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Figure 1: Four groups of pose transfer examples. Each visualization group consists of 3 meshes, input pose mesh, input

identity mesh, and our result. For the first two groups, we show the pose mesh from SMPL [16], the identity mesh from

FAUST [4] and our result, the identity mesh of the third group is from MG-dataset[3], the last group shows our pose transfer

result from the animal dataset [24], please refer to supplementary materials for more details.

Abstract

Pose transfer has been studied for decades, in which

the pose of a source mesh is applied to a target mesh.

Particularly in this paper, we are interested in transfer-

ring the pose of source human mesh to deform the tar-

get human mesh, while the source and target meshes may

have different identity information. Traditional studies as-

sume that the paired source and target meshes are ex-

isted with the point-wise correspondences of user annotated

landmarks/mesh points, which requires heavy labelling ef-

forts. On the other hand, the generalization ability of

deep models is limited, when the source and target meshes

have different identities. To break this limitation, we pro-

poses the first neural pose transfer model that solves the
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pose transfer via the latest technique for image style trans-

fer, leveraging the newly proposed component – spatially

adaptive instance normalization. Our model does not re-

quire any correspondences between the source and target

meshes. Extensive experiments show that the proposed

model can effectively transfer deformation from source to

target meshes, and has good generalization ability to deal

with unseen identities or poses of meshes. Code is available

at https://github.com/jiashunwang/Neural-Pose-Transfer.

1. Introduction

Deformation transfer has been drawing consistent atten-

tion over decades and is enabling many applications. For

example, one can easily transfer the pose from the mesh of

one person to another in the games and movies. However, It

is very challenging when there is a huge ”shape gap” given

very different identities of source and target meshes, as il-

lustrated in Fig. 1. To make this feasible, previous works de-

mand re-enforcing the correspondence between source and

target meshes, additional information, such as point-wise
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correspondence [24], an auxiliary mesh [26], human key

point annotations [2], skeleton pose [5], dense correspon-

dence [10], and so on. Unfortunately, it is non-trivial, and

time-consuming to obtain such additional inputs for defor-

mation transfer.

In this work, we propose a deep learning model for hu-

man pose transfer, which transfers the pose from a source

mesh to a target identity mesh, as shown in Fig. 2. Our

model does not rely on any extra auxiliary inputs that im-

plicitly or explicitly build correspondence, and can work for

source and target mesh with vertices in random and differ-

ent order. These flexibilities make our model very conve-

nient to use in practice and can directly work on identity

mesh obtained from arbitrary sources, which however are

extremely challenging to be achieved by the the framework

of existing deformation based approaches. As the output,

our model produces a human mesh with the identity from

the target mesh and the pose from the source mesh.

Essentially, our key idea is to re-purpose style transfer

techniques, which is widely used in image analysis for the

deformation transfer problem. Our model takes the identity

information of the target mesh as a “style” and transfer it

to the source mesh to achieve a pose transfer. Rather than

explicitly learn to deform the target meshes from source

meshes, we stack several convolutional layers to gradually

encode the pose information from source meshes, and then

decode it back to the desired output under the guide of the

features learned from the target mesh. Inspired by the great

success of Spatially Adaptive Instance Normalization layers

(SPAdaIN) [12] for 2D image style transfer, we introduce

it to 3D domain to process the point clouds together with

PointNet-like network architecture [22].

In SPAdaIN for 2D image style transfer, an affine trans-

formation is learned from each pixel in the target image

(“style”) and applied to the instance normalized feature of

the corresponding pixel in the source image (“content”). We

design our model by making an analogy between the image

pixel and the mesh vertex. In particular, we first learn a

feature vector for each vertex in the source mesh (“pose”)

and transform them using an affine transformation learned

from a vertex in the target mesh (“identity”). However, this

would not work naively, since the correspondence between

source and target is unknown. To make the feature on the

source mesh invariant to the vertex order permutation, the

convolutional filters of 1× 1 are utilized to each individual

point and an instance normalization (among all the points)

is appended to exchange context global-wise. The learned

features can then be associated with the target mesh ver-

tices in arbitrary permutation for style transfer. We found

this model effectively transfers the unseen identity onto the

source pose mesh and produces much more accurate hu-

man shape than the state-of-the-art approaches which even

requires the additional auxiliary inputs.

Figure 2: Pose is transferred from source to the target

mesh. Different from traditional methods, we only require

the pose and identity mesh but not any extra input.

Contributions. The contributions of this paper are summa-

rized as follows. To the best of our knowledge, we propose

the first end-to-end deep learning model that deforms an

identity mesh with the pose from another mesh, even though

the identity mesh is unseen and with more fine-grained ge-

ometry details. Our model does not require any additional

auxiliary mesh or extra knowledge to bridge the huge vi-

sual gap between source and target meshes. Our model is

also convenient to use in practice since the pose and identity

mesh can come with different vertices order. Moreover, our

model is robust to pose mesh geometry noise. Extensive ex-

periments verify that our model is capable of inferring and

transferring the poses from source to target meshes, and the

result is invariant to the mesh vertex order between source

and target meshes.

2. Related Works

Deformation transfer. Deformation transfer aims to pro-

duce a new 3D shape given a pair of source and target

shapes as well as a deformed source shape, making the

target shape do the same deformation (Fig. 2). However,

some traditional methods based on skinning skeleton ani-

mation [14] require additional manual adjustment. Alterna-

tively, many works leverage affine transformations to gen-

erate target shapes [24, 26, 27]. Sumner et al. [24] trans-

fer deformation gradients, but requires corresponding land-

marks to handle the differences between shapes. Baran et

al. [1] assume semantic relationships between the poses of

two characters. However, the requirement of semantic sim-

ilarity pairs limits the usability of this approach. Ben et al.

[2] deform to target shapes with the help of a set of con-

trol cages. Chu et al. [5] proposed to use a few examples

to generate natural results. Even with impressive success,

the reliance on auxiliary data makes it difficult to automati-

cally transfer pose for graphics-based methods. To address

this, Gao et al. [9] proposed VC-GAN, using cycle consis-
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tency to achieve the deformation transfer. But this approach

also raises another problem, losing versatility due to over-

reliance on training data. Whenever dealing with new iden-

tities, it needs to gather training data and retrain the model.

Deep learning for non-rigid shape representation. [25,

15] proposed mesh variational autoencoder to learn mesh

embedding for shape synthesis. However, they merely

use the fully-connected layer which will consume a large

amount of computing resources. [8] using mesh convolu-

tion to capture the triangle faces feature of 3D mesh. Al-

though their methods use spatial and structural information,

the features represented by faces are not suitable for our

task. Qi et al. proposed PointNet [22] to extract features

from unorganized points cloud, but the missing edge in-

formation will result in deformed 3D shape with outliers.

Therefore, we use mesh as the representation of 3D shape,

but use shared weights convolution layers as the network

structure of encoder.

Conditional normalization and style transfer. Several

conditional normalization methods have been proposed

[7, 6, 12, 23]. At first, they are used in style transfer and

then for other vision tasks [13, 18, 20, 17, 28, 21] . External

data is needed in these works. After normalizing the mean

and bias of the activation layer, through using these exter-

nal data they learn the affine transformation parameters to

denormalize the activation layer. Park et al. [19] proposes

a similar idea to help with the image synthesis but from a

spatial way using the spatially-varying semantic mask. This

inspires us to apply spatial 3D mesh as external data to gen-

erate our expected mesh. Since the 3d coordinates of the

point which spatially and naturally are one of the most im-

portant representations of 3D data, the idea of using con-

ditional normalization directly in the spatial sense is very

intuitive and the results from the experiments demonstrate

the effectiveness of this method.

SPAdaIN vs. other Conditional normalization. Partic-

ularly, we emphasize the difference that: (1) Compare to

SPADE [19], we using instance normalization. Since each

instance may have different features to guide the transfer,

normalize the activation of the network in channel-wise is

not reasonable. So, we normalize the spatially-variant pa-

rameters instance-wise, which is more suitable for the neu-

ral pose transfer task. (2) Compare to CIN [7], our normal-

ization parameter vectors are not selected from a fixed set of

identities or pose, the corresponding parameters γ and β are

adaptively learned, therefore, their approach cannot adapt

to new identities or pose without re-training. Also, their pa-

rameters are aggregated across spatial axes; thus they may

lose some detailed feature in particular spatial positions. (3)

AdaIN [12] is also not suitable for pose transfer. Though

AdaIN can handle arbitrary new identities or pose as guid-

ance, there are no learnable parameters in AdaIN. Due to

Figure 3: Influence of different parameters on 3D human

mesh model. Each row represents the change of the mesh

when changing one parameter from α, β, θ. α controls the

mesh identity, β controls the mesh pose and θ indicates the

vertices order. The mesh color of last row encodes the mesh

vertex index.

the lake of learnable parameters, when adopting AdaIN as

normalization, the network will tend to imitate the shape of

M rather than use it as a condition to produce new posture.

3. Methods

In this section, we introduce our deep learning model

for human pose transfer (Fig. 4). Our model is highly in-

spired by image style transfer. Taking the source mesh car-

rying the pose, our model produces a feature for each vertex

encoding both local details and global context. The per-

vertex features are then concatenated with the vertex loca-

tions in the target mesh providing identity, which is fed into

the style transfer decoder consists of SPAdaIn ResBlocks.

Throughout the decoder, each feature produces one vertex

in the output mesh under the guide of a vertex from the tar-

get mesh. The final output mesh inherits the pose from the

source mesh and the identity from the target. The mesh ver-

tex order is consistent with the identity mesh.

3.1. Problem Definition

We represent 3D human mesh by M(α, β, θ). As shown

in Fig. 3, α denotes the parameters of mesh identity, which
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Figure 4: Network Architecture. The blue part is permutation invariant encoder, and the yellow part is SPAdaIN guided

decoder. Given Mid and Mpose as input, we produce mesh transferred to new posture. The symbol ⊙ denotes the operation

of concatenation.

Figure 5: Detailed Network Component Architecture. (a) Architecture of Pose Feature Extractor, (b) Architecture of

SPAdaIN and (c) Architecture of SPAdaIN ResBlock.

controls the mesh shape, β represents different human pos-

ture, θ indicates the vertices order. Given two meshes

Mid = M(α1, β1, θ1) and Mpose = M(α2, β2, θ2), our

goal is to transfer the pose to the identity mesh by producing

output mesh Moutput = M̂(α1, β2, θ1).

3.2. Permutation Invariant Pose Feature Extractor

We first introduce our pose feature extractor E. The en-

coder aims to extract the feature Fpose for the orderless

input mesh vertices. The encoder E takes Mpose vertices

coordinates through pose feature extractor as illustrated in

Fig. 5 (a). The pose feature extractor consists of 3 stacked

1 × 1 convolution and InstanceNorm layers, all activation

functions applied for convolution layers are ReLU. Then

the encoder concatenates pose features with the vertices co-

ordinates of template identity mesh Mid to produce latent

embedding Z = Fpose ⊙Mid eventually (⊙ denotes con-

catenation). One architecture choice needs to be discussed

is why Fpose are tensors rather than global vectors. Since

the vertex orders of different training data are not consis-

tent, and normalization is essential to aggregate the global

context, InstanceNorm (IN) is the only choice to normal-

ize the features. However, if E encodes pose feature as a

global vector and then attaching it to Mid, calculating IN

will lead the pose features to be normalized to zero. So we

prefer to learn the pose feature with the same spatial size as

Mid. In principle, this will allow the whole pipeline to pre-

serve spatial information and be free from the requirement

of point-wise correspondence between Mid and Mpose.

3.3. Style Transfer Decoder

In this section, we introduce our novel condition normal-

ization layer SPAdaIN first. Then we describe the decoder

architecture build upon SPAdaIN ResBlock.

SPAdaIN. Extending previous style transfer works [7,

12, 19], we propose spatially conditional normalization

to generate the 3D human shape applied to pose transfer

tasks while keeping the identity of meshes. In particu-

lar, SPAdaIN is a generalization of [12, 19] to deal with

points. Similar to IN, the activation is normalized across

the spatial dimensions independently for each channel and

instance, and then modulated with learned scale γ and bias

β. Note that, here we assume that in the i-th layer, M

is the 3D model providing identity, V i is the number of

3D shape vertices in this layer, Ci is the number of fea-

ture channel, N denotes the batch size, and h is the activa-

tion value of network (the footnote indicate specific index

where n ∈ N, c ∈ Ci, v ∈ V i). The value normalized by
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SPAdaIN can be computed as follows,

µi
n,c =

1

V i

∑

v

hi
n,c,v (1)

σi
n,c =

√
1

V i

∑

v

(
hi
n,c,v − µi

n,c

)2
+ ε (2)

SPAdaIN(h,M) = γi
v(M)

(
hi
n,c,v − µi

n,c

σi
n,c

)
+ βi

v(M)

(3)

where γ and β are learnable affine parameters, ε = 1e − 5
for numerical stability. The detailed SPAdaIN module

structure is shown in Fig. 5 (b). In SPAdaIN the external

data Mid is fed into 2 different 1× 1 convolution layers to

produce the modulation parameters γ and β. The parame-

ters are multiplied and added to the normalized feature.

Decoder. The decoder architecture we employed is inspired

by the style transfer task. We first feed the latent embed-

ding Z into the decoder, consisting of multiple SPAdaIN

ResBlocks. As shown in Fig. 4, the overall architecture has

3 SPAdaIN ResBlocks. Fig. 5 (c) illustrates the detail of

SPAdaIN ResBlock architecture. Each SPAdaIN ResBlock

consists of SPAdaIN blocks followed by a 1×1 convolution

layer and ReLU activation function, and 3 identical units are

organized in the form of residual block [11]. The output of

this operation is then fed to a tanh layer, generating the final

output Moutput.

3.4. Loss function

To efficiently train our network, we introduce and define

the loss function L as follows,

L = Lrec + λedg · Ledg (4)

where λedg is coefficients of edge regularization.

Reconstruction Loss. The loss aims to regress the ver-

tices close to its correct position.We pre-process the ground

truth with the same vertices number as template identity

model and train the network using the supervision of point-

wise L2 distance between the mesh predicted by our model

M̂(α1, β2, θ1) and the ground truth mesh M(α1, β2, θ1).

Lrec = ||M̂(α1, β2, θ1)−M(α1, β2, θ1)||
2
2 (5)

Edge Length Regularization. Directly regress vertices

position will not guarantee that the transferred of avoiding

producing the over-length edges, since we tend to make the

generated model has smooth surface. To address this prob-

lem, we further propose edge length regularization penaliz-

ing the long edges. Specifically, this regularization enforces

the output mesh surface to be tight, resulting in a smooth

surface. Inspired by [10], let N (p) be the neighbor of vertex

p, the edge length regularization can be defined as follows,

Ledg =
∑

p

∑

v∈N (p)

||p− v||22 (6)

4. Experiment

4.1. Experimental setup

Datasets We use SMPL model [16] to generate training

and test data by randomly sampling the parameter space.

To create training data, we generate meshes of 16 identi-

ties with 400 poses, and randomly pick two as a pair for

training. The ground truth is obtained by running SMPL

model[16] with the desired shape and pose parameters from

two meshes respectively. In order to be invariance to the

vertex order, the mesh vertices are shuffled randomly be-

fore feeding into the network. Accordingly, the ground truth

mesh is shuffled in the same manner as the identity mesh

such that they are point-wise aligned to its corresponding

input mesh.

In the test step, we evaluate our model for transferring

the seen and unseen poses to new identities. To do so, we

create 14 new identities that are not in the training set. We

use these new identities to form 72 pairs with randomly se-

lected training pose, and 72 pairs with newly created poses.

To further test how our model generalizes, we employ the

meshes from FAUST [4] and MG-dataset[3]. These meshes

are not strictly consistent with SMPL but with more fine-

grained geometry details and more realistic.

For all input meshes, we shift them to the center and

scale them to the unit sphere, our method is robust against

the global scale.

Implementation details. The hyper-parameters to train

our network are as follows. We use Adam optimizer with

the learning rate as 5e− 5. The λedg in the loss function is

set as 5e−4. The model is trained for 200 epochs with batch

size equalling to 8 on a single GTX 1080Ti GPU. Please re-

fer to the supplementary material for more detailed network

architecture.

Evaluation Metrics. Since the output mesh is point-wise

aligned with the ground truth, we use Point-wise Mesh Eu-

clidean Distance (PMD) as our evaluation metrics. Specifi-

cally,

PMD =
1

|V |

∑

v

||Pv −Qv||
2
2 (7)

where we have mesh vertices Pv ∈ M̂(α1, β2, θ1) and

Qv ∈ M(α1, β2, θ1).

4.2. Comparison to Deformation Transfer

In this section, we compare to deformation transfer base-

lines and show both qualitative and quantitative results.

5835



Figure 6: Qualitative comparison of seen pose. From left to right, we show in each row: input identity mesh, input pose

mesh, the results of DT [24] using 5 control points and 13 control points respectively, our results and the ground truth. Our

predictions have more natural joints movement.

Figure 7: Qualitative comparison of unseen pose. Both Mid and Mpose are unseen. From left to right, we show in each

row: input identity mesh, input pose mesh, the results of DT [24] using 5 control points and 13 control points respectively,

our results and the ground truth. Our predictions are more natural at joints.

To the best of our knowledge, there are no learning-based

methods for deformation transfer designed for new identi-

ties yet. One of the most effective methods is deformation

transfer (DT) [24], which however, has to rely on the addi-

tional control points and a third mesh, as the auxiliary input.

To this end, we provide DT the third mesh and run it with

5 and 13 control points. The qualitative results are shown

in Fig. 6 and Fig. 7 and quantitative results are shown in

Tab. 1. As can be seen, our model learns on seen poses

to transfer poses effectively to new identities in the test-

ing set, while the PMD of our method is significantly lower

than that of DT which even has the additional inputs. This

greatly validates the effectiveness of our model in learning

to deform meshes. Furthermore, for those poses that have

never been seen during the training stage, our model demon-

strates very good generalization ability and still produces
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reasonable good results as shown in Fig. 7. Note that DT is

not a learning-based approach such that it has quite similar

performance over the training and testing set.

To demonstrate that our model is invariant to vertex per-

mutation of meshes, we further run our model on the same

pair of meshes with the identity mesh shuffled in differ-

ent orders. Fig. 8 shows the input and output meshes with

color encoding the vertex index. As can be seen, our model

can produce similar output meshes with the input identity

meshes in different shuffles. This shows that the output ver-

tex order is maintained the same as the identity meshes.

Table 1: Quantitative comparison of average PMD.

Pose Type

PMD ↓ (×10−4)

DT(5) [24] DT(13) [24] Ours

seen-pose 7.3 7.7 1.1

unseen-pose 7.2 6.7 9.3

Figure 8: Visualization of the vertex index color encod-

ing. We show two pairs of input meshes with different

vertices orders and the predict results. From left to right,

Mpose, Mid and Moutput. The order of our pose transfer

results are consistent with the identity mesh.

4.3. Ablation Study

In this section, we verify the effectiveness of the key

components of our model by some ablation study.

We start from a naive network architecture, where the de-

coder only consists of several 1-dimensional convolutional

filters (conv1d). We then sequentially add ResBlock and

SPAdaIN to the network. We name these two naive methods

concat1 and w/o SPAdaIN. The quantitative evaluations are

shown in Tab. 2, and some examples can be found in Fig.

9. As can be seen, naive conv1d (concat1) does not per-

form well, and the surface details are added back gradually

when adding more components to the network. Particularly,

SPAdaIN is very helpful in learning the pose transfer, which

Figure 9: Qualitative ablation study results. We show the

generation results of (a) our naive baseline concat1, (b) our

model without SPAdaIN modules, (c) our model without

edge regularization and (d) our full model. As we can see,

SPAdaIN is very helpful in learning the pose transfer and

edge loss can help to generate smoother results.

Figure 10: Qualitative comparisons of Non-SMPL based

identity. Comparison of using FAUST [4] and MG-

dataset[3] as identity mesh respectively.

reduces the error from 8.3 to 1.1 on seen poses and from

13.7 to 9.3 on unseen poses. This means the style transfer

network can effectively transfer the identity as a style onto

the target mesh.

We also evaluate the impact of edge regularization loss

on the model performance. As compared in Tab. 2, edge

regularization loss consistency reduces the PMD on the test-

ing dataset of both seen and unseen poses. From Fig. 9, the

results are smoother if trained with the edge loss, compared

to those without using edge regularization loss.
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Table 2: Quantitative ablation study for seen and unseen

pose. We show the metrics of PMD with a naive basline

(concat1), SPAdaIN and edge regularization disabled re-

spectively, full denotes our full model.

Pose Source

PMD ↓ (×10−4)

concat1 w/o SPAdaIN w/o edg full

seen-pose 12.1 8.3 1.2 1.1

unseen-pose 16.9 13.7 10.1 9.3

Figure 11: Qualitative example of Non-SMPL based

pose. We show results using the mesh from FAUST [4] as

pose mesh. Our system has the ability to transfer pose from

Non-SMPL based mesh.

4.4. Generalization Capability

In this section, we investigate the generalization capabil-

ity of our method from the cross source data and robustness.

Specifically, we test our model with non-SMPL based iden-

tity and pose meshes. It is worth noting that the training

data created by SMPL are highly constrained and lack of

geometry details. Our deep learning model can handle the

details beyond SMPL capacity decently.

Non-SMPL based identity We first test how our model

performs with a human mesh that is not strictly an SMPL

model. To do so, we take meshes from FAUST [4] and

MG-dataset [3] which include dressed human meshes as the

identity meshes. The model we get through SMPL training

dataset does not require the order of the mesh vertex points

or the number of the points as input, but it has to set the

same number of points of pose mesh, as that of the iden-

tity mesh points. SMPL meshes have 6890 points each and

FAUST has the same number of points as SMPL. For MG-

dataset [3] which has meshes with 27554 each, we adopt

the interpolation to automatically increase the number of

points of pose mesh and this is a very simple process. In

Fig. 10, we can see that, even with the identity mesh that is

not from SMPL, our model still produces the correct pose

while maintains the geometry details that are not encoded

by SMPL, e.g., beard and the cloth. On the other hand, DT

Figure 12: Robustness to noise. When using pose mesh (a)

with noise, our method (c) still performs very well, how-

ever, DT [24] (b) may maintain undesirable geometry noise.

sometimes produces more obvious artifacts near fingers.

Non-SMPL based pose. We then test our system with a

non-SMPL based source mesh which provides the pose. We

give examples using a mesh from FAUST [4] as pose mesh

in Fig. 11. As shown in Fig. 11, our model still managed to

produce reasonably good results.

Robustness to noise Lastly, we test the model robustness

against noise in the pose mesh. We manually add noise to

the pose mesh by adding random perturbations to point co-

ordinates, since there may be some noise during application

sometimes. Surprisingly, as shown in Fig. 12, our method

is still doing well.

5. Conclusion

In this paper, we propose an efficient deep learning based

architecture to efficiently transfer the pose from source

meshes to target meshes. The whole network is designed as

generalizing the style transfer in the image domain to deal

with points. The novel component – SPAdaIN is thus in-

troduced to implement our idea. Strikingly, we empirically

validate and show that our network has the potential ability

in generalizing to transfer poses to unseen meshes and be-

ing invariant to different vertex orders of source and target

meshes. Comparing with the other methods, we show that

our model can work well in transferring poses in noisy con-

ditions and in handing arbitrary vertex permutation, most

importantly without relying on the additional input from

auxiliary meshes or extra knowledge as previous works.
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Bounded biharmonic weights for real-time deformation.

ACM Transactions on Graphics (proceedings of ACM SIG-

GRAPH), 30(4):78:1–78:8, 2011. 2

[15] Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh

Makadia. Deformable shape completion with graph convolu-

tional autoencoders. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1886–

1895, 2018. 3

[16] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard

Pons-Moll, and Michael J Black. Smpl: A skinned multi-

person linear model. ACM transactions on graphics (TOG),

34(6):248, 2015. 1, 5

[17] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.

Which training methods for gans do actually converge?

arXiv preprint arXiv:1801.04406, 2018. 3

[18] Takeru Miyato and Masanori Koyama. cgans with projection

discriminator. arXiv preprint arXiv:1802.05637, 2018. 3

[19] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan

Zhu. Semantic image synthesis with spatially-adaptive nor-

malization. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 2337–2346,

2019. 3, 4

[20] Ethan Perez, Harm de Vries, Florian Strub, Vincent Du-

moulin, and Aaron Courville. Learning visual reasoning

without strong priors. arXiv preprint arXiv:1707.03017,

2017. 3

[21] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-

moulin, and Aaron Courville. Film: Visual reasoning with a

general conditioning layer. In Thirty-Second AAAI Confer-

ence on Artificial Intelligence, 2018. 3

[22] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 652–660,

2017. 2, 3

[23] Cheng Shi12, Chun Yuan, Jiayin Cai, Zhuobin Zheng12,

Yangyang Cheng12, and Zhihui Lin12. Conditional kro-

necker batch normalization for compositional reasoning.

2018. 3

[24] Robert W Sumner and Jovan Popović. Deformation transfer
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