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Abstract

We present a novel computational imaging system with

high resolution and low noise. Our system consists of a tra-

ditional video camera which captures high-resolution inten-

sity images, and an event camera which encodes high-speed

motion as a stream of asynchronous binary events. To pro-

cess the hybrid input, we propose a unifying framework that

first bridges the two sensing modalities via a noise-robust

motion compensation model, and then performs joint image

filtering. The filtered output represents the temporal gradi-

ent of the captured space-time volume, which can be viewed

as motion-compensated event frames with high resolution

and low noise. Therefore, the output can be widely applied

to many existing event-based algorithms that are highly

dependent on spatial resolution and noise robustness. In

experimental results performed on both publicly available

datasets as well as our new RGB-DAVIS dataset, we show

systematic performance improvement in applications such

as high frame-rate video synthesis, feature/corner detection

and tracking, as well as high dynamic range image recon-

struction.

1. Introduction

Recently, a new breed of bio-inspired sensors called

event cameras, or Dynamic Vision Sensors (DVS), has

gained growing attention with its distinctive advantages

over traditional frame cameras such as high speed, high dy-

namic range (HDR) and low power consumption [22, 45].

Thus far, event cameras have shown promising capability

in solving classical as well as new computer vision and

robotics tasks, including optical flow and scene depth es-

timation [1, 31, 40, 49], high frame-rate HDR video synthe-

sis [15, 30, 37, 38, 41, 43, 52, 55], 3D reconstruction and

tracking [11, 19, 27, 36], visual SLAM [51], object/face de-

tection [34, 35] and autonomous wheel steering [26].

Despite numerous advances in event-based vision [8],
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Figure 1: Compared to traditional frame cameras, event

cameras (e.g., DAVIS240) can capture high-speed motion

(a), but bear low resolution and severe noise (b). Our

system jointly filters between a high-resolution image (c)

and high-speed events to produce a high-resolution low-

noise event frame (d), which can interface with downstream

event-based algorithms with improved performance.

current event sensor prototypes, e.g., DAVIS240, still bear

low spatial resolution and severe noise (Fig. 1(a) & (b)).

Moreover, the unique event sensing mechanism accord-

ing to which each pixel individually responds to brightness

changes and outputs a cloud of continuously timestamped

address points (Fig. 1(a)) renders event-based super reso-

lution and denoising elusively challenging. On the other

hand, commercial frame sensors can easily acquire millions

of pixels, and image-based super resolution and denoising

algorithms are highly advanced after decades of develop-

ment. These sensory and algorithmic imbalances motivate

us to ask: Can we make complementary use of event and
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frame sensing? What is the unifying mechanism? How does

their synergy benefit related visual tasks and applications?

To answer these questions, we build a hybrid camera sys-

tem using a low-resolution event camera, i.e., DAVIS240

and a high-resolution RGB camera. We establish a com-

putational framework that bridges event sensing with frame

sensing. Our system inherits the high-resolution property

(8× higher than DAVIS) from the frame camera and is ro-

bust to event sensor noise.

Contributions:

• We propose a novel optimization framework, guided

event filtering (GEF), which includes a novel motion com-

pensation algorithm unifying event and frame sensing. By

taking complimentary advantages from each end, GEF

achieves high-resolution, noise-robust imaging.

• We build a prototype hybrid camera system and col-

lect a novel dataset, i.e., RGB-DAVIS. Validation exper-

iments have been conducted on both publicly available

datasets and RGB-DAVIS.

• We show broad applications of GEF to benefit opti-

cal flow estimation, high frame rate video synthesis, HDR

image reconstuction, corner detection and tracking.

Limitations: Since our work is based on the assumption

that frame sensing and event sensing have complementary

advantages, one of the limitations is when one sensing mode

under-performs significantly. For example, when the frame

sensor suffers from significant blur or noise, our framework

should only utilize event information, i.e., to use events as

both the guidance and the input. On the event side, events

triggered from fast lighting variations are not modeled in

our linear motion compensation model, and therefore may

hinder the effectiveness of GEF due to incorrect flow esti-

mation. Our hybrid camera does not preserve the low power

consumption benefit of an event camera.

2. Related works

Event denoising. Event denoising is considered a pre-

processing step in the literature [6, 7, 18, 24, 29]. Existing

event denoising approaches exploit local spatial-temporal

correlations, and label isolated events as noise to be can-

celed [53]. However, these denoisers face challenges when

retrieving missing events for low contrast spatial texture.

We address this issue by exploiting the correlation between

events and an intensity image.

Event-based motion compensation. Motion compensa-

tion is an emerging technique to associate local events. It

has shown benefits for downstream applications such as

depth estimation [9], motion segmentation [48] and feature

tracking [10]. The assumption is that local events are trig-

gered by the same edge signal and should comply with the

same motion flow [4]. The flow parameter can be estimated

by maximizing the contrast of the histogram/image of the

warped events [9]. Recent works have incorporated smooth

constraints such as total variation [56].

Computational high speed cameras. The tradeoff be-

tween spatial resolution and temporal resolution in mod-

ern sensors introduces a fundamental performance gap be-

tween still cameras and video cameras. To address this is-

sue, several methods [5, 13, 42] have emerged that utilize

inter-frame correspondences via optical flow and/or space-

time regularization. Hybrid cameras have been designed

towards flexible [14], adaptive [59] sensing of high speed

videos. Recently, a number of compressive video sens-

ing prototypes [2, 17, 25, 39, 47] have been devised with

additional spatio-temporal encoders and compressive sens-

ing algorithms for data recovery and inference. Extensions

of compressive sensing high-speed imaging have achieved

single-shot 3D video recovery by incorporating active illu-

mination [54].

Guided/joint image filters. The goal of guided/joint im-

age filters is to transfer structural information from a refer-

ence image to a target image. The reference and the target

can be identical, in which case the filtering process becomes

an edge-preserving one [12, 16, 20, 46]. Although similar

ideas of guided/joint image filtering (GIF) have been ex-

plored between RGB and near infrared (NIR) images [57],

3D-ToF [32], and hyperspectral data [33], the major chal-

lenge for applying GIF to event cameras is that events do

not directly form an image and are spatio-temporally mis-

aligned by scene motions or illumination variations.

3. Methods

In this section, we first briefly review the event sensing

preliminaries in Sec. 3.1, and derive its relation to inten-

sity/frame sensing in Sec. 3.2. Our framework guided event

filtering (GEF) is then introduced in Sec. 3.3 (for the motion

compensation step), Sec. 3.4 (for the joint filtering step) and

Sec. 3.5 (for the implementation details).

3.1. Event sensing preliminaries

Consider a latent space-time volume (Ω × T ∈ R
2 ×

R) in which an intensity field is sampled simultaneously

by a frame-based camera which outputs intensity images

I(x, y; t) and an event camera which outputs a set of events,

i.e., E = {etk}
Ne

k=1, where Ne denotes the number of events.

Each event is a four-attribute tuple etk = (xk, yk, tk, pk),
where xk, yk denote the spatial coordinates, tk the times-

tamp (monotonically increasing), pk the polarity. pk ∈
{−1, 1} indicates the sign of the intensity variation in log

space. I.e., pk = 1 if θt > ǫp and pk = −1 if θt < ǫn,

where θt = log(It + b)− log(It−δt + b). b is an infinitesi-

mal positive number to prevent log(0). It and It−δt denote

the intensity values at time t and t− δt, respectively, and ǫp
and ǫn are contrast thresholds. We will use Lt to denote the
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log intensity at time t, i.e., Lt=̇ log(It + b). For now, we

assume that I and E have the same spatial resolution.

3.2. Event­intensity relation

We show that the event and intensity/frame sensing are

bridged via temporal gradients. On the intensity side, we

employ the optical flow assumption for deriving the tempo-

ral gradient of the latent field L. Assume that in a small

vicinity, there exists a small flow vector δu = [δx, δy, δt]⊤

under which the intensity is assumed to be constant. Math-

ematically, this assumption can be expressed as:

L(x+ δx, y + δy, tref + δt) = L(x, y, tref). (1)

The Taylor series expansion of the left side of Eq. (1) gives:

Ltref+δt = Ltref
+∇xytLtref

δu+ o(|δx|+ |δy|+ |δt|), (2)

where ∇xytLtref
= [∂L

∂x
, ∂L
∂y

, ∂L
∂t

]
∣

∣

tref
denotes the gradient op-

erator evaluated at time tref. If we substitute only the zero-

and first-order terms to approximate Ltref+δt and re-arrange

Eq. (1), we can obtain the following relation:

∂L

∂t

∣

∣

∣

tref

≃ −∇xyLtref
v =̇ Ql, (3)

where ∇xyLtref
= [

∂Ltref

∂x
,
∂Ltref

∂y
] denotes the spatial gradient

of Ltref
, and v = [ δx

δt
, δy
δt
]⊤ is the velocity vector. For future

reference, we define the temporal gradient derived from in-

tensity image as Ql.

On the event side, the flow velocity v shall result in posi-

tion shifts for local events. This is based on the assumption

that local events are triggered by the same edge, as shown in

Fig. 2(a). Therefore, the temporal gradient can be approx-

imated by the tangent of a set of warped events in a local

window:

∂L

∂t

∣

∣

∣

tref

≈

∑

(tk−tref)∈(0,δt) ǫk δ̂(x− x
′
k)

δt
=̇ Qe, (4)

where ǫk = ǫp, if pk = 1; and ǫk = ǫn, if pk = −1. δ̂(·) is

the Dirac delta function. x′
k is the event location by warping

(back propagating) measured events to time tref according

to the flow velocity v, i.e., x′
k = xk − (tk − tref)v, where

x = [x, y]⊤, xk = [xk, yk]
⊤ and x

′
k = [x′

k, y
′
k]

⊤. In the

rest of the paper, we define the temporal gradient derived

from events as Qe.

From Eq. (4) and Eq. (3) we obtain,

Qe ≃ Ql. (5)

The above equation establishes the relation between

events and image spatial gradients. There are two un-

knowns, ǫk and v in the relation, where ǫk ∈ {ǫp, ǫn} can

be obtained from the event camera configuration. Numeri-

cally, ǫk can be viewed as a constant scaling value to match

Qe with Ql. The key unknown is the flow velocity v.

Events generated by illumination variation are not considered here.

t

x

(a)

x

(b)

x

(c)

Figure 2: (a) A latent edge signal (gray curve) triggers a set

of (noisy) events due to motion. (b) In contrast maximiza-

tion (CM) [9], the events are warped back at tref to form a

histogram (purple). (c) In our joint contrast maximization

(JCM), an image is formed jointly by the events (purple)

and the edge of the intensity image (green).

3.3. Joint contrast maximization

Previous work [9] proposed contrast maximization (CM)

to optimize the flow parameter based on the contrast of the

image (or histogram) formed only by the warped events, as

shown in Fig. 2(b). However, CM is designed for event data

alone. In the presence of an intensity image, we extend the

framework of CM and propose joint contrast maximization

(JCM) to estimate the flow vector based on intensity im-

age and events. Particularly, we propose to maximize the

contrast of an image/histogram jointly formed by the abso-

lute edge of the intensity image and the warped events, as

shown in Fig. 2(c). Mathematically, the image of warped

events and intensity edge is expressed as:

J(x;v) =

Ne
∑

k=1

δ̂(x− x
′
k(v)) + αS(x), (6)

where S(x) is the edge image and can be defined as S(x) =
√

|gxI(x)|2 + |gyI(x)|2. We use the Sobel edge (with-

out thresholding) as a discrete approximation. The x-axis

kernel can be defined as gx = [−1, 0, 1;−2, 0, 2;−1, 0, 1],
gy = g⊤x , and α = Ne∑

i,j
S(i,j) is a normalization coefficient

to balance the energy of the two data.

The objective for estimating the flow velocity is:

v̂ = argmax
v

1

Np

∑

ij

(Jij − J̄)2, (7)

where Np indicates the number of pixels in image patch

J , while J̄ denotes the mean value of J . Note that when

no intensity image is available or it has low quality (e.g.,

blurry), the Sobel term can be set to zero and the formu-

lation degenerates to event-only contrast maximization [9].

With non-zero S, the maximal contrast corresponds to the

flow velocity that transports events to the image edge. Non-

optimal velocity will lead to a deterioration of the contrast.

Here, we perform a numerical comparison between CM

and JCM, shown in Fig. 3. We follow the analysis in [22]
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Figure 3: Comparison between CM and JCM [9] for flow

estimation w.r.t. event noise.

and [28] for event simulation from images. I.e., a thresh-

olding operation (ǫp = 0.2, ǫn = −0.2) is applied on the

difference image between the flow-shifted image and the

original/last image. The event noise follows a Gaussian dis-

tribution around the per-pixel threhold values [22]. We con-

sider a standard deviation range of σe ∈ (0, 0.1), and com-

pare the accuracy for flow estimation w.r.t. different flow

directions with fixed flow radius of 5 pixels. We use the Eu-

clidean distance to quantify the flow estimation error. The

error is averaged over 18 images of size 30× 30. Details of

this experiment as well as visual examples can be found in

the supplementary material. As shown in Fig. 3, both JCM

and CM error increases as noise level increases. However,

JCM maintains low error across all spectrum of the noise

level, revealing a more noise-robust property than CM.

3.4. Joint filtering

The goal of joint/guided filtering is to construct an op-

timized output inheriting mutual structures from Qe and

Ql. In guided image filtering, an output image patch Qo

is defined as an affine transformation of the guidance image

patch Ql:

Qo = gaQ
l + gb. (8)

By the above formulation, Qo inherits the spatial structure

of Ql, i.e., ∇Qo = ga∇Ql in each local patch. The objec-

tive is generally defined as a data term and a regularization

term:

argmin
ga,gb

||Qo −Qe||22 + λΦ, (9)

where Φ is the regularization functional and λ the regular-

ization parameter. In particular, we consider three popular

as well as emerging filters, namely,

• Guided Image Filtering (GIF) [16]: In this case, Φ =
g2a. This regularization term is to prevent coefficient ga from

being too large.

Algorithm 1 Guided Event Filtering (GEF)

Input: Intensity image I , events E .

Output: Filtered temporal gradient Qo.

1: Estimate the flow field v using JCM in Eq. (7);

2: Compute Ql in Eq. (3) and Qe in Eq. (4);

3: Perform guided filtering according to Eq. (9).

• Side Window Guided Filtering (SW-GF) [58]: In this

case, the regularization term is the same as the GIF, but the

regression is computed on 8 (upper-half, lower-half, left-

half, right-half, northwest, northeast, southwest, southeast)

side windows instead of a single window centered around

the target pixel. Compared to GIF, this filter has the prop-

erty of better preserving the edges of the filter input image.

• Mutual-Structure for Joint Filtering (MS-JF) [44]:

This filter emphasizes the mutual structure between the in-

put and guidance images, and performs filtering in a bidi-

rectional manner. The mutual structure is sought after by

minimizing a similarity measure term, i.e., Es = ||gaQ
l +

gb−Qe||22+||g′aQ
e+g′b−Ql||22, where g′a and g′b denotes the

counterpart coefficients for using Qe to represent Ql. Addi-

tionally, the regularization term consists of the smoothness

term, i.e., Er = λ1g
2
a + λ2g

′2
a , as well as the deviation term

which avoids filtered output deviating too far from the orig-

inal images, i.e., Ed = λ3||gaQ
l+gb−Ql||22+λ4||g

′
aQ

e+
g′b − Qe||22. The objective is to minimize the summed loss

terms, i.e., E = Es + Er + Ed, over ga, gb, g
′
a, g

′
b.

3.5. Implementation details

The steps of GEF is summarized in Algorithm 1.

In the JCM step, we use a local window with radius rw
to estimate pixel-wise flow. Areas with events fewer than 1

are skipped. rw may vary due to the structure of the scene.

A large rw can be used when the scene has sparse and iso-

lated objects, in exchange for more time to compute the flow

field. The intensity image support is slightly larger (about

several pixels on four sides) than the event window to pre-

vent fallout of events due to large velocity.

Both the computation of flow velocity and Ql use the

spatial gradient. Therefore, the spatial gradient image can

be computed once. Ql is normalized to match the range of

Qe before the filtering step. This normalization step also

functions as an estimation for the event threshold (ǫk). The

pixel values of the output image Qo are rounded to integers,

which can be interpreted as the event counts.

In the filtering step, we set the window width to be 1 for

all three filters. The filtering is switched between intensity-

event joint guiding and event self-guiding. When a win-

dowed image patch has low spatial contrast, and therefore

large α values, we set α = 0 in Eq. (6) and Ql = Qe. We

run 20 iterations for MS-JF. For GIF and SW-GF, λ is set

to 1 × 10−3. For MS-JF, the same values are assigned for
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the parameter pairs, i.e., λ1 and λ2 (∼ 1 × 10−2), as well

as λ3 and λ4 (∼ 3). This is to encourage equal weights be-

tween the input and guidance. Filtering is performed when

Qe and Ql are at the same resolution and are both grayscale.

Details for filtering color events are included in the supple-

mentary material. The filtered output does not preserve the

ternary representation as the original events. Our image-

based event representation is better suited for downstream

algorithms that process events in image-based fashion [55].

It is possible to warp the events back in the space-time

volume to restore the ternary representation. One possible

restoration approach is to evenly distribute events along the

computed flow direction.

Similar to CM [9], the computational complexity of JCM

is linear on the number of events to be warped. The addi-

tional computation of JCM contrast is typically negligible

compared to CM. Both GIF and SW-GF have linear com-

putation time w.r.t. patch pixel size. MS-JF is iteration-

dependent.

4. Experiments

4.1. Numerical evaluation

Guided denoising. In this experiment, we compare GEF

(considering all three filters) with two state-of-the-art event-

based denoising approaches, i.e., Liu et al. [24] and EV-

gait [53]. To quantify the denoising performance, we use

zero-noise event frame as the ground truth. The denoised

images are compared against the ground truth images us-

ing the root mean squared error (RMSE) criterion. The

smaller the RMSE values, the better denoising the perfor-

mance. At each noise level, the RMSE values are aver-

aged over 18 images. The results are plotted in Fig. 4.

As can be seen, all three GEF methods have better denois-

ing performance compared to non-guidance-based methods.

Among the three guided filters, MS-JF [44] has the lowest

RMSE values than the other two filters across the whole

range. Therefore, we choose MS-JF as the filtering algo-

rithm within GEF. We only show MS-JF results in the fol-

lowing experiments. Additional results using GIF and SW-

GF are shown in the supplementary material.

Qualitatively, we compare the denoising performance on

the captured real-world scenarios dataset (which will be in-

troduced in Sec. 4.2). The results are shown in Fig. 5. Com-

pared to existing approaches, GEF (MS-JF) is able to en-

hance the edge features as well as removing event noise.

Guided super resolution. Because it is challenging to

obtain ground truth image and events at multiple scales, we

perform quantitative evaluation for upsampling in simula-

tion. We use 18 high resolution (HR) images to simulate

the ground truth HR events. To simulate the low resolu-

tion (LR) events, the HR images are first downsized and

used to generate zero-noise events using the same proce-
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Figure 4: Comparison of event denoising performance.

Intensity-guided filters (GIF [16], SW-GF [58] and MS-JF

[44] unanimously outperform non-guidance-based methods

(Liu et al. [24] and EV-gait [53]).

(a) Image + events (b) Filter input, Qe
(c) Guidance, Ql

(d) Liu et al. [24] (e) EV-gait [53] (f) GEF

>10

<-10

0

patch of (b) patch of (c) patch of (d) patch of (e) patch of (f)

Figure 5: Comparison of denoising performance on our

RGB-DAVIS dataset. (a) An image overlaid with events;

(b) Ql as filter guidance; (c) warped events, Qe, as filter

input; (d-f) denoising results using (d) Liu et al. [24], (e)

EV-gait [53] and (f) our GEF (MS-JF). Additional results

are presented in the supplementary material.

dure described in Sec. 3.3. We consider three downsizing

scales up to 8×. For future reference, we use 2×, 4×, and

8× to denote the upsampling factors. For 2× upsampling,

we first bicubically upsample the low-resolution Qe for 2×,

and then perform same-resolution joint filtering with 2×Ql

(downsized from HR). The 2× upsampling procedure is it-

eratively applied for higher scales.
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Table 1: PSNR comparison for super resolution

methods 2× 4× 8×

(1) no

guidance SR

Bicubic 40.110 39.133 39.368

EDSR [23] 39.976 39.363 39.319

SRFBN [21] 40.572 39.937 40.152

EDSR-ev 40.315 40.577 39.961

SRFBN-ev 40.837 40.309 40.110

(2) guided

SR, w/ SR

image

Bicubic 42.591 42.612 44.144

EDSR [23] 42.599 42.655 44.174

SRFBN [21] 42.603 43.037 44.170

(3) GEF 42.755 43.319 44.218

Beam splitter

R
G

B

ca
m

e
ra

(a) Experimental setup

RGB camera view

Event camera view

(b) Calibrated views

Figure 6: Our RGB-DAVIS imaging system.

We compare three super resolution (SR) schemes: (1) no

guidance SR. The scheme refers to direct SR without guid-

ance. Such methods include the baseline bicubic upsam-

pling, and two state-of-the-art single image SR methods:

EDSR [23] and SRFBN [21]. We apply both pre-trained

models as well as re-trained ones. Re-trained models are de-

noted as EDSR-ev and SRFBN-ev, respectively. (2) guided

SR, w/ SR image. In this case, the joint filtering is applied

between the computed SR image and the event image. (3)

GEF. GEF here is referred as joint filtering between the pris-

tine HR image and the event image. The results are summa-

rized in Table 1. We use Peak Signal to Noise Ratio (PSNR)

as performance measurement. As can be seen, (2) and (3)

both have higher PSNR than (1), which suggests the effec-

tiveness of using image as guidance. In (1), re-training SR

networks slightly improves the performance, but still under-

performs (2) and (3). Another interesting effect in (2) and

(3) is that PSNR values increase as scale factor increases.

This is because the event image at high resolution has sparse

non-zero signals representing thin edge. Examples and ad-

ditional analysis are included in the supplementary material.

4.2. RGB­DAVIS camera system

To test GEF for real-world scenarios, we build a hybrid

camera consisting of a high-resolution machine vision cam-

era and a low-resolution event camera, i.e., DAVIS. We refer

to our camera prototype as RGB-DAVIS camera.

Setup and calibration. As shown in Fig. 6(a), we collo-

cate an event camera (DAVIS240b, resolution of 180× 190

Figure 7: Examples of our proposed RGB-DAVIS dataset.

In each square, lower-left is the converted event frame, and

upper-right is the RGB image. Please find images of our

complete dataset in the supplementary material.

pixels, with F/1.4 lens) and a machine vision camera (Point

Grey Chameleon3, resolution of 2448 × 2048 pixels, 50

FPS, with F/1.4 lens). A beam splitter (Thorlabs CCM1-

BS013) is mounted in front of the two cameras with 50%

splitting. We use a 13.9” 60Hz monitor for offline geomet-

ric calibration for two signals. For geometric calibration,

we consider homography and radial distortion between two

camera views. In order to extract keypoints from event data,

we display a blinking checkerboard pattern on the moni-

tor and integrate the captured events over a time window to

form a checkerboard image, as shown in Fig. 6(b). For tem-

poral synchronization, we write a synchronization script to

trigger the two cameras simultaneously. Details about the

calibration procedure can be found in the supplementary

material.

Dataset collection. We use RGB-DAVIS to collect var-

ious sequences of event-RGB video clips. Examples are

shown in Fig. 7. Both indoor and outdoor scenarios are

captured. The scenes widely range from simple shapes to

complex structures. All the clips involve camera motion

and/or scene motion.

Results. After calibration, we perform guided filtering

with three upsampling scales, i.e., 2×, 4×, 8×. The flow

is estimated at 1×. We show three upsampling examples

corresponding to monitor, indoor and outdoor scenarios of

our captured dataset in Fig. 8. The captured images as well

as calibrated events are shown in Fig. 8(a), with the filtered

output shown in Fig. 8 (c-f). As can be seen, the events are

gradually and effectively upsampled and denoised. Please

see additional results for scene motion as well as filtering

results using other filters in the supplementary material.

5. Applications

GEF has a variety of applications for event-based tasks.

Here, we enumerate several example applications.
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Figure 8: Guided upsampling results on our RGB-DAVIS data.

(a) w/o GEF (b) w/ GEF

Figure 9: Frame prediction using the DMR method in [55].

5.1. High frame­rate video frame synthesis

The task is to reconstruct high frame-rate video frames

using a hybrid input of image(s) and events [30, 55].

Future frame prediction. In this case, we perform future

frame prediction, i.e., given a start intensity frame and the

subsequent events to predict the future frame. We imple-

ment the differentiable model-based reconstruction (DMR)

method in [55]. Without GEF, the reconstruction perfor-

mance for the case of “slider depth” is 25.10 (PSNR) and

0.8237 (SSIM). With GEF, the reconstruction performance

improves to 26.63 (PSNR) and 0.8614 (SSIM). For a qual-

itative comparison, the #5 frame out of 12 reconstructed

frames are shown in Fig. 9. The complete results can be

found in the supplementary material.

Motion deblur. GEF can be applied to improve event-

based motion deblur [30]. Given a blurry image

(Fig. 10(a)) and the events captured during the exposure

time (Fig. 10(b)), Pan et al. [30] proposed an event-based

double integral (EDI) approach to recover the underlying

sharp image(s), as shown in Fig. 10(c). We employ the

same formulation, but use our GEF to first filter the events.

Note that in this case, the blurry image does not provide use-

ful edge information, we therefore warp neighbor events to

form the guidance images. The result is shown in Fig. 10(e).

Even without the guidance of an intensity image, GEF can

still reduce the event noise using neighbor events. We fur-

ther compare the EDI result with denoised EDI output using

bilateral filtering, as shown in Fig. 10(g). Compared to the

post-denoising scheme, GEF (Fig. 10(f)) is more effective

in eliminating the event noise.

5.2. HDR image reconstruction

GEF is able to improve HDR image reconstruction be-

cause of its effectiveness for motion compensation and de-

noising. As shown in Fig. 11(a) and (c), the intensity image

contains over-exposed regions while the warped event im-

age preserves structures in those regions. We follow a pre-

vious approach which employs Poisson reconstruction for

HDR reconstruction [3]. The difference in our case is that

the intensity image is used for reconstruction. In such case,

GEF is applied by setting the warped event image Qe as

guidance and Ql as filter input. The restored gradient field

∇xyI
′ along with the estimated flow v and the intensity im-

age are then used to reconstruct an HDR image. As can be

seen in Fig. 11(c) and (d), the reconstructed HDR image w/

GEF has higher contrast and less artifacts than w/o GEF.

5.3. Corner detection and tracking

GEF can be applied on event-based feature/corner de-

tection and tracking. To demonstrate the benefit of guided

upsampling, we use RGB-DAVIS camera to capture a pe-

riodic circularly moving checkerboard pattern. We employ

the event-based Harris corner detector (evHarris) [50] as the

backbone corner detector. A slight difference between our

implementation and the original evHarris is that we use the

warped event image (motion compensated), instead of di-
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(a) Blurry image

>3

<-3

0

(b) w/ events in exposure

(c) EDI w/o GEF (d) Bilateral denoising of (c)

(e) EDI w/ GEF (f) (g) (h)

Figure 10: Motion deblur using EDI [30]. (f) EDI w/o GEF,

from (c). (g) EDI result (w/o GEF) + bilateral denoising,

from (d). (g) EDI w/ GEF, from (e).

(a) Over-exposed image (b) image + events

(c) w/o GEF (d) w/ GEF

Figure 11: HDR image reconstruction based on Poission

method in [3]. (a) Low dynamic range image. (b) Overlaid

with events. (c) Reconstructed HDR image w/o GEF. (f)

Reconstructed HDR image w/ GEF.

(a) w/o GEF, 1× (b) w/ GEF, 8×

(c) w/o GEF, 1× (d) w/ GEF, 8×

Figure 12: Corner detection using evHarris [50].

rectly accumulating events in local windows. As shown in

Fig. 12(a) and (b), with GEF (8× guided upsampling), the

checkerboard corners are detected more accurately than w/o

GEF. We also compare the corner tracks computed both w/o

and w/ GEF process. The results are shown in Fig. 12(c)

and Fig. 12(d). As can be seen, the corner points that are

upsampled by the GEF can be tracked more accurately than

the original frames.

6. Concluding remarks

There are several interesting takeaways from our ex-

perimental study. First, our results showed that with the

assistance of intensity images, performance improvement

has been achieved for flow estimation, event denoising

and event super resolution (SR). Second, for event SR,

our results indicated that directly applying state-of-the-art

CNN-based SR algorithms, w/ or w/o re-training, performs

worse than first applying the same SR algorithms on inten-

sity images and then performing joint filtering. Third, we

have evaluated three joint filtering approaches with differ-

ent properties. Our results concluded that finding the mutual

structure (MS-JF) is better suited than the other two filters.

Fourth, we have demonstrated the benefit of event denoising

and SR by testing on a variety of downstream tasks.
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