks and the hierarchical human struc-

tures. In particular, we provide following two contribu-

tions. First, three kinds of part relations, i.e., decomposi-

tion, composition, and dependency, are, for the first time,

completely and precisely described by three distinct rela-

tion networks. This is in stark contrast to previous parsers,

which only focus on a portion of the relations and adopt

a type-agnostic relation modeling strategy. More expres-

sive relation information can be captured by explicitly im-

posing the parameters in the relation networks to satisfy

the specific characteristics of different relations. Second,

previous parsers largely ignore the need for an approxima-

tion algorithm over the loopy human hierarchy, while we

instead address an iterative reasoning process, by assimi-

lating generic message-passing networks with their edge-

typed, convolutional counterparts. With these efforts, our

parser lays the foundation for more sophisticated and flex-

ible human relation patterns of reasoning. Comprehensive

experiments on five datasets demonstrate that our parser

sets a new state-of-the-art on each.

1. Introduction

Human parsing involves segmenting human bodies into

semantic parts, e.g., head, arm, leg, etc. It has attracted

tremendous attention in the literature, as it enables fine-

grained human understanding and finds a wide spectrum of

human-centric applications, such as human behavior analy-

sis [50, 58, 14], human-robot interaction [16], etc.

Human bodies present a highly structured hierarchy

and body parts inherently interact with each other. As

∗The first two authors contribute equally to this work.
†Corresponding author: Yanwei Pang.

Figure 1: Illustration of our hierarchical human parser. (a) In-

put image. (b) The human hierarchy in (a), where indicates

dependency relations and is de-/compositional relations. (c) In

our parser, three distinct relation networks are designed for ad-

dressing the specific characteristics of different part relations, i.e.,

, , and stand for decompositional, compositional, and de-

pendency relation networks, respectively. Iterative inference ( )

is performed for better approximation. For visual clarity, some

nodes are omitted. (d) Our hierarchical parsing results.

shown in Fig. 1(b), there are different relations between

parts [42, 60, 49]: decompositional and compositional

relations (full line: ) between constituent and entire parts

(e.g., {upper body, lower body} and full body), and de-

pendency relations (dashed line: ) between kinematically

connected parts (e.g., hand and arm). Thus the central

problem in human parsing is how to model such rela-

tions. Recently, numerous structured human parsers have

been proposed [65, 15, 22, 64, 47, 74, 61, 20]. Their no-

table successes indeed demonstrate the benefit of exploit-

ing the structure in this problem. However, three ma-

jor limitations in human structure modeling are still ob-

served. (1) The structural information utilized is typically

weak and relation types studied are incomplete. Most ef-

forts [65, 15, 22, 64, 47] directly encode human pose in-

formation into the parsing model, causing them to suffer

from trivial structural information, not to mention the need

of extra pose annotations. In addition, previous structured

parsers focus on only one or two of the aforementioned part

relations, not all of them. For example, [20] only considers
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dependency relations, and [74] relies on decompositional

relations. (2) Only a single relation model is learnt to rea-

son different kinds of relations, without considering their

essential and distinct geometric constraints. Such a rela-

tion modeling strategy is over-general and simple; do not

seem to characterize well the diverse part relations. (3)

According to graph theory, as the human body yields a

complex, cyclic topology, an iterative inference is desir-

able for optimal result approximation. However, current

arts [22, 64, 47, 74, 61] are primarily built upon an imme-

diate, feed-forward prediction scheme.

To respond to the above challenges and enable a deeper

understanding of human structures, we develop a unified,

structured human parser that precisely describes a more

complete set of part relations, and efficiently reasons struc-

tures with the prism of a message-passing, feed-back infer-

ence scheme. To address the first two issues, we start with

an in-depth and comprehensive analysis on three essential

relations, namely decomposition, composition, and depen-

dency. Three distinct relation networks ( , , and in

Fig. 1(c)) are elaborately designed and imposed to explic-

itly satisfy the specific, intrinsic relation constraints. Then,

we construct our parser as a tree-like, end-to-end trainable

graph model, where the nodes represent the human parts,

and edges are built upon the relation networks. For the

third issue, a modified, relation-typed convolutional mes-

sage passing procedure ( in Fig. 1(c)) is performed over

the human hierarchy, enabling our method to obtain better

parsing results from a global view. All components, i.e.,

the part nodes, edge (relation) functions, and message pass-

ing modules, are fully differentiable, enabling our whole

framework to be end-to-end trainable and, in turn, facilitat-

ing learning about parts, relations, and inference algorithms.

More crucially, our structured human parser can be

viewed as an essential variant of message passing neural

networks (MPNNs) [19, 56], yet significantly differentiated

in two aspects. (1) Most previous MPNNs are edge-type-

agnostic, while ours addresses relation-typed structure rea-

soning with a higher expressive capability. (2) By replacing

the Multilayer Perceptron (MLP) based MPNN units with

convolutional counterparts, our parser gains a spatial infor-

mation preserving property, which is desirable for such a

pixel-wise prediction task.

We extensively evaluate our approach on five standard

human parsing datasets [22, 64, 44, 31, 45], achieving state-

of-the-art performance on all of them (§4.2). In addition,

with ablation studies for each essential component in our

parser (§4.3), three key insights are found: (1) Exploring

different relations reside on human bodies is valuable for

human parsing. (2) Distinctly and explicitly modeling dif-

ferent types of relations can better support human structure

reasoning. (3) Message passing based feed-back inference

is able to reinforce parsing results.

2. Related Work

Human parsing: Over the past decade, active research has

been devoted towards pixel-level human semantic under-

standing. Early approaches tended to leverage image re-

gions [35, 68, 69], hand-crafted features [57, 7], part tem-

plates [2, 11, 10] and human keypoints [67, 35, 68, 69],

and typically explored certain heuristics over human body

configurations [3, 11, 10] in a CRF [67, 28], structured

model [68, 11], grammar model [3, 42, 10], or generative

model [13, 51] framework. Recent advance has been driven

by the streamlined designs of deep learning architectures.

Some pioneering efforts revisit classic template matching

strategy [31, 36], address local and global cues [34], or use

tree-LSTMs to gather structure information [32, 33]. How-

ever, due to the use of superpixel [34, 32, 33] or HOG fea-

ture [44], they are fragmentary and time-consuming. Con-

sequent attempts thus follow a more elegant FCN architec-

ture, addressing multi-level cues [5, 63], feature aggrega-

tion [45, 72, 38], adversarial learning [71, 46, 37], or cross-

domain knowledge [37, 66, 20]. To further explore inherent

structures, numerous approaches [65, 72, 22, 64, 15, 47]

choose to straightforward encode pose information into

the parsers, however, relying on off-the-shelf pose estima-

tors [18, 17] or additional annotations. Some others con-

sider top-down [74] or multi-source semantic [61] informa-

tion over hierarchical human layouts. Though impressive,

they ignore iterative inference and seldom address explicit

relation modeling, easily suffering from weak expressive

ability and risk of sub-optimal results.

With the general success of these works, we make a fur-

ther step towards more precisely describing the different re-

lations residing on human bodies, i.e., decomposition, com-

position, and dependency, and addressing iterative, spatial-

information preserving inference over human hierarchy.

Graph neural networks (GNNs):GNNs have a rich history

(dating back to [53]) and became a veritable explosion in

research community over the last few years [23]. GNNs ef-

fectively learn graph representations in an end-to-end man-

ner, and can generally be divided into two broad classes:

Graph Convolutional Networks (GCNs) and Message Pass-

ing Graph Networks (MPGNs). The former [12, 48, 27] di-

rectly extend classical CNNs to non-Euclidean data. Their

simple architecture promotes their popularity, while lim-

its their modeling capability for complex structures [23].

MPGNs [19, 73, 56, 59] parameterize all the nodes, edges,

and information fusion steps in graph learning, leading to

more complicated yet flexible architectures.

Our structured human parser, which falls in the sec-

ond category, can be viewed as an early attempt to explore

GNNs in the area of human parsing. In contrast to con-

ventional MPGNs, which are mainly MLP-based and edge-

type-agnostic, we provide a spatial information preserving

and relation-type aware graph learning scheme.
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Figure 2: Illustration of our structured human parser for hierarchical human parsing during the training phase. The main components in

the flowchart are marked by (a)-(h). Please refer to §3 for more details. Best viewed in color.

3. Our Approach

3.1. Problem Definition

Formally, we represent the human semantic structure as

a directed, hierarchical graph G = (V, E ,Y). As show in

Fig. 2(a), the node set V = ∪3l=1Vl represents human parts

in three different semantic levels, including the leaf nodes

V1 (i.e., the most fine-grained parts: head, arm, hand, etc.)

which are typically considered in common human parsers,

two middle-level nodes V2={upper-body, lower-body} and

one root V3={full-body}1. The edge set E∈
(

V
2

)

represents

the relations between human parts (nodes), i.e., the directed

edge e= (u, v) ∈ E links node u to v : u→v. Each node v

and each edge (u, v) are associated with feature vectors: hv

and hu,v , respectively. yv∈Y indicates the groundtruth seg-

mentation map of part (node) v and the groundtruth maps Y
are also organized in a hierarchical manner: Y=∪3l=1Yl.

Our human parser is trained in a graph learning scheme,

using the full supervision from existing human parsing

datasets. For a test sample, it is able to effectively infer the

node and edge representations by reasoning human struc-

tures at the levels of individual parts and their relations, and

iteratively fusing the information over the human structures.

3.2. Structured Human Parsing Network

Node embedding: As an initial step, a learnable projection

function is used to map the input image representation into

node (part) features, in order to obtain sufficient expressive

power. Formally, let us denote the input image feature as x∈
R

W×H×C, which comes from a DeepLabV3 [6]-like back-

bone network ( in Fig.2(b)), and the projection function

as P :RW×H×C 7→R
W×H×c×|V|, where |V| indicates the num-

ber of nodes. The node embeddings {hv∈R
W×H×c}v∈V are

initialized by (Fig.2(d)):

{hv}v∈V =P (x), (1)

where each node embedding hv is a (W, H, c)-dimensional

tenor that encodes full spatial details ( in Fig.2(c)).

Typed human part relation modeling: Basically, an edge

embedding hu,v captures the relations between nodes u and

1As the classic settings of graph models, there is also a ‘dummy’ node in V , used

for interpreting the background class. As it does not interact with other semantic

human parts (nodes), we omit this node for concept clarity.

v. Most previous structured human parsers [74, 61] work

in an edge-type-agnostic manner, i.e., a unified, shared re-

lation network R:RW×H×c×RW×H×c 7→R
W×H×c is used to

capture all the relations: hu,v=R(hu, hv). Such a strategy

may lose the discriminability of individual relation types

and does not have an explicit bias towards modeling geo-

metric and anatomical constraints. In contrast, we formu-

late hu,v in a relation-typed manner Rr:

hu,v = R
r(F r(hu), hv), (2)

where r ∈ {dec, com, dep}. F r(·) is an attention-based

relation-adaption operation, which is used to enhance the

original node embedding hu by addressing geometric char-

acteristics in relation r. The attention mechanism is favored

here as it allows trainable and flexible feature enhancement

and explicitly encodes specific relation constraints. From

the view of information diffusion mechanism in the graph

theory [53], if there exists an edge (u, v) that links a starting

node u to a destination v, this indicates v should receive in-

coming information (i.e., hu,v) from u. Thus, we use F r(·)
to make hu better accommodate the target v. Rr is edge-

type specific, employing the more tractable feature F r(hu)
in place of hu, so more expressive relation feature hu,v for v

can be obtained and further benefit the final parsing results.

In this way, we learn more sophisticated and impressive re-

lation patterns within human bodies.

1) Decompositional relation modeling: Decompositional

relations (full line: in Fig. 2(a)) are represented by those

vertical edges starting from parent nodes to corresponding

child nodes in the human hierarchy G. For example, a parent

node full-body can be separated into {upper-body, lower-

body}, and upper-body can be decomposed into {head,

torso, upper-arm, lower-arm}. Formally, for a node u, let

us denote its child node set as Cu. Our decompositional

relation network Rdec aims to learn the rule for ‘breaking

down’ u into its constituent parts Cu (Fig.3):

hu,v=R
dec(F dec(hu), hv), v ∈ Cu,

F
dec(hu)=hu ⊙ att

dec
u,v(hu).

(3)

‘⊙’ indicates the attention-based feature enhancement op-

eration, and attdec
u,v(hu)∈ [0, 1]

W×H produces an attention

map. For each sub-nodev∈Cuof u, attdec
u,v(hu) is defined as:
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Eq.3: hu,v=Rdec(F dec(hu), hv)

hu

hu,v

F dec(hu)

attdec
u,v

(a) (b)

Cu

parent
node

Figure 3: Illustration of our decompositional relation model-

ing. (a) Decompositional relations between the upper-body node

(u) and its constituents (Cu). (b) With the decompositional at-

tentions {attdec
u,v(hu)}v∈Cu

, F dec learns how to ‘break down’ the

upper-body node and generates more tractable features for its con-

stituents. In the relation adapted feature F dec(hu), the responses

from the background and other irrelevant parts are suppressed.

att
dec
u,v(hu)=PSM([φdec

v (hu)]v∈Cu
)=

exp(φdec
v (hu))

Σv′∈Cu
exp(φdec

v′ (hu))
, (4)

where PSM(·) stands for pixel-wise soft-max, ‘[·]’ repre-

sents the channel-wise concatenation, and φdec
v (hu)∈R

W×H

computes a specific significance map for v. By making
∑

v∈Cu
attdec

u,v = 1, {attdec
u,v(hu)}v∈Cu

forms a decompo-

sitional attention mechanism, i.e., allocates disparate atten-

tions over hu. To recap, the decompositional attention, con-

ditioned on hu, lets u pass separate high-level information

to different child nodes Cu (see Fig. 3(b)). Here attdec
u,v(·)

is node-specific and separately learnt for the three entire

nodes in V2 ∪ V3, namely full-body, upper-body and lower-

body. A subscript u,v is added to address this point. In

addition, for each parent node u, the groundtruth maps

YCu
={yv}v∈Cu

∈ {0, 1}W×H×|Cu| of all the child nodes Cu
can be used as supervision signals to train its decomposi-

tional attention {attdec
u,v(hu)}v∈Cu

∈ [0, 1]W×H×|Cu|:

Ldec =
∑

u∈V2∪V3

LCE

(
{attdec

u,v(hu)}v∈Cu
,YCu

)
, (5)

where LCE represents the standard cross-entropy loss.

2) Compositional relation modeling: In the human hierar-

chy G, compositional relations are represented by vertical,

downward edges. To address this type of relations, we de-

sign a compositional relation network Rcom as (Fig.4):

hu,v=R
com(F com(hu), hv), u ∈ Cv,

F
com(hu)=hu⊙att

com
v ([hu′ ]u′∈Cv

).
(6)

Here attcom
v : RW×H×c×|Cv| 7→ [0, 1]W×H is a compositional

attention, implemented by a 1×1 convolutional layer. The

rationale behind such a design is that, for a parent node v,

attcom
v gathers statistics of all the child nodes Cv and is

used to enhance each sub-node feature hu. As attcom
v is

compositional in nature, its enhanced feature F com(hu) is

more ‘friendly’ to the parent node v, compared to hu. Thus,

Rcom is able to generate more expressive relation features

by considering compositional structures (see Fig.4(b)).

Eq.6:
hu,v=Rcom(F com(hu), hv)

huhu′

hu,v

u′

F com(hu)F com(hu′)
attcom

v

(a) (b)

[hu′, hu]

Cv

parent
node

Figure 4: Illustration of our compositional relation model-

ing. (a) Compositional relations between the lower-body node

(v) and its constituents (Cv). (b) The compositional attention

attcom
v ([hu′ , hu]) gathers information from all the constituents Cv

and lets F com enhance all the lower-body related features of Cv .

For each parent node v ∈ V2 ∪ V3, with its groundtruth

map yv ∈{0, 1}
W×H , the compositional attention for all its

child nodes Cv is trained by minimizing the following loss:

Lcom =
∑

v∈V2∪V3

LCE

(
att

com
v ([hu′ ]u′∈Cv

), yv
)
. (7)

3) Dependency relation modeling: In G, dependency rela-

tions are represented as horizontal edges (dashed line: in

Fig. 2(a)), describing pairwise, kinematic connections be-

tween human parts, such as (head, torso), (upper-leg, lower-

leg), etc. Two kinematically connected human parts are

spatially adjacent, and their dependency relation essentially

addresses the context information. For a node u, with its

kinematically connected siblingsKu, a dependency relation

network Rdep is designed as (Fig. 5):

hu,v = R
dep(F dep(hu), hv), v ∈ Ku,

F
dep(hu) = F

cont(hu)⊙att
dep
u,v

(
F

cont(hu)
)
,

(8)

where F cont(hu)∈R
W×H×c is used to extract the context of

u, and att
dep
u,v

(

F cont(hu)
)

∈ [0, 1]W×H is a dependency at-

tention that produces an attention for each sibling node v,

conditioned on u’s context F cont(hu). Specifically, inspired

by the non-local self-attention [55, 62], the context extrac-

tion module F cont is designed as:

F
cont(hu) = ρ(xA

⊤) ∈ R
W×H×c

,

A = h
′
u

⊤
Wx

′ ∈ R
(WH)×(WH)

,
(9)

where h
′
u∈R

(c+8)×(WH)and x
′∈R(C+8)×(WH) are node (part)

and image representations augmented with spatial informa-

tion, respectively, flattened into matrix formats. The last

eight channels of h
′
u and x

′ encode spatial coordinate infor-

mation [25], where the first six dimensions are the normal-

ized horizontal and vertical positions, and the last two di-

mensions are the normalized width and height information

of the feature, 1/W and 1/H. W ∈R(c+8)×(C+8) is learned

as a linear transformation based node-to-context projection

function. The node feature h
′
u, used as a query term, re-

trieves the reference image feature x
′ for its context infor-

mation. As a result, the affinity matrix A stores the attention
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Eq.8:
hu,v = Rdep(F dep(hu)

hu x

F dep(hu)F cont(hu)

att
dep
u,v

(a) (b)

Ku

sibling
node

Figure 5: Illustration of our dependency relation model-

ing. (a) Dependency relations between the upper-body node

(u) and its siblings (Ku). (b) The dependency attention

{attdep
u,v

(
F cont(hu)

)
}v∈Ku

, derived from u’s contextual information

F cont(hu), gives separate importance for different siblings Ku.

weight between the query and reference at a certain spatial

location, accounting for both visual and spatial information.

Then, u’s context is collected as a weighted sum of the orig-

inal image feature x with column-wise normalized weight

matrix A
⊤: xA

⊤∈RC×(WH). A 1×1 convolution based linear

embedding function ρ : RW×H×C 7→R
W×H×c is applied for

feature dimension compression, i.e., to make the channel

dimensions of different edge embeddings consistent.

For each sibling node v∈Ku of u, att
dep
u,v is defined as:

att
dep
u,v

(
F

cont(hu)
)
= PSM

(
[φdep

v (hu)]v∈Ku

)
. (10)

Here φ
dep
v (·)∈RW×H gives an importance map for v, using

a 1×1 convolutional layer. Through the pixel-wise soft-max

operation PSM(·), we enforce
∑

v∈Ku
att

dep
u,v = 1, leading

to a dependency attention mechanism which assigns exclu-

sive attentions over F cont(hu), for the corresponding sibling

nodes Ku. Such a dependency attention is learned via:

Ldep =
∑

u∈V1∪V2

LCE

(
{attdep

u,v(hu)}v∈Ku
,YKu

)
, (11)

where YKu
∈ [0, 1]W×H×|Ku| stands for the groundtruth maps

{yv}v∈Ku
of all the sibling nodes Ku of u.

Iterative inference over human hierarchy: Human bodies

present a hierarchical structure. According to graph theory,

approximate inference algorithms should be used for such

a loopy structure G. However, previous structured human

parsers directly produce the final node representation hv by

either simply accounting for the information from the par-

ent node u [74]: hv←R(hu, hv), where v ∈ Cu; or from

its neighbors Nv [61]: hv←
∑

u∈Nv
R(hu, hv). They ig-

nore the fact that, in such a structured setting, information

is organized in a complex system. Iterative algorithms of-

fer a more favorable solution, i.e., the node representation

should be updated iteratively by aggregating the messages

from its neighbors; after several iterations, the represen-

tation can approximate the optimal results [53]. In graph

theory parlance, the iterative algorithm can be achieved by

a parametric message passing process, which is defined in

terms of a message function M and node update function

U , and runs T steps. For each node v, the message pass-

ing process recursively collects information (messages) mv

from the neighbors Nv to enrich the node embedding hv:

m
(t)
v =

∑

u∈Nv

M(h(t−1)
u , h

(t−1)
v ),

h
(t)
v = U(h(t−1)

v ,m
(t)
v ),

(12)

where h
(t)
v stands for v’s state in the t-th iteration. Recurrent

neural networks are typically used to address the iterative

nature of the update function U .

Inspired by previous message passing algorithms, our it-

erative algorithm is designed as (Fig.2(e)-(f)):

m
(t)
v =

∑

u∈Pv

h
(t−1)
u,v

︸ ︷︷ ︸

decomposition

+
∑

u∈Cv

h
(t−1)
u,v

︸ ︷︷ ︸

composition

+
∑

u∈Kv

h
(t−1)
u,v

︸ ︷︷ ︸

dependency

,
(13)

h
(t)
v =UconvGRU(h

(t−1)
v ,m

(t)
v ), (14)

where the initial state h
(0)
v is obtained by Eq. 1. Here, the

message aggregation step (Eq. 13) is achieved by per-edge

relation function terms, i.e., node v updates its state hv by

absorbing all the incoming information along different re-

lations. As for the update function U in Eq. 14, we use a

convGRU [54], which replaces the fully-connected units in

the original MLP-based GRU with convolution operations,

to describe its repeated activation behavior and address the

pixel-wise nature of human parsing, simultaneously. Com-

pared to previous parsers, which are typically based on feed-

forward architectures, our massage-passing inference es-

sentially provides a feed-back mechanism, encouraging ef-

fective reasoning over the cyclic human hierarchy G.

Loss function: In each step t, to obtain the predictions

Ŷ
(t)
l ={ŷ

(t)
v ∈ [0, 1]W×H}v∈Vl

of the l-th layer nodes Vl, we

apply a convolutional readout function O:RW×H×c 7→R
W×H

over {h(t)
v }v∈V ( in Fig. 2(g)), and pixel-wise soft-max

(PSM) for normalization:

Ŷ
(t)
l = {ŷ(t)

v }v∈Vl
= PSM

(
[O(h(t)

v )]v∈Vl

)
. (15)

Given the hierarchical human parsing results {Ŷ
(t)
l }

3
l=1

and corresponding groundtruths {Yl}
3
l=1, the learning task

in the iterative inference can be posed as the minimization

of the following loss (Fig.2(h)):

L
(t)
parsing =

∑3

l=1
L

(t)
CE (Ŷ

(t)
l ,Yl). (16)

Considering Eqs.5,7,11,and16, the overall loss is defined as:

L =
∑T

t=1

(
L

(t)
parsing + α(L(t)

com + L
(t)
dec + L

(t)
dep)

)
, (17)

where the coefficient α is empirically set as 0.1. We set the

total inference time T = 2 and study how the performance

changes with the number of inference iterations in §4.3.

3.3. Implementation Details

Node embedding: A DeepLabV3 network [6] serves as

the backbone architecture, resulting in a 256-channel image

representation whose spatial dimensions are 1/8 of the input

image. The projection function P :RW×H×C 7→R
W×H×c×|V|

in Eq.1 is implemented by a 3×3 convolutional layer with

8933



ReLU nonlinearity, where C=256 and |V| (i.e., the number

of nodes) is set according to the settings in different human

parsing datasets. We set the channel size of node features

c=64 to maintain high computational efficiency.

Relation networks:Each typed relation network Rr in Eq.2

concatenates the relation-adapted feature F r(hu) from the

source node u and the destination node v’s feature hv as

the input, and outputs the relation representations: hu,v =
Rr([F r(hu), hv]). R

r:RW×H×2c 7→R
W×H×c is implemented

by a 3×3 convolutional layer with ReLU nonlinearity.

Iterative inference: In Eq.14, the update function UconvGRU

is implemented by a convolutional GRU with 3×3 convo-

lution kernels. The readout function O in Eq. 15 applies a

1×1 convolution operation on the feature-prediction projec-

tion. In addition, before sending a node feature h
(t)
v into O,

we use a light-weight decoder (built using a principle of up-

sampling the node feature and merging it with the low-level

feature of the backbone network) that outputs the segmenta-

tion mask with 1/4 the spatial resolution of the input image.

As seen, all the units of our parser are built on convolu-

tion operations, leading to spatial information preservation.

4. Experiments

4.1. Experimental Settings

Datasets:2 Five standard benchmark datasets [22, 64, 44,

31, 45] are used for performance evaluation. LIP [22] con-

tains 50,462 single-person images, which are collected from

realistic scenarios and divided into 30,462 images for train-

ing, 10,000 for validation and 10,000 for test. The pixel-

wise annotations cover 19 human part categories (e.g., face,

left-/right-arms, left-/right-legs, etc.). PASCAL-Person-

Part [64] includes 3,533 multi-person images with challeng-

ing poses and viewpoints. Each image is pixel-wise anno-

tated with six classes (i.e., head, torso, upper-/lower-arms,

and upper-/lower-legs). It is split into 1,716 and 1,817 im-

ages for training and test. ATR [31] is a challenging hu-

man parsing dataset, which has 7,700 single-person images

with dense annotations over 17 categories (e.g., face, upper-

clothes, left-/right-arms, left-/right-legs, etc.). There are

6,000, 700 and 1,000 images for training, validation, and

test, respectively. PPSS [44] is a collection of 3,673 single-

pedestrian images from 171 surveillance videos and pro-

vides pixel-wise annotations for hair, face, upper-/lower-

clothes, arm, and leg. It presents diverse real-word chal-

lenges, e.g., pose variations, illumination changes, and oc-

clusions. There are 1,781 and 1,892 images for training and

testing, respectively. Fashion Clothing [45] has 4,371 im-

ages gathered from Colorful Fashion Parsing [35], Fashion-

ista [68], and Clothing Co-Parsing [69]. It has 17 clothing

2As the datasets provide different human part labels, we make proper

modifications of our human hierarchy. For some labels that do not deliver

human structures, such as hat, sun-glasses, we treat them as isolate nodes.

Method pixAcc. Mean Acc. Mean IoU

SegNet [1] 69.04 24.00 18.17

FCN-8s [41] 76.06 36.75 28.29

DeepLabV2 [4] 82.66 51.64 41.64

Attention [5] 83.43 54.39 42.92
†Attention+SSL [22] 84.36 54.94 44.73

DeepLabV3+ [6] 84.09 55.62 44.80

ASN [43] - - 45.41
†SSL [22] - - 46.19

MMAN [46] 85.24 57.60 46.93
†SS-NAN [72] 87.59 56.03 47.92

HSP-PRI [26] 85.07 60.54 48.16
†MuLA [47] 88.5 60.5 49.3

PSPNet [70] 86.23 61.33 50.56

CE2P [39] 87.37 63.20 53.10

BraidNet [40] 87.60 66.09 54.42

CNIF [61] 88.03 68.80 57.74

Ours 89.05 70.58 59.25

Table 1: Comparison of pixel accuracy, mean accuracy and

mIoU on LIP val [22]. † indicates extra pose information used.

categories (e.g., hair, pants, shoes, upper-clothes, etc.) and

the data split follows 3,934 for training and 437 for test.

Training: ResNet101 [24], pre-trained on ImageNet [52],

is used to initialize our DeepLabV3 [6] backbone. The re-

maining layers are randomly initialized. We train our model

on the five aforementioned datasets with their respective

training samples, separately. Following the common prac-

tice [39, 21, 61], we randomly augment each training sam-

ple with a scaling factor in [0.5, 2.0], crop size of 473×473,

and horizontal flip. For optimization, we use the standard

SGD solver, with a momentum of 0.9 and weight decay of

0.0005. To schedule the learning rate, we employ the poly-

nomial annealing procedure [4, 70], where the learning rate

is multiplied by (1− iter
total iter

)power with power as 0.9.

Testing: For each test sample, we set the long side of the

image to 473 pixels and maintain the original aspect ratio.

As in [70, 47], we average the parsing results over five-scale

image pyramids of different scales with flipping, i.e., the

scaling factor is 0.5 to 1.5 (with intervals of 0.25).

Reproducibility: Our method is implemented on PyTorch

and trained on four NVIDIA Tesla V100 GPUs (32GB

memory per-card). All the experiments are performed on

one NVIDIA TITAN Xp 12GB GPU. To provide full details

of our approach, our code will be made publicly available.

Evaluation: For fair comparison, we follow the official

evaluation protocols of each dataset. For LIP, follow-

ing [72], we report pixel accuracy, mean accuracy and mean

Intersection-over-Union (mIoU). For PASCAL-Person-Part

and PPSS, following [63, 64, 46], the performance is eval-

uated in terms of mIoU. For ATR and Fashion Clothing, as

in [45, 61], we report pixel accuracy, foreground accuracy,

average precision, average recall, and average F1-score.

4.2. Quantitative and Qualitative Results

LIP [22]:LIP is a gold standard benchmark for human pars-

ing. Table1 reports the comparison results with 16 state-of-
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Method Head Torso U-Arm L-Arm U-Leg L-Leg B.G. Ave.

HAZN [63] 80.79 59.11 43.05 42.76 38.99 34.46 93.59 56.11

Attention [5] 81.47 59.06 44.15 42.50 38.28 35.62 93.65 56.39

LG-LSTM [33] 82.72 60.99 45.40 47.76 42.33 37.96 88.63 57.97

Attention+SSL [22] 83.26 62.40 47.80 45.58 42.32 39.48 94.68 59.36

Attention+MMAN [46] 82.58 62.83 48.49 47.37 42.80 40.40 94.92 59.91

Graph LSTM [32] 82.69 62.68 46.88 47.71 45.66 40.93 94.59 60.16

SS-NAN [72] 86.43 67.28 51.09 48.07 44.82 42.15 97.23 62.44

Structure LSTM [30] 82.89 67.15 51.42 48.72 51.72 45.91 97.18 63.57

Joint [64] 85.50 67.87 54.72 54.30 48.25 44.76 95.32 64.39

DeepLabV2 [4] - - - - - - - 64.94

MuLA [47] 84.6 68.3 57.5 54.1 49.6 46.4 95.6 65.1

PCNet [74] 86.81 69.06 55.35 55.27 50.21 48.54 96.07 65.90

Holistic [29] 86.00 69.85 56.63 55.92 51.46 48.82 95.73 66.34

WSHP [15] 87.15 72.28 57.07 56.21 52.43 50.36 97.72 67.60

DeepLabV3+ [6] 87.02 72.02 60.37 57.36 53.54 48.52 96.07 67.84

SPGNet [8] 87.67 71.41 61.69 60.35 52.62 48.80 95.98 68.36

PGN [21] 90.89 75.12 55.83 64.61 55.42 41.57 95.33 68.40

CNIF [61] 88.02 72.91 64.31 63.52 55.61 54.96 96.02 70.76

Ours 89.73 75.22 66.87 66.21 58.69 58.17 96.94 73.12

Table 2: Per-class comparison of mIoU on PASCAL-Person-

Part test [64].

Method pixAcc. F.G. Acc. Prec. Recall F-1

Yamaguchi [68] 84.38 55.59 37.54 51.05 41.80

Paperdoll [67] 88.96 62.18 52.75 49.43 44.76

M-CNN [36] 89.57 73.98 64.56 65.17 62.81

ATR [31] 91.11 71.04 71.69 60.25 64.38

DeepLabV2 [4] 94.42 82.93 78.48 69.24 73.53

PSPNet [70] 95.20 80.23 79.66 73.79 75.84

Attention [5] 95.41 85.71 81.30 73.55 77.23

DeepLabV3+ [6] 95.96 83.04 80.41 78.79 79.49

Co-CNN [34] 96.02 83.57 84.95 77.66 80.14

LG-LSTM [33] 96.18 84.79 84.64 79.43 80.97

TGPNet [45] 96.45 87.91 83.36 80.22 81.76

CNIF [61] 96.26 87.91 84.62 86.41 85.51

Ours 96.84 89.23 86.17 88.35 87.25

Table 3: Comparison of accuracy, foreground accuracy, aver-

age precision, recall and F1-score on ATR test[31].

the-arts on LIP val. We first find that general semantic seg-

mentation methods [1, 41, 4, 6] tend to perform worse than

human parsers. This indicates the importance of reasoning

human structures in this problem. In addition, though re-

cent human parsers gain impressive results, our model still

outperforms all the competitors by a large margin. For in-

stance, in terms of pixAcc., mean Acc., and mean IoU, our

parser dramatically surpasses the best performing method,

CNIF [61], by 1.02%, 1.78% and 1.51%, respectively. We

would also like to mention that our parser does not use ad-

ditional pose [22, 72, 47] or edge [39] information.

PASCAL-Person-Part [64]: In Table 2, we compare our

method against 18 recent methods on PASCAL-Person-Part

test using IoU score. From the results, we can again

see that our approach achieves better performance com-

pared to all other methods; specially, 73.12% vs 70.76%

of CNIF [61] and 68.40% of PGN [21], in terms of mIoU.

Such a performance gain is particularly impressive consid-

ering that improvement on this dataset is very challenging.

ATR [31]: Table 3 presents comparisons with 14 previous

methods on ATR test. Our approach sets new state-of-

the-arts for all five metrics, outperforming all other meth-

Method pixAcc. F.G. Acc. Prec. Recall F-1

Yamaguchi [68] 81.32 32.24 23.74 23.68 22.67

Paperdoll [67] 87.17 50.59 45.80 34.20 35.13

DeepLabV2 [4] 87.68 56.08 35.35 39.00 37.09

Attention [5] 90.58 64.47 47.11 50.35 48.68

TGPNet [45] 91.25 66.37 50.71 53.18 51.92

CNIF [61] 92.20 68.59 56.84 59.47 58.12

Ours 93.12 70.57 58.73 61.72 60.19

Table 4: Comparison of pixel accuracy, foreground pixel accu-

racy, average precision, average recall and average f1-score on

Fashion Clothing test [45].

Method Head Face U-Cloth Arms L-Cloth Legs B.G. Ave.

DL [44] 22.0 29.1 57.3 10.6 46.1 12.9 68.6 35.2

DDN [44] 35.5 44.1 68.4 17.0 61.7 23.8 80.0 47.2

ASN [43] 51.7 51.0 65.9 29.5 52.8 20.3 83.8 50.7

MMAN [46] 53.1 50.2 69.0 29.4 55.9 21.4 85.7 52.1

LCPC [9] 55.6 46.6 71.9 30.9 58.8 24.6 86.2 53.5

CNIF [61] 67.6 60.8 80.8 46.8 69.5 28.7 90.6 60.5

Ours 68.8 63.2 81.7 49.3 70.8 32.0 91.4 65.3

Table 5: Comparison of mIoU on PPSS test [44].

ods by a large margin. For example, our parser provides a

considerable performance gain in F-1 score, i.e., 1.74% and

5.49% higher than the current top-two performing methods,

CNIF [61] and TGPNet [45], respectively.

Fashion Clothing [45]: The quantitative comparison re-

sults with six competitors on Fashion Clothing test are

summarized in Table 4. Our model yields an F-1 score

of 60.19%, while those for Attention [5], TGPNet [45], and

CNIF [61] are 48.68%, 51.92%, and 58.12%, respectively.

This again demonstrates our superior performance.

PPSS [44]: Table 5 compares our method against six fa-

mous methods on PPSS test set. The evaluation results

demonstrate that our human parser achieves 65.3% mIoU,

with substantial gains over the second best, CNIF [61], and

third best, LCPC [9], of 4.8% and 11.8%, respectively.

Runtime comparison: As our parser does not require extra

pre-/post-processing steps (e.g., human pose used in [64],

over-segmentation in [32, 30], and CRF in [64]), it achieves

a high speed of 12fps (on PASCAL-Person-Part), faster

than most of the counterparts, such as Joint [64] (0.1fps),

Attention+SSL [22] (2.0fps), MMAN [46] (3.5fps), SS-

NAN [72] (2.0fps), and LG-LSTM [33] (3.0fps).

Qualitative results: Some qualitative comparison results

on PASCAL-Person-Part test are depicted in Fig. 6. We

can see that our approach outputs more precise parsing re-

sults than other competitors [6, 21, 72, 61], despite the ex-

istence of rare pose (2nd row) and occlusion (3rd row). In

addition, with its better understanding of human structures,

our parser gets more robust results and eliminates the inter-

ference from the background (1st row). The last row gives a

challenging case, where our parser still correctly recognizes

the confusing parts of the person in the middle.
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(a) Image (b) Ground-truth (c) Ours (d) DeepLabV3+ [6] (e) PGN [21] (f) SS-NAN [72] (g) CNIF [61]

Figure 6: Visual comparison on PASCAL-Person-Part test. Our model (c) generates more accurate predictions, compared to other

famous methods [6, 21, 72, 61] (d-g). The improved labeled results by our parser are denoted in red boxes. Best viewed in color.

4.3. Diagnostic Experiments

To demonstrate how each component in our parser con-

tributes to the performance, a series of ablation experiments

are conducted on PASCAL-Person-Part test.

Type-specific relation modeling: We first investigate the

necessity of comprehensively exploring different relations,

and discuss the effective of our type-specific relation mod-

eling strategy. Concretely, we studied six variant mod-

els, as listed in Table 6: (1) ‘Baseline’ denotes the approach

only using the initial node embeddings {h(0)
v }v∈V without

any relation information; (2) ‘Type-agnostic’ shows the per-

formance when modeling different human part relations

in a type-agnostic manner: hu,v=R([hu, hv]); (3) ‘Type-

specific w/o F r’ gives the performance without the relation-

adaption operation F r in Eq. 2: hu,v=Rr([hu, hv]); (4-6)

‘Decomposition relation’, ‘Composition relation’ and ‘De-

pendency relation’ are three variants that only consider the

corresponding single one of the three kinds of relation cat-

egories, using our type-specific relation modeling strategy

(Eq.2). Four main conclusions can be drawn: (1) Structural

information are essential for human parsing, as all the struc-

tured models outperforms ‘Baseline’. (2) Typed relation

modeling leads to more effective human structure learn-

ing, as ‘Type-specific w/o F r’ improves ‘Type-agnostic’ by

1.28%. (3) Exploring different kinds of relations are mean-

ingful, as the variants using individual relation types outper-

form ‘Baseline’ and our full model considering all the three

kinds of relations achieves the best performance. (4) En-

coding relation-specific constrains helps with relation pat-

tern learning as our full model is better than the one without

relation-adaption, ‘Type-specific w/o F r’.

Iterative inference: Table 6 shows the performance of our

parser with regard to the iteration step t as denoted in Eq.13

and Eq.14. Note that, when t=0, only the initial node fea-

ture is used. It can be observed that setting T =2 or T =3
provided a consistent boost in accuracy of 4∼5%, on aver-

age, compared to T = 0; however, increasing T beyond 3

gave marginal returns in performance (around 0.1%). Ac-

Component Module mIoU △ time (ms)

Reference Full model (2 iterations) 73.12 - 81

Relation

modeling

Baseline 68.84 -4.28 46

Type-agnostic 70.37 -2.75 55

Type-specific w/o F r 71.65 -1.47 55

Decomposition relation 71.38 -1.74 50

Composition relation 69.35 -3.77 49

Dependency relation 69.43 -3.69 52

Iterative

Inference T

0 iteration 68.84 -4.28 46

1 iterations 72.17 -0.95 59

3 iterations 73.19 +0.07 93

4 iterations 73.22 +0.10 105

5 iterations 73.23 +0.11 116

Table 6: Ablation study (§4.3) on PASCAL-Person-Part test.

cordingly, we choose T = 2 for a better trade-off between

accuracy and computation time.

5. Conclusion

In the human semantic parsing task, structure modeling

is an essential, albeit inherently difficult, avenue to explore.

This work proposed a hierarchical human parser that ad-

dresses this issue in two aspects. First, three distinct rela-

tion networks are designed to precisely describe the compo-

sitional/decompositional relations between constituent and

entire parts and help with the dependency learning over

kinetically connected parts. Second, to address the infer-

ence over the loopy human structure, our parser relies on a

convolutional, message passing based approximation algo-

rithm, which enjoys the advantages of iterative optimization

and spatial information preservation. The above designs en-

able strong performance across five widely adopted bench-

mark datasets, at times outperforming all other competitors.
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