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Abstract

Understanding interactions between humans and objects

is one of the fundamental problems in visual classification

and an essential step towards detailed scene understand-

ing. Human-object interaction (HOI) detection strives to

localize both the human and an object as well as the identi-

fication of complex interactions between them. Most exist-

ing HOI detection approaches are instance-centric where

interactions between all possible human-object pairs are

predicted based on appearance features and coarse spa-

tial information. We argue that appearance features alone

are insufficient to capture complex human-object interac-

tions. In this paper, we therefore propose a novel fully-

convolutional approach that directly detects the interactions

between human-object pairs. Our network predicts interac-

tion points, which directly localize and classify the inter-

action. Paired with the densely predicted interaction vec-

tors, the interactions are associated with human and object

detections to obtain final predictions. To the best of our

knowledge, we are the first to propose an approach where

HOI detection is posed as a keypoint detection and group-

ing problem. Experiments are performed on two popular

benchmarks: V-COCO and HICO-DET. Our approach sets

a new state-of-the-art on both datasets. Code is available

at https://github.com/vaesl/IP-Net.

1. Introduction

Detailed semantic understanding of image contents, be-

yond instance-level recognition, is one of the fundamental

problems in computer vision. Detecting human-object in-

teraction (HOI) is a class of visual relationship detection

where the task is to not only localize both a human and an

object but also infer the relationship between them, such as

“eating an apple” or “driving a car”. The problem is chal-

lenging since an image may contain multiple humans per-

forming the same interaction, same human simultaneously
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Figure 1. (a) Most existing approaches address the HOI detec-

tion problem where the detected bounding-boxes (human and ob-

ject) from a pre-trained detector are first used to extract region-of-

interest (RoI) features from the backbone. Then, a multi-stream

architecture is employed where the individual scores from three

parallel streams: human, object and pairwise are fused to obtain

final interaction predictions for all human-object pairs. (b) Differ-

ent from previous methods, our proposed approach poses HOI as

a keypoint detection and grouping problem by learning to gener-

ate interaction points and vectors which are directly grouped along

with human and object instances from the object detection branch.

interacting with multiple objects (“sit on a couch and type

on laptop”), multiple humans sharing the same interaction

and object (“throw and catch ball”), or fine-grained interac-

tions (“walk horse”, “feed horse” and “jump horse”). These

complex and diverse interaction scenarios impose signifi-

cant challenges when designing an HOI detection solution.

Most existing approaches [3, 7, 14, 39] detect human-

object interactions in the form of triplets 〈human, action,

object〉 by decomposing the problem into two parts: object

detection and interaction recognition. For object detection,

a pre-trained object detector is typically employed to de-

tect both humans and objects. For interaction recognition,

several strategies exist in literature [23, 25, 34]. Most of

the recent HOI detection approaches [3, 7, 14, 34] utilize

a multi-stream architecture (see Fig. 1(a)) for interaction

recognition. The multi-stream architecture typically con-

tains three individual streams: a human, an object, and a

pairwise. Both human and object streams encode appear-
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ance features of human and objects, respectively whereas

the pairwise stream aims at encoding the spatial relation-

ship between the human and object. Individual scores from

the three streams are then fused in a late fusion fashion for

interaction recognition.

While improving the HOI detection performance, state-

of-the-art approaches based on the above mentioned multi-

stream architecture are computationally expensive. During

training, these instance-centric approaches require pairing

all humans with all objects in order to learn both positive

and negative human-object pairs. This implies that the in-

ference time scales quadratically with the number of in-

stances in the scene, since all human-object pairs are re-

quired to be passed through the network in order to obtain

the final interaction scores. In addition to being computa-

tionally expensive, these approaches predominantly rely on

appearance features and a simple pairwise stream that takes

the union of the two boxes (human and object) to construct a

binary image representation. We argue that this reliance on

appearance features alone and coarse spatial information is

insufficient to capture complex interactions, leading to inac-

curate predictions. In this work, we look into an alternative

approach that addresses these shortcomings by directly de-

tecting the interactions between human-object pairs as a set

of interaction points.

Contributions: In this work, we propose a novel approach

for HOI detection. Motivated by the recent success of

anchor-free object detection methods, we pose HOI de-

tection as a keypoint detection and grouping problem (see

Fig. 1(b)). The proposed approach directly detects inter-

actions between human-object pairs as a set of interaction

points. Based on the interaction point, our method learns

to generate an interaction vector with respect to the human

and object center points. We further introduce an interac-

tion grouping scheme that pairs the interaction point and

vector with the corresponding human and object bounding-

box predictions, from the detection branch, to produce fi-

nal interaction predictions. Extensive experiments are con-

ducted on two HOI detection benchmarks: V-COCO [9]

and HICO-DET [4] datasets. Our proposed architecture

achieves state-of-the-art results on both two datasets, out-

performing existing instance-centric methods by a signifi-

cant margin. Additionally, we perform a thorough ablation

study to demonstrate the effectiveness of our approach.

2. Related Work

Object Detection: In recent years, significant progress has

been made in the field of object detection [15, 17, 19, 21,

28, 29, 35, 36], mainly due to the advances in deep con-

volutional neural networks (CNNs). Generally, modern ob-

ject detection approaches can be divided into single-stage

[17, 20, 26, 27, 33] and two-stage methods [1, 15, 28].

Two-stage object detection methods typically generate can-

didate object proposals and then perform classification and

regression of these proposals in the second stage. On the

other hand, single-stage object detection approaches work

by directly classifying and regressing the default anchor box

in each position. Two-stage object detectors are generally

known to be more accurate whereas the main advantage of

single-stage methods is their speed.

Within object detection, recent anchor-free single-stage

detectors [13, 31, 40, 41] aim at eliminating the requirement

of anchor boxes and treat object detection as keypoint es-

timation. CornerNet [13] detects the bounding-box of an

object as a pair of keypoints, the top-left corner and the

bottom-right corner. ExtremeNet [41] further detects four

extreme points and one center point of objects and groups

the five keypoints into a bounding-box. CenterNet [40]

models an object as a single point — the center point of

its bounding-box and is also extended to Human pose esti-

mation [6] and 3D detection task [24].

Human-Object Interaction Detection Among existing

human-object interaction (HOI) detection methods, the

work of [9] is the first to explore the problem of visual se-

mantic role labeling. The objective of this problem is to

localize the agent (human) and object along with detecting

the interaction between them. The work of [8] introduces a

human-centric approach, called InteractNet, which extends

the Faster R-CNN framework with an additional branch to

learn the interaction-specific density map over target loca-

tions. Qi et al., [25] proposes to utilize graph convolution

neural network and regards the HOI task as a graph struc-

ture optimization problem. Chao et al., [3] builds a multi-

stream network that is based on the human-object region-

of-interest and the pairwise interaction branch. The inputs

to this multi-stream architecture are the predicted bounding-

boxes from the pre-trained detector (e.g., FPN [15]) and the

original image. Human and object streams in such a multi-

stream architecture are based on appearance features, ex-

tracted from the backbone network, to generate confidence

predictions on the detected human and object bounding-

boxes. The pairwise stream, on the other hand, simply en-

codes the spatial relationship between the human and object

by taking the union of the two boxes (human and object).

Later works have extended the above mentioned multi-

stream architecture by, e.g., introducing instance-centric at-

tention [7], pose information [14] and deep contextual at-

tention based on context-aware appearance features [34].

3. Method

Here, we present our approach based on interaction point

generation (Sec. 3.3) and grouping (Sec. 3.4).

3.1. Motivation

As discussed earlier, most existing HOI detection ap-

proaches [3, 7, 34] adopt a multi-stream architecture where
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Figure 2. Overall architecture of the proposed HOI detection framework having a localization and an interaction prediction stage. As in

several previous works [7, 14, 34], we adopt a standard object detector (FPN [15]) to obtain human and object bounding-box predictions.

Our interaction prediction stage consists of three steps: feature extraction, interaction generation (Sec. 3.3) and interaction grouping

(Sec. 3.4). The interaction generation contains two independent branches to produce interaction point and interaction vector, respectively.

Interaction point and vector together with the detected human and object bounding-box predictions are then input to the interaction grouping

for final HOI predictions: 〈human, action, object〉.

individual scores from a human, an object, and a pairwise

stream are fused in a late fusion manner for interaction

recognition. We argue that such a late fusion strategy is

sub-optimal since appearance features alone are insufficient

to capture complex human-object interactions. Further, the

pairwise stream simply takes the union of the two boxes

(human and object) as the reference box to construct a bi-

nary image representation which may lead to inaccurate

predictions due to the coarse spatial information.

Motivated by the advances in anchor-free object detec-

tion [13, 40, 41], we regard HOI detection as interaction

point estimation problem by defining the interaction be-

tween the human and an object as an interaction point.

Based on the interaction point, our method also learns to

produce an interaction vector with respect to the human and

object center points. It then pairs the interaction points

with the corresponding human and object bounding-box

predictions. Different from object detection where object

instances are generally independent to each other in an im-

age, interaction point estimation in HOI is more challenging

due to diverse and complex real-world interaction scenarios,

e.g., multiple humans performing the same interaction or

same human simultaneously interacting with multiple ob-

jects. To the best of our knowledge, we are the first to pro-

pose a HOI detection approach where interaction between

the human and an object is defined as a keypoint.

3.2. Overall Architecture

Our overall architecture is shown in Fig. 2. It consists

of object detection and interaction prediction. For object

detection, we follow previous HOI detection works [7, 34]

and employ a standard object detector, FPN [15], for gener-

ating bounding-boxes for all possible human and object in-

stances in an image. The main focus of our design is a new

representation for interaction prediction. It comprises three

steps: feature extraction, interaction generation (Sec. 3.3)

and interaction grouping (Sec. 3.4). For feature extraction,

we employ the Hourglass [18] as the network backbone typ-

ically used in anchor-free single stage methods [13, 40, 41].

Given an input RGB image with size H ×W × 3, the out-

put of the Hourglass network is a feature map with size
H
S
× W

S
×D, where H , W are the height, width of the input

image and D, S are the output channels and stride, respec-

tively. As in [2, 22], we adopt a stride of S = 4 to achieve

a trade-off between accurate localization and computational

efficiency. The resulting features from the backbone are in-

put to the interaction generation module to produce interac-

tion point and interaction vector. Interaction point is defined

as the center point of the action between a human-object

pair and is the starting point of the interaction vector. Con-

sequently, the interaction point and vector together with the

detected human and object bounding-boxes are input to the

interaction grouping step for the final HOI triplet 〈human,

action, object〉 prediction.

3.3. Interaction Generation

The interaction generation module contains two parallel

branches: interaction point and interaction vector predic-

tion. Both branches take the features extracted from the

backbone as an input.

Interaction Point Branch: Given the feature maps gener-

ated from the backbone network, a single 3× 3 convolution

layer is employed to produce the interaction point heatmaps

of size H
S
× W

S
× C, where C denotes the number of in-
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Figure 3. Illustration of interaction point and interaction vector on

an example image. The interaction point p (yellow circle) is de-

fined as the center point of the action between human-object pair

and itself serves as the starting point of the interaction vector v

(yellow arrow). During training, interaction point heatmaps are

supervised by ground-truth Gaussian heatmaps generated from hu-

man and object center points (cyan and red circles). The raw-pixel

coordinates of interaction points on the scale maps are supervised

by horizontal and vertical lengths of the interaction vector using

L1 loss. At inference, the generated interaction point heatmaps

are used to extract top-k peak interaction points by employing a

post-processing strategy, as in [13]. Based on the location of top-k

interaction points, horizontal and vertical length of the interaction

vector is obtained at corresponding coordinates of the scale maps.

teraction categories. During training, the interaction point

heatmaps are supervised by the ground-truth heatmaps with

multiple peaks, where each interaction point is defined with

the same Gaussian Kernel, as in [13]. We empirically fix

the standard deviation in the Gaussian Kernel throughout

our experiments. Note that a single keypoint location can

only represent one object class in single-stage object detec-

tion [40]. Different from object detection, a single keypoint

location may refer to multiple interaction categories in HOI

detection since the human can have multiple interactions

with a given object. For instance, the human may hold and

hit with tennis racket at the same time. In such a case, both

the ’hit’ and ’hold’ interactions are located at the same po-

sition on the heatmap but are represented by different chan-

nels. Fig. 3 shows an example interaction point (yellow

circle), defined as px = hx+ox
2

, py =
hy+oy

2
, for a given

human-object (HO) pair having center points h = (hx, hy)
and o = (ox, oy), respectively. Note that interaction points

are generated for categories involving both the human and

an object. For interaction categories without any associated

object (e.g., walk and run), the interaction point generalizes

to the center point of the corresponding human. Most cate-

gories in standard HOI detection datasets [4, 9] involve both

the human and an object.

Interaction Vector Branch: As shown in Fig. 3, based on

the interaction point (px, py), the interaction vector branch

aims to predict the interaction vector towards the corre-

sponding human center point. Given the paired human and

object bounding-boxes, human center point h, and object

center point o, the interaction point p = (px, py) is calcu-

lated. Then, the interaction vector v = (vx, vy) is defined

such that p+ v = h and p− v = o.

The interaction vector branch is trained to predict the

value of the unsigned interaction vector v′ = (|vx|, |vy|),
which is used as the ground-truth in our training. As in the

interaction point branch, we employ a single 3× 3 convolu-

tion layer to produce the unsigned interaction vector map V

of size H
S
×W

S
×2, where one is for the length of interaction

vector in horizontal direction and the other is for the length

of interaction vector in vertical direction. At inference, we

extract four possible locations of the human center based on

the interaction point and the unsigned interaction vector as,

(xi
h, y

i
h) = (px ± |vx|, py ± |vy|) , i = 1, 2, 3, 4 . (1)

We further define the interaction box as the rectangle with

corners given by (1). Next, we describe the interaction

grouping scheme.

3.4. Interaction Grouping

During training, the interaction point and its correspond-

ing human and object center points have a fixed geometric

structure. During the inference stage, the generated interac-

tion points need to be grouped with the object detection re-

sults (human and object bounding-boxes). This implies that

the generated interaction point p is paired with the human

having center h and object having center o, if the following

condition is satisfied: h ≈ p+ v and o ≈ p− v.

For efficient and accurate grouping of interaction points

with human and object bounding-boxes, we further propose

an interaction grouping scheme which utilizes soft con-

straints to filter out bulk of the negative HOI pairs. Fig. 4

shows an illustration of our interaction grouping scheme.

It has three inputs: human/object bounding-box (cyan and

red), interaction point (orange point) extracted from inter-

action heatmaps, and the interaction vector (orange arrow)

at the location of interaction point. The four corners (in

green) of the interaction box (in orange) are calculated by

the given interaction point and the unsigned interaction vec-

tor, using Eq. (1). The four corners of the reference box rbox
(in purple) can be determined by the center points of the de-

tected human and object bounding-boxes. Then, based on

the generated interaction and reference boxes, we compute

the vector lengths, dtl, dtr, dbl, dbr, for four corners of these

two boxes. In case the interaction box and the four vector

lengths satisfy the constraints in (2) below, then the current

human and object bounding-boxes and the interaction point

are regarded as the true positive HOI pair.
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Figure 4. The procedure of interaction grouping scheme. It has

three inputs: the human/object bounding-boxes from object de-

tection branch, the interaction points from the interaction point

branch and the interaction vector predicted by the interaction vec-

tor branch. The interaction box (orange box) is determined by the

given interaction point and the lengths (horizontal and vertical) of

the interaction vector. The reference box (purple) can also deter-

mined by the detected human/object boxes. In case the reference

box, the interaction box and human/object bounding-boxes satisfy

the conditions (2), then the current human/object bounding-boxes

and the interaction point are regarded as a true positive HO pair.















IoU(hbbox, ibox) > 0,

IoU(obbox, ibox) > 0,

dtl, dtr, dbl, dbr < dτ

(2)

Here, hbbox and obbox are the given human and object

bounding-boxes from object detection branch. ibox is the

interaction box generated by the interaction point and the

interaction vector. dtl, dbr, dtr and dbl are four vector lengths

of the four corners between interaction box ibox and the ref-

erence box rbox. dτ is the vector length threshold set for fil-

tering the negative HOI pairs. Interaction grouping scheme

is presented in Algorithm 1.

3.5. Model Learning

For the predicted interaction point heatmap P , the

ground-truth heatmaps P̂ are with all interaction points, and

each of them is defined as the Gaussian Kernel. We follow

the modified focal loss originally proposed in [13] to bal-

ance the positive and negative samples,

Lp =
−1

Np

{

(1− Pxyc)
α log(Pxyc), if P̂xyc = 1

(1− P̂xyc)
β(Pxyc)

α log(1− Pxyc), o.w.
(3)

where Np is the number of interaction points in the image.

α and β are the hyper-parameters to control the contribution

of each point (we set α to 2 and β to 4, as in [13]). For the

predicted interaction vector maps V , we use the value of

Algorithm 1 Interaction Grouping

Input:

Human/object bboxes from object detector: Hbbox, Obbox

Interaction point and vector heatmaps: P , V

Human, object and action score thresholds:hτ , oτ , aτ
Vector length threshold for corners: dτ

Output: HOI triplets with final score.

// Convert heatmaps P into an interaction point set A.

// Extract the interaction vectors from V .

for hbox ∈ Hbbox, obox ∈ Obbox, a ∈ A do

if hscore > hτ , oscore > oτ , ascore > aτ then

// Obtain interaction box ibox using Ed. 1.

// Calculate reference box rbox by hbox and obox.

if hbbox, obbox, ibox, rbox satisfy Condition (2) then

sf ← hscore · oscore · pscore

// Output the current HOI pair with final score sf .

end if

end if

end for

the unsigned interaction vector v′k = (|vx|k, |vy|k) at the

interaction point pk as the ground-truth. Then, L1 loss is

employed for all the interaction points,

Lv =
1

N

N
∑

k=1

|Vpk
− v′k| . (4)

Here Vpk
denotes the predicted interaction vectors at point

pk. The overall loss function is summarized as,

Ltot = Lp + λvLv , (5)

where λv is the weight for the vector loss term. Here we

simply set λv = 0.1 for all our experiments.

4. Experiments

4.1. Datasets and Metrics

Datasets: We conduct comprehensive experiments on

two challenging HOI datasets: V-COCO [9] and HICO-

DET [4]. The V-COCO dataset contains 2533, 2867, and

4946 images for training, validation and testing, respec-

tively. Typically, the combined training and validation sets

(5400 images in total) are used for model training. Human

instances in V-COCO dataset has 26 binary action labels

and three action categories (cut, hit, eat) are annotated with

two types of targets (i.e., instrument and direct object). Note

that three classes (run, stand, walk) are annotated with no

interaction object. The HICO-DET dataset contains 38,118

images for training and 9658 images for testing. In this

dataset, each human instance is annotated with 600 classes

of different interactions, corresponding to 80 object cate-

gories and 117 action verbs. Note that those 117 action

verbs include the ’no interaction’ class.
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Metrics: We follow the standard evaluation protocols, as in

[4, 9], to evaluate our proposed method. The results are re-

ported in terms of role mean Average Precision (mAProle).

In mAProle, one HOI triplet is regarded as a true positive

only when both the human and object detected bounding-

boxes have IoUs (intersection-over-union) greater than 0.5

with the respective ground-truth and the associated interac-

tion class is correctly classified.

4.2. Implementation Details

For interaction prediction, we use Hourglass-104 [18] as

feature extractor, pre-trained on MS COCO (train2017 set),

as in [40]. The head network for the interaction point and

interaction vector generation is randomly initialized. Dur-

ing training, we adopt an input resolution of 512×512. This

yields an output resolution of 128 × 128 for the Hourglass

backbone. We employ standard data augmentation tech-

niques (random flip, random scaling (between 0.6 to 1.3),

cropping, and color jittering) and use Adam optimizer [11]

to optimize the loss function during training. During test,

we use flip augmentation to obtain final predictions. Fol-

lowing [40], we use batch-size of 29 (on 5 GPUs, with mas-

ter GPU batch-size 4) and learning rate 2.5 · 10−4 for 50

epochs with 10× learning rate drop at 40 epoch. For de-

tection branch, we follow previous HOI detection methods

[7, 14, 34] and utilize Faster-RCNN [28] with ResNet-50-

FPN [15] pre-trained on COCO [16] train2017 split. To

obtain bounding-boxes at inference, we set score thresh-

old greater than 0.4 for humans and 0.1 for objects. These

score thresholds are relatively lower than the thresholds set

in [7, 34], since the interaction box generated by our interac-

tion point and vector can filter out most negative pairs. For

interaction generation, Hourglass-104 takes about 77ms.

Our interaction grouping has a complexity ofO(NhNoNip),
where Nh, No, Nip is the number of humans, objects and in-

teraction points, respectively. In practice, our grouping is

efficient, taking less than 5 ms (< 6.1% of total time).

4.3. State­of­the­art Comparison:

We first compare our proposed approach with state-of-

the-art methods in literature. Tab. 1 shows the compari-

son on the V-COCO dataset. Among existing approaches,

BAR [12], iCAN [7] and DCA [34] utilize human and ob-

ject appearance features in a multi-stream architecture. The

DCA method [34] consisting of a deep contextual attention

module that generates contextually-aware appearance fea-

tures within a multi-stream architecture achieves a mAProle

of 47.3. The RPNN approach [38] based on attention graphs

for parsing relations of object and human body-parts obtains

a mAProle of 47.3. The work of [14], denoted in Tab. 1 as

TIK, introduces an interactiveness network to perform Non-

interaction Suppression and reports a mAProle of 47.8. Our

approach achieves superior performance compared to exist-

Methods mAProle

VSRL[9]* 31.8

InteractNet [8] 40.0

BAR [12] 41.1

GPNN [25] 44.0

iCAN [7] 45.3

HOI w knowledge [37] 45.9

DCA [34] 47.3

RPNN [38] 47.5

TIK [14] 47.8

PMFNet [32] 52.0

Ours 51.0

Ours + HICO 52.3

Table 1. State-of-the-art comparison (in terms of mAProle) on the

V-COCO dataset. * refers to implementation of [9] by [8]. Our

approach sets a new state-of-the-art with mAProle of 51.0 and

achieves an absolute gain of 3.2% over TIK [14]. The results are

further improved (mAProle of 52.3) when utilizing pre-training on

HICO-DET and then fine-tuning on V-COCO dataset.

Default Known Object

Methods full rare non-rare full rare non-rare

Shen et al., [30] 6.46 4.24 7.12 - - -

Chao et al., [3] 7.81 5.37 8.54 10.41 8.94 10.85

InteractNet [8] 9.94 7.16 10.77 - - -

GPNN [25] 13.11 9.34 14.23 - - -

Xu et.al [37] 14.70 13.26 15.13 - - -

iCAN [7] 14.84 10.45 16.15 16.43 12.01 17.75

DCA [34] 16.24 11.16 17.75 17.73 12.78 19.21

TIK [14] [14] 17.03 13.42 18.11 19.17 15.51 20.26

Gupta et.al [10] 17.18 12.17 18.68 - - -

RPNN [38] 17.35 12.78 18.71 - - -

PMFNet [32] 17.46 15.65 18.00 20.34 17.47 21.20

Peyre et.al [23] 19.40 14.60 20.90 - - -

Ours 19.56 12.79 21.58 22.05 15.77 23.92

Table 2. State-of-the-art comparison (in terms of mAProle) on the

HICO-DET using two different settings: Default and Known Ob-

ject on all three sets (full, rare, non-rare). Note that Shen et al.

[30], InteractNet [8] and GPNN [25] only report results on the

Default settings. For both settings, our approach provides supe-

rior performance compared to existing methods. In case of default

settings, our approach achieves mAProle of 19.56 on the full set.

Further, our approach obtains an absolute gain of 2.9% over TIK

[14] on the full set of Known Object setting.

ing methods with a mAProle of 51.0. The results are further

improved (mAProle of 52.3) by first pre-training our network

on HICO-DET and then fine-tuning the pre-trained HICO-

DET model on the V-COCO dataset.

Tab. 2 shows the comparison on HICO-DET. As in [4],

we report results on three different HOI category sets: full,

rare, and non-rare with two different settings of Default

and Known Objects. Our approach achieves superior per-

formance compared to the state-of-the-art on both settings.

For the Default settings, our approach obtains mAProle of

19.56, 12.79 and 21.58 on the full, rare and non-rare sets,

respectively. In case of Known Object setting, our approach

achieves an absolute gain of 2.9% over [14] on the full set.
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hit with bat, 0.73 kick sports ball, 0.87 jump skateboard, 0.94 hold umbrella, 0.69 catch kite, 0.77

cut cake, 0.82 surf surfboard, 0.98 work on computer, 0.94 read book, 0.67

carry frisbee, 0.71 snowboarding, 0.64

drink cup, 0.65 talk on phone, 0.78

Figure 5. Example detections on V-COCO. Each example involves a human-object interaction, such as skateboarding or multiple humans

sharing the same interaction and object - cut cake. We also show our interaction point, vector and box (in yellow).

4.4. Ablation Study

We first perform an ablation study on V-COCO using

the Hourglass backbone to show the impact of different

components in our approach. Tab. 3 shows the impact of

interaction points, angle-filter, dist-ratio-filter, interaction

boxes, corner distance and center-pool components on the

V-COCO dataset. To validate the effectiveness of our inter-

action grouping scheme, we first compare the proposed in-

teraction grouping with the so-called ‘angle-filter’ and ‘dist-

ratio-filter’. Tab. 3 shows these comparisons on V-COCO.

Angle Filter: During training, the interaction point P and

its corresponding human center point H , object center point

O have a fixed geometric structure, i.e., the angle between

the vector
−−→
PH and vector

−−→
PO is equal to π. During infer-

ence, angle filter aims to reduce those HOI pairs for which

the angle between
−−→
PH and vector

−−→
PO is lower than a given

angle threshold. Tab. 3 shows that this baseline of interac-

tion points with angle filter achieves a mAProle of 39.6.

Dist-ratio Filter: Similar to the angle-filter, the ratio

between |
−−→
PH| and |

−−→
PO| is equal to 1 during training.

Therefore the dist-ratio filter can also be employed to filter

HOI pairs where the ratio between max(|
−−→
PH|, |

−−→
PO|) and

min(|
−−→
PH|, |

−−→
PO|) is greater than the given distance ratio

threshold. Tab. 3 shows this constraint improves over inter-

action points with angle filter by 1.7% in terms of mAProle.

Interaction Grouping: To explore the effectiveness of

our proposed interaction grouping scheme, we divide this

scheme into two parts: interaction box and corner-dist, to

verify the power of three soft constraints in (2). During

training, the IoU between the human/object bbox and in-

teraction box is greater than zero. Therefore, to satisfy the

first two IoU conditions in (2), we first integrate the inter-

action box generated by the interaction vectors to filter out

the negative HOI pairs. Tab. 3 shows that it significantly

Add-on Baseline

interaction points X X X X X X

angle-filter X X X

dist-ratio-filter X X

interaction box X X X X

corner-dist X X

center-pool X

mAProle 39.6 41.3 46.2 48.2 50.5 51.0

Table 3. Impact of integrating our contributions into the baseline

on V-COCO. Results are reported in terms of role mean average

precision (mAProle). For fair comparison, we use the same back-

bone (Hourglass-104) for all the ablation experiments. Our overall

architecture achieves a absolute gain of 11.4% over the baseline.

Score thres 0.01 0.02 0.05 0.08 0.10 Dynamic

Default:

Full 19.26 19.32 19.08 18.66 18.25 19.56

Rare 12.53 12.00 10.32 9.13 8.12 12.79

Non-rare 21.27 21.51 21.70 21.50 21.27 21.58

Known-Obj:

Full 21.80 21.81 21.57 21.08 20.65 22.05

Rare 15.74 15.06 13.39 12.00 10.79 15.77

Non-rare 23.61 23.83 24.01 23.80 23.60 23.92

Table 4. Performance comparison (in terms of mAProle) regarding

the classification capabilities of our approach for the rare and non-

rare classes on the HICO-DET. We show the results with different

score thresholds, used during the evaluation. Our proposed dy-

namic threshold inference achieves a good performance trade-off

between the rare and non-rare classes.

improves the HOI detection performance to 46.2 mAProle.

We also found that when only adding interaction box on the

interaction points, it further improves the performance by

2%, from 46.2 to 48.2. Note that, in our approach the four

corners of the interaction box are considered as the four cor-

ners of the reference box during training. At inference, with

the corner distance constraint (|dist| < dτ ) in (2), some neg-

ative pairs are further filtered out resulting in an improved

overall performance of 50.5 mAProle.
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work on computer, 0.84 sit on chair, 0.77 hold mouse, 0.58 walk dog, 0.69 hold tennis racket, 0.85 carry bag, 0.74

Figure 6. Multiple interaction detection on V-COCO. Our approach detects human instance doing multiple (different) actions and interact-

ing with various objects (represented with different colors). In all cases, the detected agent is represented with the same color.

race motorcycle wash motorcycle jump motorcycle turn motorcycle park motorcycle walk motorcycle

Figure 7. Results on HICO-DET showing one detected triplet. Blue boxes represent a detected human instance, while the red boxes show

the detected object of interaction. Our approach detects various fine-grained interactions.

Center-pool: For improved detection of interaction points,

we introduce the center-pool operation, as in in [5], aiding

to obtain more distinct visual patterns between the human

and object instances. This operation is achieved by getting

out the max summed response in both horizontal and ver-

tical directions of the interaction point on the feature map.

In our method, this is employed before the interaction point

and vector branch. This operation results in a slight im-

provement in performance (0.5 points), as shown in Tab. 3.

We also conduct experiments to evaluate the impact

of interaction score thresold on rare and non-rare ac-

tion classes on HICO-DET. We select different interaction

thresholds in the range [0.01, 0.1], used in the test evalua-

tion of interaction recognition performance. The results are

presented in Tab. 4. These results suggest that the suitable

score thresholds are different for the rare and non-rare in-

teraction classes. This is likely due to the fact that the rare

classes include less training samples, which results in rela-

tively lower prediction scores for those classes. In contrast,

the prediction scores for the non-rare classes tend to be rel-

atively higher. Therefore, it becomes a trade-off problem

for the point-based HOI methods to obtain a good perfor-

mance. We further develop a dynamic threshold inference,

which sets different score thresholds for different interac-

tion classes based on their training samples. As show in

Tab. 4, our dynamic threshold inference leads to a good per-

formance trade-off between rare and non-rare classes.

4.5. Qualitative Visualization Results

Fig. 5 shows examples of both single human-object in-

teractions, such as hold a umbrella and work on computer,

and multiple humans sharing same interaction and object

(cut cake) along with corresponding interaction scores on

V-COCO. The interaction boxes (yellow dash line) gener-

ated by the interaction vectors (yellow solid line) are also

Figure 8. Visualization of interaction point heat-maps. Our method

is able to cope with challenging scenarios, such as multiple HOI

pairs and multiple humans sharing the same object.

drawn. These interaction boxes are paired with the positive

human and object bounding-boxes using interaction group-

ing. Fig. 6 shows examples of a human performing multi-

ple interactions. Different interaction objects are annotated

with bounding-boxes of different colors. Fig. 7 shows fine-

grained human-object interaction results on HICO-DET.

The heatmap visualization for the interaction point map is

shown in Fig. 8. Similar to previous works, we observe

long-tailed classes to be particularly challenging for HOI

detection. Further, a minor limitation of our approach is

that multiple HOI pairs cannot share the same interaction

point. However, such cases are rare in practice.

5. Conclusion

We propose a point-based framework for HOI detection.

Our approach regards the HOI detection as a keypoint de-

tection and grouping problem. The interaction point and its

corresponding interaction vector are first generated by the

keypoint detection network. Then, we directly pair those in-

teraction points with the human and object bounding boxes

from object detection branch using the proposed interaction

grouping scheme. Experiments are performed on two HOI

detection benchmarks. Our points-based approach outper-

forms state-of-the-art methods on both datasets.
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