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Abstract

The success of deep neural networks relies on signifi-

cant architecture engineering. Recently neural architecture

search (NAS) has emerged as a promise to greatly reduce

manual effort in network design by automatically search-

ing for optimal architectures, although typically such al-

gorithms need an excessive amount of computational re-

sources, e.g., a few thousand GPU-days. To date, on chal-

lenging vision tasks such as object detection, NAS, espe-

cially fast versions of NAS, is less studied. Here we propose

to search for the decoder structure of object detectors with

search efficiency being taken into consideration. To be more

specific, we aim to efficiently search for the feature pyra-

mid network (FPN) as well as the prediction head of a sim-

ple anchor-free object detector, namely FCOS [24], using

a tailored reinforcement learning paradigm. With carefully

designed search space, search algorithms and strategies for

evaluating network quality, we are able to efficiently search

a top-performing detection architecture within 4 days us-

ing 8 V100 GPUs. The discovered architecture surpasses

state-of-the-art object detection models (such as Faster R-

CNN, RetinaNet and FCOS) by 1.5 to 3.5 points in AP on

the COCO dataset,with comparable computation complex-

ity and memory footprint, demonstrating the efficacy of the

proposed NAS for object detection.

1. Introduction

Object detection is one of the fundamental tasks in com-

puter vision, and has been researched extensively. In the

past few years, state-of-the-art methods for this task are

based on deep convolutional neural networks (such as Faster

R-CNN [20], RetinaNet [11]), due to their impressive per-

formance. Typically, the designs of object detection net-

works are much more complex than those for image clas-

sification, because the former need to localize and classify

multiple objects in an image simultaneously while the latter
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only need to output image-level labels. Due to its complex

structure and numerous hyper-parameters, designing effec-

tive object detection networks is more challenging and usu-

ally needs much manual effort.

On the other hand, Neural Architecture Search (NAS)

approaches [4, 17, 32] have been showing impressive results

on automatically discovering top-performing neural net-

work architectures in large-scale search spaces. Compared

to manual designs, NAS methods are data-driven instead of

experience-driven, and hence need much less human inter-

vention. As defined in [3], the workflow of NAS can be

divided into the following three processes: 1) sampling ar-

chitecture from a search space following some search strate-

gies; 2) evaluating the performance of the sampled archi-

tecture; and 3) updating the parameters based on the perfor-

mance.

One of the main problems prohibiting NAS from being

used in more realistic applications is its search efficiency.

The evaluation process is the most time consuming part be-

cause it involves a full training procedure of a neural net-

work. To reduce the evaluation time, in practice a proxy

task is often used as a lower cost substitution. In the proxy

task, the input, network parameters and training iterations

are often scaled down to speedup the evaluation. However,

there is often a performance gap for samples between the

proxy tasks and target tasks, which makes the evaluation

process biased. How to design proxy tasks that are both

accurate and efficient for specific problems is a challeng-

ing problem. Another solution to improve search efficiency

is constructing a supernet that covers the complete search

space and training candidate architectures with shared pa-

rameters [15, 18]. However, this solution leads to signifi-

cantly increased memory consumption and restricts itself to

small-to-moderate sized search spaces.

To our knowledge, studies on efficient and accurate NAS

approaches to object detection networks are rarely touched,

despite its significant importance. To this end, we present

a fast and memory saving NAS method for object detection

networks, which is capable of discovering top-performing

architectures within significantly reduced search time. Our
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overall detection architecture is based on FCOS [24], a sim-

ple anchor-free one-stage object detection framework, in

which the feature pyramid network and prediction head are

searched using our proposed NAS method.

Our main contributions are summarized as follows.

• In this work, we propose a fast and memory-efficient

NAS method for searching both FPN and head archi-

tectures, with carefully designed proxy tasks, search

space and evaluation strategies, which is able to find

top-performing architectures over 3, 000 architectures

using 28 GPU-days only.

Specifically, this high efficiency is enabled with the

following designs.

− Developing a fast proxy task training scheme by

skipping the backbone finetuning stage;

− Adapting progressive search strategy to reduce time

cost taken by the extended search space;

− Using a more discriminative criterion for evaluation

of searched architectures.

− Employing an efficient anchor-free one-stage detec-

tion framework with simple post processing;

• Using NAS, we explore the workload relationship be-

tween FPN and head, proving the importance of weight

sharing in head.

• We show that the overall structure of NAS-FCOS is

general and flexible in that it can be equipped with var-

ious backbones including MobileNetV2, ResNet-50,

ResNet-101 and ResNeXt-101, and surpasses state-

of-the-art object detection algorithms using compa-

rable computation complexity and memory footprint.

More specifically, our model can improve the AP by

1.5 ∼ 3.5 points on all above models comparing to

their FCOS counterparts.

2. Related Work

2.1. Object Detection

The frameworks of deep neural networks for object de-

tection can be roughly categorized into two types: one-stage

detectors [12] and two-stage detectors [6, 20].

Two-stage detection frameworks first generate class-

independent region proposals using a region proposal net-

work (RPN), and then classify and refine them using ex-

tra detection heads. In spite of achieving top perfor-

mance, the two-stage methods have noticeable drawbacks:

they are computationally expensive and have many hyper-

parameters that need to be tuned to fit a specific dataset.

In comparison, the structures of one-stage detectors are

much simpler. They directly predict object categories and

bounding boxes at each location of feature maps generated

by a single CNN backbone.

Note that most state-of-the-art object detectors (includ-

ing both one-stage detectors [12, 16, 19] and two-stage de-

tectors [20]) make predictions based on anchor boxes of

different scales and aspect ratios at each convolutional fea-

ture map location. However, the usage of anchor boxes

may lead to high imbalance between object and non-object

examples and introduce extra hyper-parameters. More re-

cently, anchor-free one-stage detectors [9, 10, 24, 29, 30]

have attracted increasing research interests, due to their sim-

ple fully convolutional architectures and reduced consump-

tion of computational resources.

2.2. Neural Architecture Search

NAS is usually time consuming. We have seen great

improvements from 24, 000 GPU-days [32] to 0.2 GPU-

day [28]. The trick is to first construct a supernet contain-

ing the complete search space and train the candidates all

at once with bi-level optimization and efficient weight shar-

ing [13, 15]. But the large memory allocation and diffi-

culties in approximated optimization prohibit the search for

more complex structures.

Recently researchers [1, 5, 23] propose to apply single-

path training to reduce the bias introduced by approxima-

tion and model simplification of the supernet. DetNAS [2]

follows this idea to search for an efficient object detection

architecture. One limitation of the single-path approach is

that the search space is restricted to a sequential structure.

Single-path sampling and straight through estimate of the

weight gradients introduce large variance to the optimiza-

tion process and prohibit the search for more complex struc-

tures under this framework. Within this very simple search

space, NAS algorithms can only make trivial decisions like

kernel sizes for manually designed modules.

Object detection models are different from single-path

image classification networks in their way of merging multi-

level features and distributing the task to parallel prediction

heads. Feature pyramid networks (FPNs) [4, 8, 11, 14, 27],

designed to handle this job, plays an important role in

modern object detection models. NAS-FPN [4] targets on

searching for an FPN alternative based on one-stage frame-

work RetinaNet [12]. Feature pyramid architectures are

sampled with a recurrent neural network (RNN) controller.

The RNN controller is trained with reinforcement learn-

ing (RL). However, the search is very time-consuming even

though a proxy task with ResNet-10 backbone is trained to

evaluate each architecture.

Since all these three kinds of research ( [2, 4] and ours)

focus on object detection framework, we demonstrate the

differences among them that DetNAS [2] aims to search

for the designs of better backbones, while NAS-FPN [4]

searches the FPN structure, and our search space contains
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both FPN and head structure.

To speed up reward evaluation of RL-based NAS, the

work of [17] proposes to use progressive tasks and other

training acceleration methods. By caching the encoder fea-

tures, they are able to train semantic segmentation decoders

with very large batch sizes very efficiently. In the sequel of

this paper, we refer to this technique as fast decoder adap-

tation. However, directly applying this technique to object

detection tasks does not enjoy similar speed boost, because

they are either not in using a fully-convolutional model [11]

or require complicated post processing that are not scalable

with the batch size [12].

To reduce the post processing overhead, we resort to

a recently introduced anchor-free one-stage framework,

namely, FCOS [24], which significantly improve the search

efficiency by cancelling the processing time of anchor-box

matching in RetinaNet.

Compared to its anchor-based counterpart, FCOS signif-

icantly reduces the training memory footprint while being

able to improve the performance.

3. Our Approach

In our work, we search for anchor-free fully convolu-

tional detection models with fast decoder adaptation. Thus,

NAS methods can be easily applied.

3.1. Problem Formulation

We base our search algorithm upon a one-stage frame-

work FCOS due to its simplicity. Our training tuples

{(x, Y )} consist of input image tensors x of size (3×H ×
W ) and FCOS output targets Y in a pyramid representa-

tion, which is a list of tensors yl each of size ((K + 4 +
1)×Hl ×Wl) where Hl ×Wl is feature map size on level

p of the pyramid. (K + 4 + 1) is the output channels of

FCOS, the three terms are length-K one-hot classification

labels, 4 bounding box regression targets and 1 centerness

factor respectively.

The network g : x → Ŷ in original FCOS consists of

three parts, a backbone b, FPN f and multi-level subnets

we call prediction heads h in this paper. First backbone

b : x → C maps the input tensor to a set of intermediate-

leveled features C = {c3, c4, c5}, with resolution (Hi ×
Wi) = (H/2i × W/2i). Then FPN f : C → P maps

the features to a feature pyramid P = {p3,p4,p5,p6,p7}.

Then the prediction head h : p → y is applied to each level

of P and the result is collected to create the final prediction.

To avoid overfitting, same h is often applied to all instances

in P .

Since objects of different scales require different effec-

tive receptive fields, the mechanism to select and merge

intermediate-leveled features C is particularly important in

object detection network design. Thus, most researches [16,

20] are carried out on designing f and h while using widely-

adopted backbone structures such as ResNet [7]. Following

this principle, our search goal is to decide when to choose

which features from C and how to merge them.

To improve the efficiency, we reuse the parameters in b
pretrained on target dataset and search for the optimal struc-

tures after that. For the convenience of the following state-

ment, we call the network components to search for, namely

f and h, together the decoder structure for the objection de-

tection network.

f and h take care of different parts of the detection job. f
extracts features targeting different object scales in the pyra-

mid representations P , while h is a unified mapping applied

to each feature in P to avoid overfitting. In practice, people

seldom discuss the possibility of using a more diversified f
to extract features at different levels or how many layers in

h need to be shared across the levels. In this work, we use

NAS as an automatic method to test these possibilities.

3.2. Search Space

Considering the different functions of f and h, we ap-

ply two search space respectively. Given the particularity

of FPN structure, a basic block with new overall connection

and f ’s output design is built for it. For simplicity, sequen-

tial space is applied for h part.

We replace the cell structure with atomic operations to

provide even more flexibility. To construct one basic block,

we first choose two layers x1, x2 from the sampling pool

X at id1, id2, then two operations op1, op2 are applied

to each of them and an aggregation operation agg merges

the two output into one feature. To build a deep decoder

structure, we apply multiple basic blocks with their outputs

added to the sampling pool. Our basic block bbt : Xt−1 →
Xt at time step t transforms the sampling pool Xt−1 to

Xt = Xt−1 ∪ {xt}, where xt is the output of bbt.

The candidate operations are listed in Table 1. We in-

clude only separable/depth-wise convolutions so that the

decoder can be efficient. In order to enable the decoder to

apply convolutional filters on irregular grids, here we have

also included deformable 3 × 3 convolutions [31]. For the

aggregation operations, we include element-wise sum and

concatenation followed by a 1× 1 convolution.

The decoder configuration can be represented by a se-

ID Description

0 separable conv 3× 3
1 separable conv 3× 3 with dilation rate 3
2 separable conv 5× 5 with dilation rate 6
3 skip-connection

4 deformable 3× 3 convolution

Table 1. Unary operations used in the search process.
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quence with three components, FPN configuration, head

configuration and weight sharing stages. We provide de-

tailed descriptions to each of them in the following sections.

The complete diagram of our decoder structure is shown in

Fig. 1.

3.2.1 FPN Search Space

As mentioned above, the FPN f maps the convolutional

features C to P . First, we initialize the sampling pool as

X0 = C. Our FPN is defined by applying the basic block

7 times to the sampling pool, f := bbf1 ◦ bbf2 ◦ · · · ◦ bbf7 .

To yield pyramid features P , we collect the last three basic

block outputs {x5,x6,x7} as {p3,p4,p5}.

To allow shared information across all layers, we use

a simple rule to create global features. If there is some

dangling layer xt which is not sampled by later blocks

{bbfi |i > t} nor belongs to the last three layers t < 5, we

use element-wise add to merge it to all output features

p∗
i = pi + xt, i ∈ {3, 4, 5}. (1)

Same as the aggregation operations, if the features have dif-

ferent resolution, the smaller one is upsampled with bilinear

interpolation.

To be consistent with FCOS, p6 and p7 are obtained via

a 3× 3 stride-2 convolution on p5 and p6 respectively.

3.2.2 Prediction Head Search Space

Prediction head h maps each feature in the pyramid P to the

output of corresponding y, which in FCOS and RetinaNet,

consists of four 3×3 convolutions. To explore the potential

of the head, we therefore extend a sequential search space

for its generation. Specifically, our head is defined as a se-

quence of six basic operations. Compared with candidate

operations in the FPN structures, the head search space has

two slight differences. First, we add standard convolution

modules (including conv1x1 and conv3x3) to the head sam-

pling pool for better comparison. Second, we follow the

design of FCOS by replacing all the Batch Normalization

(BN) layers to Group Normalization (GN) [25] in the oper-

ations sampling pool of head, considering that head needs

to share weights between different levels, which causes BN

invalid. The final output of head is the output of the last

(sixth) layer.

3.2.3 Searching for Head Weight Sharing

To add even more flexibility and understand the effect of

weight sharing in prediction heads, we further add an index

i as the location where the prediction head starts to share

weights. For every layer before stage i, the head h will

create independent set of weights for each FPN output level,

otherwise, it will use the global weights for sharing purpose.

Considering the independent part of the heads being

extended FPN branch and the shared part as head with

adaptive-length, we can further balance the workload for

each individual FPN branch to extract level-specific features

and the prediction head shared across all levels.

3.3. Search Strategy

RL based strategy is applied to the search process. We

rely on an LSTM-based controller to predict the full con-

figuration. We consider using a progressive search strat-

egy rather than the joint search for both FPN structure and

prediction head part, since the former requires less com-

puting resources and time cost than the latter. The training

dataset is randomly split into a meta-train Dt and meta-val

Dv subset. To speed up the training, we fix the backbone

network and cache the pre-computed backbone output C.

This makes our single architecture training cost indepen-

dent from the depth of backbone network. Taking this ad-

vantage, we can apply much more complex backbone struc-

tures and utilize high quality multilevel features as our de-

coder’s input. We find that the process of backbone fine-

tuning can be skipped if the cached features are powerful

enough. Speedup techniques such as Polyak weight averag-

ing are also applied during the training.

The most widely used detection metric is average preci-

sion (AP). However, due to the difficulty of object detection

task, at the early stages, AP is too low to tell the good archi-

tectures from the bad ones, which makes the controller take

much more time to converge. To make the architecture eval-

uation process easier even at the early stages of the training,

we therefore use negative loss sum as the reward instead of

average precision:

R(a) =−
∑

(x,Y )∈Dv

(Lcls(x, Y |a)

+ Lreg(x, Y |a) + Lctr(x, Y |a))

(2)

where Lcls, Lreg , Lctr are the three loss terms in FCOS.

Gradient of the controller is estimated via proximal policy

optimization (PPO) [22].

4. Experiments

4.1. Implementation Details

4.1.1 Searching Phase

We design a fast proxy task for evaluating the decoder archi-

tectures sampled in the searching phase. PASCAL VOC is

selected as the proxy dataset, which contains 5715 training

images with object bounding box annotations of 20 classes.

Transfer capacity of the structures can be illustrated since

the search and full training phase use different datasets.

The VOC training set is randomly split into a meta-train
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Figure 1. A conceptual example of our NAS-FCOS decoder. It consists of two sub networks, an FPN f and a set of prediction heads h

which have shared structures. One notable difference with other FPN-based one-stage detectors is that our heads have partially shared

weights. Only the last several layers of the predictions heads (marked as yellow) are tied by their weights. The number of layers to share

is decided automatically by the search algorithm. Note that both FPN and head are in our actual search space; and have more layers than

shown in this figure. Here the figure is for illustration only.

set with 4, 000 images and a meta-val set with 1715 im-

ages. For each sampled architecture, we train it on meta-

train and compute the reward (2) on meta-val. Input images

are resized to short size 384 and then randomly cropped to

384 × 384. Target object sizes of interest are scaled cor-

respondingly. We use Adam optimizer with learning rate

8e−4 and batch size 200. Polyak averaging is applied with

the decay rates of 0.9. The decoder is evaluated after 300
iterations. As we use fast decoder adaptation, the backbone

features are fixed and cached during the search phase. To

enhance the cached backbone features, we first initialize

them with pre-trained weights provided by open-source im-

plementation of FCOS and then finetune on VOC using the

training strategies of FCOS. Note that the above finetuning

process is only performed once at the begining of the search

phase.

A progressive strategy is used for the search of f and h.

We first search for the FPN part and retain the original head.

All operations in the FPN structure have 64 output channels.

The decoder inputs C are resized to fit output channel width

of FPN via 1 × 1 convolutions. After this step, a searched

FPN structure is fixed and the second stage searching for the

head will be started based on it. Most parameters for search-

ing head are identical to those for searching FPN structure,

with the exception that the output channel width is adjusted

from 64 to 128 to deliver more information.

For the FPN search part, the controller model nearly con-

verged after searching over 2.8K architectures on the proxy

task as shown in Fig. 2. Then, the top-20 best performing

architectures on the proxy task are selected for the next full

training phase. For the head search part, we choose the best

searched FPN among the top-20 architectures and pre-fetch

its features. It takes about 600 rounds for the controller to
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R
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Figure 2. Performance of reward during the proxy task, which has

been growing throughout the process, indicating that the model of

reinforcement learning works.

nearly converge, which is much faster than that for search-

ing FPN architectures. After that, we select for full training

the top-10 heads that achieve best performance on the proxy

task. In total, the whole search phase can be finished within

4 days using 8 V100 GPUs.

4.1.2 Full Training Phase

In this phase, we fully train the searched models on the MS

COCO training dataset, and select the best one by eval-

uating them on MS COCO validation images. Note that

our training configurations are exactly the same as those

in FCOS for fair comparison. Input images are resized to

short size 800 and the maximum long side is set to be 1333.

The models are trained using 4 V100 GPUs with batch size

16 for 90K iterations. The initial learning rate is 0.01 and

reduces to one tenth at the 60K-th and 80K-th iterations.

The improving tricks are applied only on the final model

(w/improv).
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Decoder Backbone FLOPs (G) Params (M) AP

FPN-RetinaNet @256 MobileNetV2 133.4 11.3 30.8
FPN-FCOS @256 MobileNetV2 105.4 9.8 31.2
NAS-FCOS (ours) @128 MobileNetV2 39.3 5.9 32.0
NAS-FCOS (ours) @128-256 MobileNetV2 95.6 9.9 33.8
NAS-FCOS (ours) @256 MobileNetV2 121.8 16.1 34.7

FPN-RetinaNet @256 R-50 198.0 33.6 36.1
FPN-FCOS @256 R-50 169.9 32.0 37.4
NAS-FCOS (ours) @128 R-50 104.0 27.8 37.9
NAS-FCOS (ours) @128-256 R-50 160.4 31.8 39.1
NAS-FCOS (ours) @256 R-50 189.6 38.4 39.8

FPN-RetinaNet @256 R-101 262.4 52.5 37.8
FPN-FCOS @256 R-101 234.3 50.9 41.5
NAS-FCOS (ours) @256 R-101 254.0 57.3 43.0

FPN-FCOS @256 X-64x4d-101 371.2 89.6 43.2
NAS-FCOS (ours) @128-256 X-64x4d-101 361.6 89.4 44.5

FPN-FCOS @256 w/improvements X-64x4d-101 371.2 89.6 44.7
NAS-FCOS (ours) @128-256 w/improvements X-64x4d-101 361.6 89.4 46.1

Table 2. Results on test-dev set of MS COCO after full training. R-50 and R-101 represents ResNet backbones and X-64x4d-101 represents

ResNeXt-101 (64× 4d). All networks share the same input image resolution. FLOPs and parameters are being measured on 1088× 800,

which is the median of the input size on COCO. For RetinaNet and FCOS, we use official models provided by the authors. For our NAS-

FCOS, @128 and @256 means that the decoder channel width is 128 and 256 respectively. @128-256 is the decoder with 128 FPN width

and 256 head width. The same improving tricks used on the newest FCOS version are used in our model for fair comparison.
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Figure 3. Our discovered FPN structure. C2 is omitted from this

figure since it is not chosen by this particular structure during the

search process.

4.2. Search Results

The best FPN structure is illustrated in Fig. 3. The con-

troller identifies that deformable convolution and concate-

nation are the best performing operations for unary and ag-

gregation respectively. From Fig. 4, we can see that the

controller chooses to use 4 operations (with two skip con-

nections), rather than the maximum allowed 6 operations.

Note that the discovered “dconv + 1x1 conv” structure

achieves a good trade-off between accuracy and FLOPs.

Compared with the original head, our searched head has

dconv3x3 skip
connect conv3x3 skip

connect dconv3x3 conv1x1x y

Figure 4. Our discovered Head structure.

fewer FLOPs/Params (FLOPs 79.24G vs. 89.16G, Params

3.41M vs. 4.92M) and significantly better performance (AP

38.7 vs. 37.4).

We use the searched decoder together with either light-

weight backbones such as MobileNet-V2 [21] or more pow-

erful backbones such as ResNet-101 [7] and ResNeXt-

101 [26]. To balance the performance and efficiency, we

implement three decoders with different computation bud-

gets: one with feature dimension of 128 (@128), one with

256 (@256) and another with FPN channel width 128 and

prediction head 256 (@128-256). The results on the COCO

test-dev with short side being 800 is shown in Table 2. The

searched decoder with feature dimension of 256 (@256)

surpasses its FCOS counterpart by 1.5 to 3.5 points in AP

under different backbones. The one with 128 channels

(@128) has significantly reduced parameters and calcula-

tion, making it more suitable for resource-constrained en-

vironments. In particular, our searched model with 128
channels and MobileNetV2 backbone suparsses the origi-

nal FCOS with the same backbone by 0.8 AP points with

only 1/3 FLOPS. The third type of decoder (@128-256)

achieves a good balance between accuracy and parameters.

Note that our searched model outperforms the strongest

FCOS variant by 1.4 AP points (46.1 vs. 44.7) with slightly

smaller FLOPs and Params. The comparison of FLOPs and
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Figure 6. Correlation between the search reward obtained on the

VOC meta-val dataset and the AP evaluated on COCO-val.

number of parameters with other models are illustrated in

Fig. 7 and Fig. 8 respectively.

In order to understand the importance of weight sharing

in head, we add the number of layers shared by weights

as an object of the search. Fig. 5 shows a trend graph of

head weight sharing during search. We set 50 structures as

a statistical cycle. As the search deepens, the proportion

of fully shared structures increases, indicating that on the

multi-scale detection model, head weight sharing is a ne-

cessity.

We also demonstrate the comparison with other NAS

methods for object detection in Table 3. Our method is able

to search for twice more architectures than DetNAS [2] per

GPU-day. Note that the AP of NAS-FPN [4] is achieved by

stacking the searched FPN 7 times, while we do not stack

our searched FPN. Our model with ResNeXt-101 (64x4d)

as backbone outperforms NAS-FPN by 1.3 AP points while

using only 1/3 FLOPs and less calculation cost.
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Figure 7. Diagram of the relationship between FLOPs and AP with

different backbones. Points of different shapes represent different

backbones. NAS-FCOS@128 has a slight increase in precision

which also gains the advantage of computation quantity. One with

256 channels obtains the highest precision with more computation

complexity. Using FPN channel width 128 and prediction head

256 (@128-256) offers a trade-off.
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Figure 8. Diagram of the relationship between parameters and AP

with different backbones. Adjusting the number of channels in

the FPN structure and head helps to achieve a balance between

accuracy and parameters.

We further measure the correlation between rewards ob-

tained during the search process with the proxy dataset

and APs attained by same architectures trained on COCO.

Specifically, we randomly sample 15 architectures from all

the searched structures trained on COCO with batch size

16. Since full training on COCO is time-consuming, we

reduce the iterations to 60K. The model is then evaluated

on the COCO 2017 validation set. As visible in Fig. 6,

there is a strong correlation between search rewards and

APs obtained from COCO. Poor- and well-performing ar-

chitectures can be distinguished by the rewards on the proxy

task very well.

4.3. Ablation Study

4.3.1 Design of Reinforcement Learning Reward

As we discussed above, it is common to use widely ac-

cepted indicators as rewards for specific tasks in the search,
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Arch FLOPs (G) Search Cost (GPU-day) Searched Archs AP

NAS-FPN @256 R-50 >325.0 333×#TPUs 17000 <38.0
NAS-FPN 7@256 R-50 1125.5 333×#TPUs 17000 44.8
DetNAS-FPN-Faster - 44 2200 40.2
DetNAS-RetinaNet - 44 2200 33.3

NAS-FCOS (ours) @256 R-50 189.6 28 3000 39.8
NAS-FCOS (ours) @128-256 X-64x4d-101 361.6 28 3000 46.1

Table 3. Comparison with other NAS methods. For NAS-FPN, the input size is 1280× 1280 and the search cost should be timed by their

number of TPUs used to train each architecture. Note that the FLOPs and AP of NAS-FPN @256 here are from Figure 11 in NAS-FPN [4],

and NAS-FPN 7@256 stacks the searched FPN structure 7 times. The input images are resized such that their shorter size is 800 pixels in

DetNASNet [2] and our models.
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Figure 9. Comparison of two different RL reward designs. The

vertical axis represents AP obtained from the proxy task on the

validation dataset.

Decoder Search Space AP

FPN-FCOS @256 - 37.4

NAS-FCOS @256 h only 38.7
NAS-FCOS @256 f only 38.9
NAS-FCOS @256 f + h 39.8

Table 4. Comparisons between APs obtained under different

search space with ResNet-50 backbone.

such as mIOU for segmentation and AP for object detection.

However, we found that using AP as reward did not show a

clear upward trend in short-term search rounds (blue curve

in Fig. 9). We further analyze the possible reason to be that

the controller tries to learn a mapping from the decoder to

the reward while the calculation of AP itself is complicated,

which makes it difficult to learn this mapping within a lim-

ited number of iterations. In comparison, we clearly see the

increase of AP with the validation loss as RL rewards (red

curve in Fig. 9).

4.3.2 Effectiveness of Search Space

To further discuss the impact of the search spaces f and

h, we design three experiments for verification. One is to

search f with the original head being fixed, one is to search

h with the original FPN being fixed and another is to search

the entire decoder (f+h). As shown in Table 4, it turns out

that searching f brings slightly more benefits than searching

h only. And our progressive search which combines both f
and h achieves a better result.

4.3.3 Impact of Deformable Convolution

As aforementioned, deformable convolutions are included

in the set of candidate operations for both f and h, which

are able to adapt to the geometric variations of objects. For

fair comparison, we also replace the whole standard 3 × 3
convolutions with deformable 3 × 3 convolutions in FPN

structure of the original FCOS and repeat them twice, mak-

ing the FLOPs and parameters nearly equal to our searched

model. The new model is therefore called DeformFPN-

FCOS. It turns out that our NAS-FCOS model still achieves

better performance (AP = 38.9 with FPN search only, and

AP = 39.8 with both FPN and Head searched) than the

DeformFPN-FCOS model (AP = 38.4) under this circum-

stance.

5. Conclusion

In this paper, we have proposed to use Neural Archi-

tecture Search to further optimize the process of designing

object detection networks. It is shown in this work that

top-performing detectors can be efficiently searched using

carefully designed proxy tasks, search strategies and model

evaluation metrics. The experiments on COCO demon-

strates the efficiency of our discovered model NAS-FCOS

and its flexibility to be used with various backbone archi-

tectures.
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