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Abstract

Multi-view stereo (MVS) aims to reconstruct 3D geom-

etry of the target scene by using only information from 2D

images. Although much progress has been made, it still suf-

fers from textureless regions. To overcome this difficulty,

we propose a mesh-guided MVS method with pyramid ar-

chitecture, which makes use of the surface mesh obtained

from coarse-scale images to guide the reconstruction pro-

cess. Specifically, a PatchMatch-based MVS algorithm is

first used to generate depth maps for coarse-scale images

and the corresponding surface mesh is obtained by a sur-

face reconstruction algorithm. Next we project the mesh

onto each of depth maps to replace unreliable depth values

and the corrected depth maps are fed to fine-scale recon-

struction for initialization. To alleviate the influence of pos-

sible erroneous faces on the mesh, we further design and

train a convolutional neural network to remove incorrect

depths. In addition, it is often hard for the correct depth val-

ues for low-textured regions to survive at the fine-scale, thus

we also develop an efficient method to seek out these regions

and further enforce the geometric consistency in these re-

gions. Experimental results on the ETH3D high-resolution

dataset demonstrate that our method achieves state-of-the-

art performance, especially in completeness.

1. Introduction

Obtaining geometric information of a target scene is a

very important task in many applications and multi-view

stereo (MVS) is probably the most convenient approach for

3D geometry reconstruction in terms of efficiency and cost

since MVS only requires a set of calibrated images as the

input and extracts 3D geometric information based on their

photo-consistency. Consequently, MVS has been a hot re-

search topic in computer vision for decades.

∗Corresponding author.

(a) (b) (c)

Figure 1. (a) An input image from the ETH3D test dataset; (b) the

depth map produced by MVS without guidance; (c) the depth map

by our method.

One of the classical strategies for MVS is plane-

sweep [5, 2, 8] which sweeps a plane through the target

scene to obtain its 3D geometry. However, only scenes

consisting of planar surfaces can be correctly estimated us-

ing such a strategy. Many PatchMatch-based algorithms

[9, 6, 32, 42, 7, 3, 29] have successfully overcome this

limitation and achieved impressive results. These methods

assume that the scene consists of a vast number of small

planar patches; by projecting a 3D patch into images with-

out occlusion, image patches can be correspondingly ob-

tained and the photometric consistency between them must

be high. However, it is often hard to predefine the size of the

patches. Small patch size produces accurate points in areas

with rich texture but perform badly in low-textured regions,

and enlarging the patch size could make the algorithm more

robust but may decrease the accuracy. Image pyramid [1]

is then implanted into MVS in [37, 22] to deal with this is-

sue. Although MVS with the pyramid architecture solves

the problem brought by the patch size, it still suffers a lot

from textureless areas of the scene since the photometric

consistency performs poorly in textureless regions even at

the coarsest scale. This drawback has been partially ad-

dressed in [19, 28] based on the assumption that texture-

less regions are often piecewise flat. In this spirit, images

are segmented into superpixels which are then treated as

planes. Most textureless regions can be reconstructed cor-

rectly while errors may also be consequently induced since

the depths in superpixels are unreliable sometimes, which

results in faulty estimation of corresponding plane parame-
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ters.

With the development of convolutional neural networks

(CNN), many researches show that CNN-based patch de-

scriptors [33, 34, 41, 26, 10, 27, 21] can outperform the

handcrafted ones in low-textured regions. Based on these

works, some CNN-based MVS methods [38, 13, 11, 40, 23]

further improve the robustness against untextured regions

as the receptive field of each feature is much larger than the

patch size. On the other hand, these MVS algorithms are

usually limited by the memory sizes of devices, for instance,

they usually can’t handle high-resolution images very well

(see the leaderboard page of the ETH3D high-resolution

multi-view benchmark [30]). Downsampling images might

not be a good choice for CNN-based methods since the ac-

curacy will decrease at the same time. Thus, there still exist

difficulties when dealing with low-textured regions of the

high-resolution scenes.

In this paper, we present a novel mesh-guided MVS

method (MG-MVS) with a pyramid structure that utilizes

the surface mesh as the guidance to achieve high complete-

ness for high-resolution scenes with low-textured regions.

Specifically, we first adopt a pyramid architecture and fuse

the depth maps of the coarsest scale to construct a surface

mesh which is then used to enhance the completeness of

these depth maps. We then feed them to the finer scales and

retain correct estimates at untextured regions by enforcing

geometric consistency. Figure 1 shows a depth map esti-

mated by our method compared with the result without the

guidance of the surface mesh.

The main contributions of this paper are as follows: 1)

we propose to leverage the surface mesh produced at the

coarse-scale to guide the MVS process at the fine-scale to

improve the completeness of the depth map estimation; 2)

to avoid the influence brought by the erroneous faces in the

surface mesh, we design a deep neural network to gener-

ate confidence maps of the depth prediction, which are then

used for removal of erroneous depth values; 3) we design a

textureless region detector to enforce that the correct values

in textureless regions can be retained at the fine-scale; 4)

our method achieves the “state-of-the-art” performance on

the ETH3D high-resolution multi-view dataset.

2. Related Work

PatchMatch-based MVS methods. PatchMatch-based

MVS has been the research hotspot of MVS for more than

ten years. PMVS [6] divides an image into cells and esti-

mates the depth and normal for each cell. Shen [32] pro-

poses pixel-wise depth estimation and propagation of the

reliable depths to neighbor pixels. Gipuma [7] designs

a checkerboard propagation that can be implemented on

GPU to speed up the computation. Zheng et al. [42] select

proper source views for each pixel to improve the perfor-

mance of MVS against occlusions and illumination aberra-

tion. COLMAP [29] further embeds normal estimation into

the framework of [42] and uses geometric priors to improve

the robustness of view selection. Although PatchMatch-

based MVS has been quite successful, it still has an obvi-

ous weakness that textureless regions are seldom managed

correctly, as demonstrated by low completeness of the re-

sults produced by these mentioned methods. To overcome

this difficulty, Xu et al. [37] first downsample input images

and execute ACMH (Adaptive Checkerboard sampling and

Multi-Hypotheses joint view selection) on the coarse-scale

to enlarge the receptive field of patches. Then the depth

maps from the coarser scale are upsampled to the finer scale

using the joint bilateral upsampler [17] and play the role of

guider for the finer-scale processing. The geometry in tex-

tureless regions is preserved using geometric consistency.

Liao et al. [22] propose to build a similar pyramid architec-

ture in MVS. They assume that neighbor pixels with sim-

ilar colors may come from the same surface and enforce

local consistency to deal with textureless regions. Due to

the unreliability of photometric consistency in low-textured

regions, both of [37, 22] still do not perform very well in

completeness. The idea of [22] is quite similar to TAPA-

MVS [28] which segments images into superpixels since

the pixels in a superpixel are alike in color. The superpixels

are then treated as planes during the MVS procedure. Kuhn

et al. [19] further improve TAPA-MVS by merging similar

superpixels so that there will be enough valid points in sin-

gle superpixel to estimate the corresponding plane. How-

ever, inaccurate points in superpixels will cause faulty es-

timations of planes. Moreover, planes sometimes are not

capable of expressing the geometry of superpixels.

CNN-based MVS methods. Deep learning networks have

achieved great success in recent years and a vast number

of CNN-based methods for tasks in computer vision have

shown incredible performance. There also exist some re-

markable networks for MVS. Yao et al. [39] design MVS-

Net for depth map inference and demonstrate its effective-

ness on the DTU [12] and Tanks and Temples [16] datasets.

They further combine MVSNet with the recurrent neu-

ral network to reduce the memory consumption [40]. P-

MVSNet [23] makes use of a confidence metric based on

the mean-square error and a hybrid 3D U-Net to aggre-

gate the photometric consistency into a patch-wise match-

ing confidence volume. However, due to the limitation of

GPU memory, CNN-based methods usually could not per-

form well on high-resolution datasets such as the ETH3D

dataset. Huang et al. [11] try to solve this problem by break-

ing images into patches, but the result on the ETH3D dataset

is still unsatisfactory. Besides these depth-estimating net-

works, some researchers also use CNNs to improve the out-

puts from other ways. Wu et al. [36] add a semantic in-

ference network into their baseline model and the semantic

segmentation results are further improved by [24, 25]. Kuhn
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Figure 2. An overview of the proposed method. Starting with the input images, we build a pyramid of image sets with three scales by

downsampling, and then use ACMH to obtain the initial depth maps of the coarsest scale and fuse them into a coarse point cloud, which is

reconstructed to a surface mesh (Section 3.2). Next, we leverage this mesh to complete the filtered depth maps (Section 3.3). For further

removal of erroneous depths, we feed the depth maps to a specially designed neural network “MG-Conf” to predict the corresponding

confidence maps and subsequently remove those depths with low confidence (Section 3.4). Meanwhile, we also use an untextured region

detector (Section 3.5) to identify untextured regions. Both untextured region maps and depth maps are upsampled to guide the MVS

process at the next finer scale, and we enforce geometric consistency in untextured regions to retain reliable estimates. Finally, the depth

maps of the finest scale are fused to produce the final point cloud.

et al. [19] filter out outliers in segmented sky areas via a

deep learning network. Fabio et al. [35] build a network

to predict the confidence of the disparity maps. Sunok et

al. [15] combines information from the disparity map and

the cost volume to estimate the confidence. They further

propose a scale inference network [14] to improve the accu-

racy of confidence prediction. In this paper we also train a

network to process intermediate results in the pipeline.

3. Proposed Method

3.1. Motivation

We could regard the MVS reconstruction using pyramid

architecture as a process of sculpturing. Making a sculp-

ture usually starts with carving a rough model, then the de-

tails are carved based on the rough model. Similarly, MVS

reconstruction first uses the coarse-scale images to obtain

rough depths, around which the local optimal depth values

are then found at the fine-scale. Carving at the finer scales

relies heavily on the rough depths, which makes the com-

pleteness of the coarsest-scale depth maps an important fac-

tor. It is well-known that some points can be correctly esti-

mated at certain particular views but wrong at other views

due to illumination and other external conditions. Propa-

gating these correct depth values to neighbor views can im-

prove the completeness of the corresponding depth maps

but needs considering occlusions. Since the surface mesh

contains all occlusion relations, it is a perfect medium for

depth propagation between the views. Then the completed

depth maps are fed to the next finer scale for further refine-

ment. Increasing the completeness of depth maps is a key

issue since the fusion process of depth maps only keeps the

estimates supported by enough views. Propagating the cor-

rect estimates to neighbor views also means gaining more

support for these estimates to ensure that they can be kept

in the final point cloud.

To realize the above idea, we first construct a pyra-

mid of image sets with three scales by downsampling from

the original input images, and use the basic MVS method,

ACMH [37], to generate the initial depth maps at the coars-

est scale. Then, we fuse these depth maps into a point cloud

using a relatively loose constraint to retain correct estimates

as many as possible and build the corresponding surface

mesh using [20]. By mesh projection, we propagate the cor-

rect depth values to views that are incomplete. To further re-

fine the depth maps, we filter the depth maps using the geo-

metric consistency and replace those values of low geomet-

ric consistency with the values from mesh projection. Influ-

enced by outliers, the mesh may still contain some wrong

faces and these faces could cause errors in depth maps, thus

we also design a neural network to filter out these wrong

depth values. We next upsample the depth maps to the finer

scale and execute ACMH with geometric consistency. The

same upsampling and ACMH with geometric consistency

are repeated twice. To maintain accuracy, we only enforce

the geometric consistency in untextured regions (identified

by the untextured region detector). The whole pipeline of

our method is illustrated in Figure 2.

3.2. Mesh Construction

We first downsample the input images to the coarsest

scale and execute ACMH at this scale to get the initial depth
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maps. For efficiency of ACMH, we only use perturbing hy-

potheses in the refinement step and the range of perturbation

changes along with the iteration: rnow = rinit · (0.5)
m for

the m-th iteration. The initial depth maps usually contain

lots of discontinuous segments, especially in textureless re-

gions. We apply the segments removing strategy used in

OpenMVS [3] to clean them.

We then fuse the depth maps to obtain a coarse point

cloud by using the relative depth differences [29]. Given

a depth from a reference view Vr, we convert it into a 3D

point in world coordinate, which we then project to a neigh-

bor view Vsn to get the depth dr of this point in the coordi-

nate of Vsn and the corresponding depth dsn from the depth

map of Vsn. We consider the two depths to be a consistent

match if they fulfill:

|dr − dsn|

dr
< ǫ3, (1)

where ǫ3 is the similarity threshold at the coarsest scale. We

set ǫ3 = 4ǫ1 since the images of the coarsest scale are four

times smaller than those of the finest scale. The 3D point

from Vr is then projected to each neighbor view and if the

number of matches fulfils Nmatch >= 1, we add this 3D

point to the point cloud. We cast each of views as the refer-

ence view in turn to get the complete point cloud. The loose

threshold of Nmatch ensures correct estimates at untextured

regions retained, but it makes the point cloud noisy. To ex-

tract the surface from points with a vast number of outliers,

we adopt the surface reconstruction algorithm based on vis-

ibility information [20] for its strong robustness. The point

cloud is used to build Delaunay tetrahedra, which are then

marked as inside or outside the object, and the target surface

lies between the tetrahedra with different labels.

3.3. Mesh Guidance

After obtaining the surface mesh at the coarsest scale,

we use it to guide the MVS processing. We first project the

mesh to each of the views to fill up the segments removed

by the segment removing strategy. Moreover, we also wish

to refine the depth maps using this mesh, thus we filter the

depth maps using geometric consistency which is similar to

the above fusion step. We here filter out the depths with

Nmatch < 2 and label them invalid, and replace those in-

valid values with depths from mesh projection. The reason

why the threshold of Nmatch in the fusion step is looser

than that in this filter step is that the surface reconstruction

method after the fusion step has the ability to further filter

out more outliers (some valid depths may be treated as out-

liers) while there will be a lot of incorrect depths marked as

valid if we keep depths with Nmatch = 1 in the filter step.

By mesh projection, we can propagate reliable estimates

in untextured regions from a reference view to its neigh-

bor views with occlusion considered, which can increase

(a) (b) (c)

Figure 3. Depth propagation between views. (a) The depth map of

view A; (b) the depth map of its neighbor view B (the black boxes

pointing to the basically same region in both images); (c) the depth

map of view A after mesh projection.

(a) (b) (c)

Figure 4. Plane completion. (a) The depth map at the coarse scale;

(b) the point cloud at this scale; (c) the depth map after mesh pro-

jection.

the completeness of the neighbor depth maps dramatically

(Figure 3). Conversely, the complete neighbor depth maps

contribute to the estimation of the reference view at the finer

scale due to geometric consistency. Besides, using the sur-

face mesh to guide MVS also can achieve plane completion

as shown in Figure 4. Different from TAPA-MVS and PCF

which use depths from only one view to estimate the planes,

our surfaces are reconstructed using information from all

different views.

The resulting depth maps are then fed to the next finer

scale to further guide the MVS processing. With good ini-

tial values, better estimates can be found at the finer scale

and the searching range is also constrained by geometric

consistency, thus it helps avoid them being trapped into

other local optimal values.

3.4. Confidence Prediction Networks

Despite the robustness of the surface reconstruction al-

gorithm, it still could produce some wrong faces which

would induce errors in depth maps and then misguide the

MVS processing at the finer scale. Traditional methods for

removing wrong depths are mostly based on photometric

and geometric consistency, which are of no use in our situa-

tion since the errors brought by mesh projection have no ge-

ometric difference and usually appear in untextured regions.

It has been shown in [14] and [35] that convolutional neural

networks can achieve outstanding performance in estimat-

ing the confidence map for a given initial disparity map.

Thus based on the work of LAF-Net [14], we design a deep

neural network “MG-Conf”, to solve this problem, whose

architecture is presented in Figure 5.

Our MG-Conf considers both matching costs, depths and

colors, and predicts confidence of the depth at each pixel.
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Figure 5. The architecture of the neural network “MG-Conf”. Feature extraction module takes colors, depths and costs as input to generate

feature maps which are then fused by the following attention module. ASPP with attention module convolutes the fused features using

different receptive field sizes to get the confidence map and the recurrent refinement module further improves its accuracy.

(a) (b) (c) (d)

Figure 6. (a) The color images; (b) the depth maps before mesh

projection; (c) the depth maps after mesh projection; (d) the con-

fidence maps predicted by MG-Conf (pixels with white color cor-

respond to wrong depths). The top row shows that MG-Conf can

find out errors brought by mesh projection, and the bottom row

demonstrates that errors from the the basic MVS method can also

be located.

Rather than directly feeding the current matching costs to

MG-Conf, we would like the network to adaptively deter-

mine whether a matching cost is distinctive enough to be

considered as a globally optimal solution. To obtain the

distinctiveness of the current costs, the current depths and

normals are perturbed for three times, we then compute the

costs of these perturbations using the view weights from

ACMH. The current costs together with costs from pertur-

bations are then fed to the network together. We set the per-

turbing range as rinit · (0.5)
τ

2 where τ is the total iteration

number of ACMH.

Similarly to LAF-Net, we extract features from costs,

depths and colors and fuse them using the attention module.

Our MG-Conf then uses the fused feature maps to predict

the confidence map. Large receptive fields yield robust re-

sults while causing loss of details, thus LAF-Net proposes

a scale inference module to infer the optimal size of the

receptive field for each pixel. However, its consumption

of memory is unbearable for our device. Noticing that the

convolution in the scale inference module is quite similar

to dilated convolution, we combine Atrous Spatial Pyramid

Pooling (ASPP) [4] with attention layers to achieve the ad-

justment of the receptive field for each pixel. The receptive

field size of one feature can be calculated using:

R = n(k − 1) + rori, (2)

where n denotes the number of convolution layers, k is the

size of the kernel and rori is the receptive field size of the

input. The feature extraction module contains three convo-

lution layers and the kernel size is three, thus the receptive

field size of one feature equals seven. After three layers

of convolution with the kernel size of five, the receptive

field size of the scale attention map enlarges to nineteen,

which corresponds to the receptive field of the second layer

in ASPP since we are concerned with two situations: 1) the

features in the receptive field of the scale attention map are

capable of predicting the confidence; 2) Information from

features outside this field is also demanded. We will use

the output of ASPP with attention to predict a confidence

map which will be fed to the recurrent refinement module

for further improvement. We binarize the final confidence

map and directly remove those depths which are labeled as

unreliable by MG-Conf.

Besides eliminating the negative effects of mesh projec-

tion, MG-Conf also can help remove the errors from the

basic MVS method (Figure 6). Limited by the device mem-

ory, we need rescale the input data into smaller sizes us-

ing the nearest neighbor interpolation, which results in mis-

taken deletion such as boundaries. However, the influence

on completeness is slight since the propagation of ACMH

can fill up those mistakenly deleted depths as long as there

still exist correct depths nearby.

3.5. Untextured Region Detection

Geometric consistency could lead to blurred details and

ACMM (combining ACMH with geometric consistency

guidance) [37] is then proposed, which contains a detail re-

storer to detect thin structures and boundaries and only use
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Table 1. Performance comparison results of our method with its model variants. The three values are accuracy / completeness / F1 score

(in %). We present results under tolerances of 1cm and 2cm since small tolerances reflect the changes in accuracy better.

DataSets Tolerance Baseline Without MC Without URD Ours

Office
1cm 82.14 / 37.18 / 51.19 73.33 / 46.53 / 56.93 81.99 / 37.40 / 51.36 79.19 / 45.83 / 58.06

2cm 89.58 / 47.56 / 62.14 82.39 / 62.40 / 71.02 89.54 / 47.77 / 62.30 87.72 / 60.15 / 71.37

Electro.
1cm 80.52 / 56.80 / 66.62 84.79 / 67.74 / 75.31 87.60 / 67.16 / 76.03 86.62 / 67.83 / 76.08

2cm 88.13 / 76.18 / 81.72 90.55 / 80.43 / 85.19 93.29 / 79.36 / 85.76 92.33 / 80.35 / 85.93

Avg
1cm 81.33 / 46.99 / 58.91 79.06 / 57.14 / 66.12 84.80 / 52.28 / 63.70 82.91 / 56.83 / 67.07

2cm 88.86 / 61.87 / 71.93 86.47 / 71.42 / 78.11 91.42 / 63.57 / 74.03 90.03 / 70.25 / 78.65

(a) (b) (c)

(d) (e) (f)

Figure 7. (a) The input image; (d) the initial depth map; (b) the

details map produced by the detail restorer (pixels with white color

are details); (c) the final depth map guided by details map; (e) the

untextured region map (untextured regions are in black color); (f)

the final depth map of our method.

photometric consistency in these specific regions. The de-

tail restorer may work well in ACMM , but sometimes it

mistakes textureless regions as details when applying it to

the proposed method (Figure 7(b)) and correct estimates in

these regions could easily be impaired without geometric

constraint (Figure 7(c)). This is because some depth values

in textureless regions are from the mesh in our method and

the costs of these depths are often not locally optimal. Af-

ter the execution of ACMH at the finer scale, the values in

textureless regions are trapped into wrong local optimums

in despite of the correct initial values. If the differences be-

tween the costs of initial depths and the local optimums are

large, the corresponding pixels are marked as details by the

detail restorer.

The purpose of enforcing geometric consistency is to

prevent damage to those depth estimates which could be

easily impaired at the finer scale. In other words, we need to

seek depths with costs that are indistinctive. Noticing that

the purpose of adding cost maps into MG-Conf is to take the

distinctiveness of the estimates into account, we also can

locate the indistinctive values in the same way. Similarly,

we perturb the current depths and normals for N times and

calculate their costs. Then we compute the average of the

absolute differences:

favg =

∑N

i=1
min(fmax, |cnow − ci|)

N
, (3)

where cnow is the matching cost of the current estimate, and

Table 2. Ablation study for the ASPP with attention module (ATT-

ASPP). We consider both the accuracy of the predictions and the

recall rate of erroneous depths (in %).

Accuracy Recall Rate

Without ATT-ASPP 0.8609 0.5851

With ATT-ASPP 0.8119 0.6919

Table 3. Evaluation of point clouds obtained by our method using

MG-Conf with ATT-ASPP / without ATT-ASPP, where the three

values correspond to accuracy/completeness/F1 score (in %) re-

spectively.

DataSets Tolerance Without ATT-ASPP With ATT-ASPP

Office
1cm 77.42 / 46.08 / 57.77 79.19 / 45.83 / 58.06

2cm 85.27 / 60.64 / 70.88 87.72 / 60.15 / 71.37

Electro.
1cm 85.12 / 67.80 / 75.48 86.62 / 67.83 / 76.08

2cm 90.62 / 80.41 / 85.21 92.33 / 80.35 / 85.93

Avg
1cm 81.27 / 56.94 / 66.63 82.91 / 56.83 / 67.07

2cm 87.95 / 70.53 / 78.05 90.03 / 70.25 / 78.65

ci is the cost of the i-th perturbed result. If favg < fthresh,

we consider it indistinctive. We set fthresh = 0.3 and

fmax = 0.6 in all experiments.

These indistinctive values are more likely to appear in

untextured regions as shown in Figure 7(e), so we call the

resulted map the untextured region map. We calculate the

untextured region maps after obtaining the depth maps at

each scale of the pyramid. We then retain the correct esti-

mates in untextured regions by enforcing geometric consis-

tency while using only photometric consistency for distinc-

tive regions to avoid decreasing accuracy. In addition, our

untextured region detector is more time saving compared to

the detail restorer which needs to execute ACMH twice to

get the details.

4. Experimental Results

We implement and test our method “MG-MVS” on a

computer with an Intel E5-1650 CPU and a GTX 1080Ti

GPU. We mainly focus on demonstrating the ability of our

method in improving the completeness and overall recon-

struction quality of MVS for high-resolution images. The

dataset for evaluation is the ETH3D dataset [31], which pro-

vides multi-view stereo scans with high-resolution images.

It is worth noting that CNN-based MVS methods usually

couldn’t deal with such large-scale images with satisfactory

accuracy due to memory restriction. Moreover, images in

the ETH3D dataset do not overlap with each other much
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(a) Images (b) COLMAP (c) LTVRE (d) PCF (e) TAPA (f) PLC (g) ACMM (h) Our

Figure 8. Point cloud comparisons on some test scans (lectur., lounge, statue).

Figure 9. F1 scores on all scans of the ETH3D with tolerance=2cm.

and often contain lots of untextured regions, which makes

it difficult to produce satisfactory MVS results with high

completeness. The training set of ETH3D provides ground-

truth (GT) depth maps and point clouds while the GT data

for the test set are not publicly available. In addition to

completeness, the ETH3D benchmark also evaluates the ac-

curacy and F1 score of combining both completeness and

accuracy.

Limited by the device memory, we could not directly

feed the images of original resolution to MG-Conf. For

the training of MG-Conf, we downsample images from the

training set to the coarsest scale and execute basic MVS

and mesh projection to generate initial depth maps, which

are then used to obtain the confidence maps. We continue

to downsample the input data of MG-Conf to 300 × 200.

Different from LAF-Net, we use Adam optimizer and train

for a total of 256 epochs. The GT confidence map we use

is simply the binary map that indicates whether a depth es-

timate is right or wrong at each pixel. If the relative differ-

ence of the estimated depth and the corresponding GT depth

is larger than a threshold (similar to Eq.(1)), this depth is

marked as a wrong depth. The threshold is set to ǫ3. Af-

ter we obtain the prediction from MG-Conf, we upsample

it to the resolution of the input data of the second fine scale

in our pyramid for errors removing. For the depth map fu-

sion at the finest scale, we adopt the fusion step of [29] and

set the relative depth difference threshold ǫ1 to 0.01, the an-

gle between normals threshold to 20◦, the reprojection error

threshold to 2, and the minimum matching pixels to 3.

4.1. Ablation study

Since we have no access to the GT depths of the test set,

we randomly choose two samples from the training set for

validation (in our experiments the selected test set consists

of office and electro) for the ablation study of our method.

Effects of mesh guidance, MG-Conf and untextured re-

gion detector – We remove MG-Conf (MC) and the un-

textured region detector (URD) in turn and compare the re-

sults with those from the full version of MG-MVS. To prove

the effectiveness of mesh guidance, we also compare them

with the baseline method which uses ACMH only to build

the three-level pyramid. The results are reported in Table

1. The mesh guidance can improve the completeness dra-

matically while it induces only a little decrease in accuracy,

which results in an increase of F1 score. MG-Conf helps to

eliminate the negative effects of erroneous faces in the mesh

but could also cause loss of completeness due to some mis-

taken removal. However, the decrease of completeness is

acceptable since F1 score still increases. The untextured

region detector is also vital to MG-MVS since it can pre-

serve those indistinctive values to maintain high complete-

ness with only a small loss of accuracy.

Effect of ASPP with attention module in MG-Conf –

Since the purpose of MG-Conf is to remove the erroneous

depths, we take the recall rate of errors and the accuracy

of the confidence maps as evaluation metrics. We remove

ASPP with attention module from MG-Conf and execute

the same training process, then we compare the perfor-
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Table 4. Evaluation of completeness on the high-resolution multi-view test set of ETH3D at different thresholds (2cm and 10cm).

Tol. Method Botani. Boulde. Bridge Door Exhibi. Lectur. Living Lounge Observ. Old co. Statue Terrac.

2cm

COLMAP 81.44 53.00 83.75 75.53 48.34 48.81 81.40 24.14 90.30 32.95 60.52 75.65

LTVRE 84.00 51.55 67.08 83.53 58.78 54.94 80.31 34.54 93.23 40.64 68.03 78.58

PCF 86.06 65.96 87.03 91.10 69.86 69.79 90.64 57.54 96.59 64.37 82.29 90.32

TAPA 90.40 52.07 89.19 89.61 62.69 70.07 92.67 48.89 94.32 38.26 79.97 91.12

PLC 92.93 58.68 90.64 88.30 60.90 64.43 90.53 42.38 94.57 56.52 76.54 86.33

ACMM 84.25 57.87 90.36 89.93 63.17 65.64 86.04 37.79 94.10 65.89 71.52 85.55

Ours 97.79 76.27 94.96 94.49 78.74 83.87 92.94 64.34 96.94 75.19 94.09 95.66

10cm

COLMAP 96.72 78.85 95.89 92.83 71.55 77.54 95.89 59.40 99.14 67.26 88.26 91.11

LTVRE 92.89 83.18 93.15 94.74 78.99 75.14 92.69 65.64 97.63 69.46 81.82 89.74

PCF 95.44 91.58 95.29 96.10 85.07 82.75 97.45 78.28 99.78 80.60 95.65 97.12

TAPA 98.48 85.17 98.42 96.58 82.44 87.24 98.53 82.77 98.84 59.09 97.88 98.72

PLC 99.17 87.49 99.25 96.55 88.43 91.26 98.21 85.92 99.86 89.77 97.57 97.24

ACMM 93.61 81.34 98.50 95.92 87.88 83.85 95.20 67.20 97.89 86.90 84.90 92.06

Ours 99.79 95.71 99.07 99.06 94.45 96.42 98.70 88.81 99.74 95.35 99.86 99.97

Table 5. Evaluation on the high-resolution multi-view test set of

ETH3D at different tolerances (2cm and 10cm), where the three

values correspond to accuracy/completeness/F1 score (in %) re-

spectively.

Method 2cm 10cm

COLMAP 91.97 / 62.98 / 73.01 98.25 / 84.54 / 90.40

LTVRE 93.04 / 66.27 / 76.25 99.18 / 84.59 / 90.99

PCF 82.15 / 79.29 / 80.38 92.12 / 91.26 / 91.56

TAPA 85.71 / 74.94 / 79.15 94.93 / 90.35 / 92.30

PLC 82.09 / 75.23 / 78.05 94.05 / 94.23 / 94.11

ACMM 90.65 / 74.34 / 80.78 98.05 / 88.77 / 92.96

Ours 80.32 / 87.11 / 83.41 94.08/ 97.24 / 95.61

mance on the validation set with the full version of MG-

Conf. The results are reported in Table 2, which shows that

although MG-Conf without ATT-ASPP can achieve higher

accuracy, the price is that it labels significantly more erro-

neous depths as correct. Some of the mistakenly removed

depths can be regained by the propagation of ACMH if there

exist correct depths nearby, but it is not easy for ACMH to

jump out of the traps brought by erroneous depths. Thus the

recall rate of errors is more important for our method when

the difference of accuracies is small, as demonstrated by the

results shown in Table 3.

4.2. Evaluation on the ETH3D dataset

We next compare our method with many state-of-the-art

methods (namely COLMAP [29], LTVRE [18], PCF-MVS

[19], TAPA-MVS [28], PLC [22], ACMM [37]) on the test

set of ETH3D dataset. Figure 8 shows point clouds of some

sample scans produced by these methods. To further quan-

tify our completeness, we report the evaluation results from

ETH3D benchmark website in Table 4. As we can see,

our method outperforms all other methods in completeness,

even though PCF-MVS, TAPA-MVS and PLC also aim at

improving completeness. These methods assume that the

pixels with similar colors may come from the same surface,

however, they only use the information from one view to es-

timate the surface while our method fuses the information

from all neighbor views together.

Although we already feed some good initial values to

MVS, it still may fail to find out the precise depths in some

textureless regions since the matching costs of the accurate

depths may not be the locally optimal solution at all. Exist-

ing methods with high completeness are all suffered from

this deficit as demonstrated in Table 5. An outstanding

MVS algorithm should achieve a trade-off between com-

pleteness and accuracy and that is why F1 score is also

used for the overall measurement. We present the accuracy,

completeness and F1 scores of our method and its competi-

tors in Table 5. It is observed that our method has no ob-

vious advantage of accuracy under the 2cm tolerance, but

we achieve competitive accuracy under the 10cm tolerance.

Considering both accuracy and completeness, our method

outperforms other state-of-the-art methods in terms of F1

score, where Figure 9 shows the F1 score for each sample

of the test set.

5. Conclusion

In this paper, we have presented a mesh-guided MVS

method that can handle textureless regions well and achieve

high completeness without much loss of accuracy. We adopt

a pyramid structure and treat the depth map estimation as

the process of sculpturing. To maintain the completeness,

we first reconstruct the surface mesh using the depth maps

at the coarsest scale and then utilize this mesh to guide the

MVS process. Specifically, we project the mesh onto each

view to complete and refine the corresponding depth map.

To avoid misguidance of wrong depths brought by erro-

neous faces in the mesh, we also design a network “MG-

Conf” to predict the confidence of the depth map. We re-

move the depth values with bad confidence and feed the rest

to the finer scale to get estimates with higher accuracy. In

addition, an untextured region detector and enforcing geo-

metric consistency are used to help avoid tremendous shifts

of depths in textureless regions. Experimental results show

that our method significantly promotes the performance of

MVS on the ETH3D dataset.
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