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Abstract

Instance shadow detection is a brand new problem, aim-

ing to find shadow instances paired with object instances.

To approach it, we first prepare a new dataset called SOBA,

named after Shadow-OBject Association, with 3,623 pairs

of shadow and object instances in 1,000 photos, each

with individually-labeled masks. Second, we design LISA,

named after Light-guided Instance Shadow-object Associa-

tion, an end-to-end framework to automatically predict the

shadow and object instances, together with the shadow-

object associations and light direction. Then, we pair up

the predicted shadow and object instances and match them

with the predicted shadow-object associations to generate

the final results. In our evaluations, we formulate a new

metric named the shadow-object average precision to mea-

sure the performance of our results. Further, we conducted

various experiments and demonstrate our method’s appli-

cability to light direction estimation and photo editing.

1. Introduction

“When you light a candle, you also cast a shadow,”—Ursula

K. Le Guin written in A Wizard of Earthsea.

When some objects block the light, shadows are formed.

And when we see a shadow, we also know that there must

be some objects that create or cast the shadow. Shadows are

light-deficient regions in a scene, due to light occlusion, but

they carry the shape of the light-occluding objects, as they

are projections of these objects onto the physical world. In

this work, we are interested in a new problem, i.e., finding

shadows together with their associated objects.

Concerning shadows, prior works in computer vision

and image understanding focus mainly on shadow detec-

tion [15, 18, 19, 21, 22, 26, 46, 50, 54] and shadow re-

moval [8, 16, 17, 25, 37, 47]. Our goal in this work is

to leverage the remarkable computation capability of deep

neural networks to address the new problem of associating
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Figure 1. Given a photo with shadows (a), the problem of instance

shadow detection is to detect the individual shadow instances (c)

and the individual object instances (d), as well as to associate the

shadows with the objects (e) that cast them. (b) shows the predic-

tion results produced by our method on (a).

shadows and objects—instance shadow detection. That is,

we want to detect the shadow instances in images, together

with the associated object that casts each shadow.

Being able to find shadow-object associations has the po-

tentials to benefit various applications. For example, for

privacy protection, when we remove humans and cars from

photos, we can remove objects and associated shadows al-

together. In a recent work on removing objects from images

for privacy protection [42], the shadows are simply left be-

hind. Also, when we edit photos, say by scaling or translat-

ing objects, we can naturally manipulate objects with their

associated shadows simultaneously. Further, shadow-object

associations give hints to the light direction in the scene,

supporting applications such as relighting.

To approach the problem of instance shadow detection,

first, we prepare a new dataset called SOBA, named after

Shadow OBject Association. SOBA contains 3,623 pairs

of shadow-object associations over 1,000 photos, each with

three masks (see Figures 1 (c)-(e)): (i) shadow instance

mask, where we label each shadow instance with a unique

color; (ii) shadow-object association mask, where we label
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Figure 2. Example images with mask and box labels in our SOBA dataset. Please zoom in for better visualization.

each shadow-object pair with a corresponding unique color;

and (iii) object instance mask, which is (ii) minus (i). In

general, there are two types of shadows: (i) cast shadows,

formed on background objects, usually ground, as the pro-

jections of the light-occluding objects, and (ii) self shadows,

formed on the side of the light-occluding objects opposite to

the direct light (see Figure 1(a)). In this work, we consider

mainly cast shadows, which are object projections, since

self shadows are already on the associated objects. See also

Figure 2 for example images in our SOBA dataset.

Next, we design an end-to-end framework called LISA,

named after Light-guided Instance Shadow-object Associ-

ation, to find the individual shadow and object instances,

the shadow-object associations, and the light direction in

each shadow-object association. From these predictions, we

then use a simple yet effective method to pair the predicted

shadow and object instances and to match them with the

predicted shadow-object associations.

Third, to quantitatively measure and evaluate the per-

formance of the instance shadow detection results, we for-

mulate a new evaluation metric called SOAP, named after

Shadow-Object Average Precision. In the end, we further

perform a series of experiments to show the effectiveness of

our method and demonstrate its applicability to light direc-

tion estimation and photo editing.

2. Related Work

Shadow detection. Early works [39, 33, 41] made use

of physical illumination and color models, and analyzed the

spectral and geometrical properties of shadows. Later, ma-

chine learning methods were explored to detect shadows by

modeling shadows based on handcrafted features, e.g., tex-

ture [53, 43, 12, 45], color [24, 43, 12, 45], T-junction [24],

and edge [24, 53, 20], then by using various classifiers, e.g.,

decision tree [24, 53] and SVM [12, 20, 43, 45], to differen-

tiate shadows and non-shadows. However, physical models

and handcrafted features have limited feature representation

capability, thus they are not robust in general situations.

Later, convolutional neural networks (CNN) were intro-

duced to detect shadows. Khan et al. [21] and Shen et

al. [40] used CNN to learn high-level features and optimiza-

tion methods to detect shadows. Vicente et al. [46] trained

a fully-connected network to predict a shadow probability

map, then locally refine the shadows via a patch-CNN.

More recently, end-to-end networks were designed to de-

tect shadows. Nguyen et al. [32] built a conditional gener-

ative adversarial network with a sensitive parameter to sta-

bilize the network training. Hu et al. [16, 19] and Zhu et

al. [54] explored the spatial context via the direction-aware

spatial context module and recurrent attention residual mod-

ule, respectively. Wang et al. [47] and Ding et al. [8] jointly

detected and removed shadows by using multiple networks

or a multi-branch network. To improve the detection per-

formance, Le et al. [26] proposed to generate more training

samples, while Zheng et al. [50] combined the strengths of

multiple methods to explicitly revise the results. This work

explores a new problem on detecting shadows, namely in-

stance shadow detection. Unlike general shadow detection,

which finds only a single mask for all shadows in an image,

we design a deep architecture to find not just the individual

shadows but also the associated objects altogether.

Instance segmentation. Besides, this work relates to the

emerging problem of instance segmentation, where the goal

is to label pixels of individual foreground objects in the in-
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Figure 3. Statistical properties of the SOBA dataset.

put image. Overall, there are two major approaches to the

problem: proposal-based and proposal-free approaches.

Proposal-based approach generally uses object detectors

to propose candidates and classifies the candidates to find

object instances, e.g., MNC [6], DeepMask [35], Instance-

FCN [6], and SharpMask [36]. Later, FCIS [27] jointly de-

tects and segments the object instances using a fully convo-

lutional network. BAIS [13] models the object shapes and

segments the object instances in a boundary-aware man-

ner. MaskLab [4] uses a network with three outputs for box

detection, semantic segmentation, and direction prediction,

while methods based on Mask R-CNN [14], e.g., [31, 3, 34],

achieved great performance by simultaneously detecting the

object instances and predicting the segmentation masks.

The proposal-free approach [1, 2, 23, 30] first classifies

the image pixels, then group the pixels into object instances.

Recently, TensorMask [5] leverages a fully convolutional

network for dense mask prediction, while SSAP [9] predicts

the object instance labels in just a single pass.

3. SOBA (Shadow OBject Association) Dataset

We collected 1,000 images from the ADE20K [51, 52],

SBU [15, 44, 46], ISTD [47], and Microsoft COCO [29]

datasets, and also from the Internet using keyword search

with shadow plus animal, people, car, athletic meeting, zoo,

street, etc. Then, we coarsely label the images to produce

the shadow instance masks and shadow-object association

masks, and refine them using Apple Pencil; see Figures 1

(c) & (e). Next, we obtain the object instance masks (see

Figure 1 (d)) by subtracting each shadow instance mask

from the associated shadow-object association mask. Over-

all, there are 3,623 pairs of shadow-object instances in the

dataset images, and we randomly split the images into a

training set (840 images, 2,999 pairs) and a testing set (160

images, 624 pairs); see Figure 2 for some examples.

Figure 3 shows some statistical properties of the SOBA

dataset. From the histogram shown on the left, we can see

that SOBA has a diverse number of shadow-object pairs per

image, with around 3.62 pairs per image on average. Also,

it contains many challenging cases: 7% of the images have

nine or more shadow-object pairs per image. On the other

hand, the histogram shown on the right reveals the propor-

tion of image space (horizontal axis) occupied, respectively,

(i) Shadow/object 
instance boxes

(ii) Shadow/object 
instance masks

(iii) Shadow-object 
association boxes

(iv) Light directions

Shadow

obj+shad

obj+shad

Object

Object

Shadow

Figure 4. Example predictions (output) from our LISA framework.

by the shadow and object instances in the dataset images.

From the plot, we can see that most shadows and objects

occupy relatively small areas in the whole images, demon-

strating the challenges to detect them.

4. Methodology

4.1. Overall Network Architecture of LISA

Compared with shadow detection, the challenges of in-

stance shadow detection are that we have to predict shadow

instances rather than just a single mask for all the shadows

in the input image. Also, we have to find object instances

in the input image and pair them up with the shadow in-

stances. To meet these challenges, we design an end-to-end

framework called LISA, named after Light-guided Instance

Shadow-object Association. Overall, as shown in Figure 5,

LISA takes a single image as input and predicts

(i) a box of each shadow/object instance,

(ii) a mask of each shadow/object instance,

(iii) a box of each shadow-object association (pair), and

(iv) the light direction for each shadow-object association.

Figure 4 shows a set of example outputs. Particularly, LISA

predicts the light direction and takes it as guidance to find

shadow-object associations, since the light direction is usu-

ally consistent with the shadow-object associations.

Figure 5 shows the architecture of LISA, which begins

by using a convolutional neural network (ConvNet) to ex-

tract semantic features from the input image. Here, we use

the feature pyramid network [28] as the backbone ConvNet.

Then, we design a two-branch architecture: the top branch

predicts the box and mask for each shadow/object instance

and the bottom branch predicts the box for each shadow-

object association and the associated light direction.
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Figure 5. The schematic illustration of our Light-guided Instance Shadow-object Association (LISA) framework.

In detail, the top branch starts with the instance re-

gion proposal network (RPN) [38] to find region proposals,

which are regions with high probabilities of containing the

shadow/object instances. Then, we adopt RoIAlign [14] to

extract features for each proposal and leverage the box and

mask heads to predict the boxes and masks for the shadow

and object instances by minimizing the loss between the

prediction results and the supervision signals from the train-

ing data. Please refer to Mask R-CNN [14] for the detail.

On the other hand, the bottom branch adopts an association

RPN to generate region proposals for the shadow-object as-

sociations, then uses RoIAlign to extract features for each

proposal and adopts the box head to produce the bounding

boxes of the shadow-object associations. After obtaining

the associations, we can then efficiently obtain the masks of

the shadow-object associations by combining the shadow

and object masks predicted from the top branch. Note that

the parameters in the box head are learned by minimizing

the loss between the boxes of the predicted shadow-object

associations and the ground-truth associations.

Besides, we design a light direction head in parallel with

the box head of the bottom branch to predict an angle that

represents the estimated light direction from shadow to ob-

ject in each association pair. Note that we compute the

ground-truth angle θg of the light direction by

θg = atan2( ygo − ygs , x
g
o − xg

s ) ,

where (xg
s , y

g
s ) and (xg

o, y
g
o) are 2D coordinates of the

shadow and object instance centroids in the ground-truth

image, and atan2(y, x) is a variation of the arctan(y/x)
function to avoid anomaly and output a full-range polar an-

gle in (−π, π]. The shadow-object association branch and

light direction branch share the common feature extraction

network and the association RPN. By jointly optimizing the

predictions of the light direction and shadow-object associ-

ation in each region proposal, we can improve the overall

performance of instance shadow detection; see the experi-

mental results in Section 5.

4.2. Pairing up Shadow and Object Instances

The raw predictions of LISA include shadow instances,

object instances, shadow-object associations, and a light di-

rection predicted per association. Note that, the predicted

shadow and object instances are not paired, whereas the pre-

dicted shadow-object associations are not separated as shad-

ows and objects. Also, some of these predictions may not be

correct, and they may also contradict one another. Hence,

we have to analyze these predictions, pair up the predicted

shadow and object instances, and match them with the pre-

dicted shadow-object associations, so that we can find and

output the final paired shadow and object instances.

Figure 6 illustrates the procedure, where we first find

candidate shadow-object associations (see Figure 6 (b)) by

(i) computing the shortest distance between the bounding

boxes of every pair of shadow and object instances, and (ii)

regarding a pair as a candidate association, if the computed

distance is smaller than a threshold, which is empirically set

as the height of the associated shadow instance. After that,

we construct bounding box Bi for the i-th candidate pair

(see Figure 6 (c)) by merging the bounding boxes of the as-

sociated shadow and object instances. Given (xs
min

,ys
min

)

and (xs
max

,ys
max

) as the lower-left and upper-right corners

of the shadow instance bounding box, and (xo
min

,yo
min

) and

(xo
max

,yo
max

) as the lower-left and upper-right corners of the

object instance bounding box, the corners of the merged

bounding box Bi are given by

(

min(xs
min

, xo
min

) , min(ys
min

, yo
min

)
)

,
and

(

max(xs
max

, xo
max

) , max(ys
max

, yo
max

)
)

.

In the end, as illustrated in Figure 6 (d), we compute the

Intersection over Union (IoU) between the merged boxes

and the shadow-object association boxes predicted indepen-

dently in LISA (see Figure 5), and select those with the

highest IoUs as the final shadow-object associations. Then,

for each of these associations, we can get back the associ-

ated shadow instance and object instance, and pair them as

the final outputs; see Figure 6 (e).

4.3. Training Strategies

Loss function. We optimize LISA by jointly minimizing

the instance box loss, instance mask loss, association box

loss, light direction loss (see Figure 5), and the losses of

instance RPN and association RPN. The loss functions of
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Figure 6. The pair-and-match procedure for pairing the predicted shadow and object instances and efficiently matching them with the

predicted shadow-object associations.

boxes, masks, and RPNs follow the formulations in Mask

R-CNN [14], whereas the light direction loss Llight is for-

mulated by a smooth L1 loss [10], as follows:

Llight(θ
p, θg) =

{

0.5 (θp − θg)2 if |θp − θg| < 1
|θp − θg| − 0.5 otherwise,

where θp and θg are the predicted and ground-truth angles

of the light direction, respectively.

Training parameters. We train our LISA framework by

following the training strategies of Mask R-CNN imple-

mented on Facebook Detectron2 [48]. Specifically, we

adopt the weights of ResNeXt-101-FPN [28, 49] trained on

ImageNet [7] to initialize the parameters of the backbone

network, and train our framework on two GeForce GTX

1080 Ti GPUs (four images per GPU) for 40k training iter-

ations. We set the base learning rate as 1e-4, adopt a warm-

up [11] strategy to linearly increase the learning rate to 1e-3

during the first 1,000 iterations, keep the learning rate as

1e-3, and stop the learning after 40k iterations. We re-scale

the input images, such that the longer side is less than 1,333

and the shorter side is less than 800 without changing the

image aspect ratio. Lastly, we randomly apply horizontal

flips on the images for data augmentation.

5. Experiments

5.1. Evaluation Metrics

Existing metrics evaluate instance segmentation results

by looking at object instances individually. Our problem

involves multiple types of instances: shadows, objects, and

their associations. Hence, we formulate a new metric called

the Shadow-Object Average Precision (SOAP) by adopting

the same formulation as the traditional average precision

(AP) with the intersection over union (IoU) but further con-

sidering a sample as true positive (an output shadow-object

association), if it satisfies the following three conditions:

(i) the IoU between the predicted shadow instance and

ground-truth shadow instance is no less than τ ;

Table 1. Comparing our full pipeline with two simplified baseline

frameworks on the bounding boxes of the final shadow-object as-

sociations in terms of SOAP50, SOAP75, and SOAP.

Method box SOAP50 box SOAP75 box SOAP

Baseline 1 40.3 14.0 16.7

Baseline 2 47.8 14.0 19.6

Our full pipeline 50.5 16.4 21.8

Table 2. Comparing our full pipeline with two simplified baseline

frameworks on the masks of the final shadow-object associations

in terms of SOAP50, SOAP75, and SOAP.

Method mask SOAP50 mask SOAP75 mask SOAP

Baseline 1 41.0 10.0 16.7

Baseline 2 48.1 12.5 20.1

Our full pipeline 50.9 14.4 21.6

(ii) the IoU between the predicted object instance and

ground-truth object instance is no less than τ ; and

(iii) the IoU between the predicted and ground-truth

shadow-object associations is no less than τ .

We follow [29] to report the evaluation results by setting

τ as 0.5 (SOAP50) or 0.75 (SOAP75), and also report the

average over multiple τ [0.5:0.05:0.95] (SOAP). Moreover,

since we can obtain the bounding boxes as well as the masks

for the shadow instances, object instances, and shadow-

object associations, we further report SOAP50, SOAP75,

and SOAP in terms of both bounding boxes and masks.

5.2. Results

Evaluation. To evaluate the LISA framework, we set up

(i) Baseline 1, which adopts only the top branch of LISA to

predict bounding boxes and masks of the shadow and object

instances, then merges them to form shadow-object associa-

tions based on the proximity between the shadow and object

instances; and (ii) Baseline 2, which removes the light di-

rection head in LISA when predicting the shadow-object as-

sociations, but still adopts the procedure to pair-and-match

the shadow and object instances (Section 4.2).
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(a) Input image (b) Baseline 1 (c) Baseline 2 (d) Full pipeline

Figure 7. Visual comparison of instance shadow detection results produced by our full pipeline and two other baseline frameworks.

Tables 1 and 2 report the quantitative comparison re-

sults in terms of the bounding boxes and masks in the final

detected shadow-object associations. Comparing different

rows in the results, we can see that Baseline 2 clearly im-

proves over Baseline 1, demonstrating that we can obtain

better shadow-object associations in our deep end-to-end

framework by independently predicting also the shadow-

object associations and then pairing the shadow and object

instances and matching them with the predicted shadow-

object associations. Moreover, by further predicting the

light direction and taking it as the guidance to jointly op-

timize the framework, our full pipeline LISA achieves the

best performance for all the evaluation metrics.

Figure 7 shows visual comparison results for Baseline 1,

Baseline 2, and our full pipeline. The first column shows the

input images, whereas the second, third, and fourth columns

show the results produced by the two baselines and our full

pipeline. By comparing Baseline 1 with Baseline 2, we can

see that further learning to detect the shadow-object associa-

tions independently in the deep framework helps to discover

more shadow-object pairs, as shown in the third and fourth

rows in Figure 7. Moreover, after taking the light direction

as guidance (Baseline 2 vs. full pipeline), our method im-

proves the performance in various challenging cases, e.g.,

1885



Figure 8. Instance shadow detection results produced by our method over a wide variety of photos and objects.

Figure 9. Example images, where we estimate the light directions

and incorporate virtual red posts with simulated shadows.

when there is large but irrelevant shadow region nearby (see

the first row), when there are multiple shadow instances

connect with a single object instance (see the second row),

when the centers of the shadow and object instances are far

from each other (see the third row), and when there are mul-

tiple shadow regions near a single object instance (see the

last row). Please see Figure 8 and supplemental material

for more instance shadow detection results produced by our

method on various types of images and objects.

6. Applications

Below, we present application scenarios to demonstrate

the applicability of the results produced by our method.

Light direction estimation. First, instance shadow de-

tection helps to estimate the light direction in a single 2D

image, and we connect the centers of the bounding boxes

of the shadow and object instances in each shadow-object

association pair as the estimated light direction. Figure 9

shows some example results, where for each photo, we es-

timate the light direction and render a virtual red post with

a simulated shadow on the ground based on the estimated

light direction. From the results, we can see that the vir-

tual shadows with the red posts look consistent with the real

shadows cast by other objects, thus demonstrating the appli-

cability of our detection results.

Photo editing. Another application to demonstrate in-

stance shadow detection is photo editing, where we can
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(a) Original image (b) Instance shadow detection

(c) An example result in [42] (d) Enhanced by our result

Figure 10. Instance shadow detection enables us to easily remove

objects (e.g., vehicle) with their associated shadows altogether.

remove not only the object instances but also their asso-

ciated shadows altogether. For privacy protection, Uitten-

bogaard et al. [42] presents a method to automatically re-

move specific objects in street-view photos; see Figure 10

(c) for a result, where it can successfully remove the vehi-

cle. However, the shadow cast by the vehicle remains on

the ground. With the help of our instance shadow detection

result (Figure 10 (b)), we can remove the vehicle with its

shadow altogether, as shown in Figure 10 (d).

Further, we can more efficiently transfer an object to-

gether with its shadow from one photo to another photo.

Figure 11 presents an example, we cut the motorcycle with

its shadow from (b) and paste them into (a) in smaller sizes.

Clearly, if we simply paste the motorcycle and shadow to

(a), the shadow is not consistent with the real shadows in

the target photo; see (c). Thanks to instance shadow de-

tection, which outputs individual masks for both object and

shadow instances, as well as light directions. Therefore, we

can achieve light-aware photo editing by making use of the

estimated light direction in both photos to adjust the shadow

images when transferring the motorcycle from one photo to

the other; see (d).

7. Conclusions and Limitations

In this paper, we presented instance shadow detection,

which targets to find shadow instances and object instances,

and pair them up together. Also, we presented three tech-

nical contributions to approach the problem. First, we pre-

pare SOBA, a new dataset of 1,000 images and 3,623 pairs

of shadow-object associations, where we provide the input

photos together with a set of three instance masks. Sec-

ond, we develop LISA, an end-to-end deep framework, to

predict boxes and masks of individual shadow and object

instances, as well as boxes of shadow-object associations

(a) Original image 1 (b) Original image 2

(c) Naı̈ve cut-and-paste (d) Light-aware shadow

Figure 11. When we cut-and-paste objects from one photo to the

other, instance shadow detection results enable us not only to ex-

tract object and shadow instances together, but also to adjust the

shadow shape based on the estimated light direction.

and the associated light directions; from these predictions,

we further match the shadow and object instances, and pair

them up to match with the predicted shadow-object associa-

tions and light directions for producing the output shadow-

object pairs. Third, we formulate SOAP, a new evaluation

metric for quantitatively measuring the instance shadow de-

tection results, enabling us to perform various experiments

to compare with baseline frameworks. In the end, we also

demonstrate the applicability of our results on light direc-

tion estimation and photo editing.

As the first attempt to detect shadow-object instances,

we admit that there are many possible methods that can be

explored to improve the detection performance. Besides

methodologies, we did not consider the overlap between

shadow instances associated with different objects. Also,

we did not consider cast shadows formed on some other

object instances. There are many open problems and unex-

plored situations for instance shadow detection.

In the future, we plan to first improve the performance

of instance shadow detection by simultaneously leveraging

multiple training data from the current datasets prepared for

shadow detection and instance segmentation. By exploring

semi- or weakly-supervised methods to learn to detect in-

stance shadows, we could combine the strengths and knowl-

edge from various data to better the performance of instance

shadow detection. Last, we will also explore more applica-

tions based on the shadow-object association results.
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