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Abstract

Visual Question Answering (VQA) methods have made

incredible progress, but suffer from a failure to generalize.

This is visible in the fact that they are vulnerable to learn-

ing coincidental correlations in the data rather than deeper

relations between image content and ideas expressed in lan-

guage. We present a dataset that takes a step towards ad-

dressing this problem in that it contains questions expressed

in two languages, and an evaluation process that co-opts a

well understood image-based metric to reflect the method’s

ability to reason. Measuring reasoning directly encourages

generalization by penalizing answers that are coinciden-

tally correct. The dataset reflects the scene-text version of

the VQA problem, and the reasoning evaluation can be seen

as a text-based version of a referring expression challenge.

Experiments and analyses are provided that show the value

of the dataset. The dataset is available at www.est-vqa.org.

1. Introduction

The fact that Visual Questions Answering [3] methods

are able to answer natural language questions that relate to

a wide variety of image contents has been an incredible de-

velopment. The limitations of existing methods, and partic-

ularly their tendency to focus on spurious correlations in the

data, have been repeatedly identified (see [1, 7, 10], for ex-

ample). This is visible in the tendency of methods to answer

questions on the basis of text alone. The answer to ‘How

many’ questions, for instance, is predominantly ‘Two’.

Focusing on coincidental correlations in the data repre-

sents a failure to generalize. These correlations are not sta-

ble across datasets, meaning that once the test data moves

beyond the distribution of the training set, the correlations

fail to hold, and methods that exploit them fail to work. The

underlying reasoning, in contrast, is stable across datasets.
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Q: What is the cheapest fruit?

Figure 1. By requiring that vision-and-language methods provide

evidence for their decisions encourages the development of ap-

proaches that depend on reasoning, and thus that are better able to

generalize to new situations. It also helps to build up confidence

in the provided answer.

Encouraging VQA methods to reason about the image con-

tent is thus critical to achieving methods that generalize.

One of the underlying problems with encouraging VQA

methods to generalize has been that it is impossible to tell

whether a method arrived at the right answer through for

the right reasons. An answer is equally correct whether it

results from analysis of the underlying reasoning or through

exploiting a coincidental correlation in the data. A series

of works have developed more sophisticated measures of

performance for vision and language problems [2, 7, 36],

and this work falls in this category. What distinguishes this

approach is that it uses image-based grounding to encourage

generalization, despite the fact that it is not actually required

to achieve the desired task.

We propose here an approach to measure VQA perfor-

mance that encourages generalization by demanding that

the algorithm justifies its reasoning (see Fig. 1). Previous

methods have applied the same rational, but suffered be-
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cause the form in which the reason must be provided is

constrictive [33, 35]. We show here that it is possible in-

stead to evaluate reasoning by only requiring a method to

provide a relatively simple indication of which area of the

image it has based its answer on. If the method provides the

correct answer and the correct image region then it is likely

that it has employed the right reasoning. Using image re-

gions, or more accurately bounding boxes, as an evaluation

metric also has the advantage that Intersection-over-Union

(IoU) measures are well understood in the field.

The version of the VQA problem that we apply this ap-

proach to is Scene Text VQA. Several recent works [4, 29]

have revealed that current VQA models perform badly on

text VQA datasets, so it represents a compelling challenge

falling within the existing framework. The various forms

of text VQA problem are also of great practical importance,

because text represents a critical cue to understand the con-

tent of an image. More than this, text VQA problems are

typically less susceptible to solve through exploiting coin-

cidental correlations in the data.

A variety of text-based VQA datasets [4, 15, 24, 29] have

been proposed. However, there is still a significant gap be-

tween current algorithm performance and that required to

support practical applications [4, 24, 29]. Another moti-

vating factor in selecting text-based VQA rather than the

generic version of the problem is that the text-based ver-

sion of the problem is less susceptible to n-way classifica-

tion over a fixed vocabulary. This is due to the fact that

the range of text appearing in images is quite broad. The

classification-based approach has repeatedly been shown to

be susceptible to overfitting [1, 7]. Text-based VQA re-

quires the development of alternative approaches, some of

which will hopefully generalize.

Fig. 2 depicts some of the challenges with existing scene-

text based VQA system. For example, Fig. 2(a) is a sample

question that can be answered without reference to any tex-

tual content; while the question in Fig. 2(b) could have more

than one correct answer; the question in Fig. 2(c) requires

prior knowledge to answer; and finally in Fig. 2(d), the an-

swer can not be obtained directly from the text in the image,

but require other skills.

Empirical results presented in Fig. 3 demonstrate that

current VQA approaches rely heavily on a pre-defined an-

swer space constructed by analysis of the answers in the

training set, and thus limiting generalization. As shown in

Fig. 3(b), their dependence on superficial image features

can render conventional VQA methods sensitive to image

modifications that do not change the semantics. Fig. 3(c)

and 3(d) demonstrate their propensity to generate an answer

even when the required information is not present.

Text-VQA [29] employed the generic VQA accuracy as

the performance metric, while ST-VQA [4] used a soft score

metric inspired by the optical character recognition com-

munity. Both of these metrics are results-oriented, which

means that a prediction is deemed correct if it is identical to

the ground-truth. They do not assess the reasoning process.

Such classification-based VQA models are able to achieve

impressive performance but they are prone to overfit a fixed

answer space and generalize poorly to other datasets.

To address these issues, we propose a new scene-text

based VQA dataset called ‘Evidence-based Scene Text Vi-

sual Question Answering’ (EST-VQA). Based on this, three

tasks namely cross language challenge, localization chal-

lenge and traditional challenge are introduced to motivate

the creation of solutions with practical value from various

aspects. Also, a series of baseline experiments were con-

ducted to establish a lower bound for these three challenges.

The main contributions of this paper are outlined as follows:

• Dataset: The EST-VQA dataset provides questions,

images and answers, but also a bounding box for each

question that indicates the area of the image that in-

forms the answer. We refer to such bounding boxes as

evidence. The dataset is intended to enable the devel-

opment of text VQA methods that are closer to the lev-

els of performance required by practical applications,

but also to encourage the development of general VQA

methods that generalize.

• Evaluation Metric: We introduce an Evidence-based

Evaluation (EvE) metric, which will require a VQA

model to provide evidence to support the predicted an-

swer. For this purpose, a new VQA model is also pro-

posed. Under this new metric, it is anticipated that

it will be much more difficult for naive classification

models to achieve inflated performance.

• Bilingual: To the best of our knowledge, the pro-

posed EST-VQA is the first bilingual scene text VQA

dataset that includes both English and Chinese ques-

tion and answer pairs. The fact that the proposed

dataset embodies questions in two languages further

rewards methods that generalize well. It is more diffi-

cult for a method to exploit superficial correlations in

questions expressed in multiple languages. The lan-

guages chosen are also particularly grammatically dis-

tinct, and reflect culturally distinct populations, which

leads to different question statistics, and further en-

courages generalization.

1.1. Related Work

Visual Question Answering has gained significant atten-

tion recently, partly because it seems so unlikely that a

method might be capable of answering all possible ques-

tions about all possible images[3, 22]. Readers are encour-

aged to refer to [12, 34] for a complete overview. Due to

space constraint, this section only reviews the most relevant

works to this paper, i.e., text-based VQA.
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Q: Does this look like a face to 

you?

A: yes

(a)
(a)

Q: What is one of the keys on the 

keyboard?

A: backspace

(b)
(b)

Q: What language is this?

A: Hebrew 

(c)

Q: What time is on the watch?

A: 1:35

(d)

Figure 2. Some example images and QA pairs from the Text-VQA proposed in [29]. Four different types of issues are shown. (a) questions

that can be answered without reading image text; (b) questions that have more than one correct answer; (c) questions that require a large

amount of external knowledge to answer; (d) questions that require skills that cannot be learned from the training data alone.

Q: What state does this team play for?

(a) Original Image (b) Cropped Image w/ text (c) Cropped Image w/o text (d) Occluded Image

Evidence-Based:

Conventional: Texas

Texas Texas

Virginia

NO TEXT DETECTED

Texas Texas

NO TEXT DETECTED

Figure 3. A comparison of conventional (LoRRA [29]), and evidence-based VQA methods.
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Figure 4. Illustration of the mainstream VQA models. Dq , Di, Do

and Dh are the dimensions of the word embedding, image feature,

OCR token embedding and hidden vector representations respec-

tively. N , N
′

and P indicate question length, number of OCR

tokens and answer space. Blocks with dashed lines are optional

modules used for text-based VQA.

1.2. Text­based VQA

In contrast to generic VQA datasets [12, 34], text-based

VQA datasets pay more attention to text related questions

where a VQA model is required to read and understand tex-

tual content in an image. In [29], the authors proposed a

dataset and baseline model, called Text-VQA and LoRRA

respectively. LoRRA follows the structure of mainstream

VQA models (see Fig. 4) where image features and word

embedding are fused to train a classifier. Later, two other

similar datasets were introduced, i.e., ST-VQA [4] and

OCR-VQA [24]. All these three datasets provide images

with text related question and answer pairs. However, there

Dataset
Train + Val Test

Image Source
# I # Q # I # Q

[4] 19k 26k 3k 4k [6, 8, 13, 14, 17, 23, 32]

[24] 180k 900k 20k 100k [9]

[29] 25k 39k 3k 5k [16]

ours 21k 23k 4k 5k [5, 13, 14, 20, 25, 31, 32]

Table 1. A comparison of the amount and source of images be-

tween different text-based VQA datasets. #I and #Q indicate the

number of images and questions respectively.

are several important differences between them, as well as

to our proposed dataset:

Diversity: Table 1 shows the size and image sources of

existing datasets and our dataset. Both of the Text-VQA

[29] and OCR-VQA [24] images came from a single im-

age database which is Open Images v3 dataset [16] and

Book Cover Dataset [9] respectively. While ST-VQA [4]

was built upon a combination of public image datasets that

include multiple tasks, e.g., text detection [13, 32], image

classification [6], generic visual question answering [8], etc.

It is noteworthy that although [24] has the highest amount of

images and QA pairs, the images are all book covers, thus

the diversity of images and questions are very limited. EST-

VQA dataset stands out among other text VQA datasets

with the consideration that existing datasets pay more at-

tention to the question answering part, and the OCR part is

almost ignored in both training and evaluation of the model.

Evaluation Metric: [29] employs a widely used VQA ac-
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(a) English Question

(b) Chinese Question

Figure 5. Distribution of first four words in question sets of EST-

VQA.

curacy which was first proposed in [7]. Under this metric,

each question has 10 answers that are labeled by different

human annotators. Supposed that the prediction of a VQA

model is ans, then the score for a single sample is calcu-

lated as:

sv(ans) = min{
#humans that said ans

3
, 1} (1)

where # indicates the number of human annotated labels

that are identical to the predicted answer. This metric is ro-

bust against the incorrect answers given by some annotators.

However, it is clear that only 4 discrete scores would ap-

pear, i.e., {0, 1

3
, 2

3
, 1}. In [4], Levenshtein distance [18] was

proposed to softly penalize a mistake. Given the predicted

answer ans and ground-truth label gt, then the normalized

Levenshtein similarity score sl is given as:

sl(ans, gt) =

{

1−NL(ans, gt), NL(ans, gt) < τ

0, NL(ans, gt) ≥ τ

(2)

where τ is a penalty threshold, and NL is the normalized

Levenshtein distance between ground-truth and prediction.

2. Proposed Dataset: EST-VQA

A fundamental hypothesis in EST-VQA dataset is that a

VQA model should answer a question correctly based on

the textual content in an image. Therefore, we separate our

scene text VQA tasks into two parts, i.e., 1) text spotting

and 2) question answering. In this section, we describe the

process to build the EST-VQA dataset. Also, we will detail

the evidence-based evaluation metric and the new tasks for

EST-VQA dataset.

2.1. Data Collection

Images: As EST-VQA dataset is designed for scene text

VQA tasks, we collected a total of 20,757 images from pub-

licly available scene text detection and recognition datasets.

Specifically, images annotated with English questions and

answers are obtained from Total-Text [5], ICDAR 2013

[14], ICDAR 2015 [13], CTW1500 [20], MLT [25], and

COCO Text [32]. Whereas, images with Chinese questions

and answers are collected from LSVT [31]. All the images

originated from these scene text datasets are comprised of

daily scenes that include both indoor and outdoor settings.

Questions and Answers: The proposed EST-VQA dataset

consists of 15,056 English questions and 13,006 Chinese

questions. The question and answer pairs could be formed

in cross-language e.g., an English question queries the name

of a Chinese restaurant so that the answer could be a Chi-

nese text and vice versa for Chinese question. For the col-

lection of question and answer pairs, annotators were re-

quested to come up with questions that can be answered

only by reading texts in the images. In order to avoid the

question that does not require reading any text in the image,

annotators are enforced to label a corresponding quadrilat-

eral bounding box of the textual answer. The annotated

bounding box will then serve as an evidence to support the

answer. Moreover, yes/no questions and ambiguous ques-

tions that could have multiple correct answers are prohib-

ited. Fig. 5 shows the common types of question, it is clear

that most of the English questions start with “what”, and

follow by ‘is’ and ‘the’. However, the composition of Chi-

nese questions is far more complex than the English ques-

tions due to differences in grammar, vocabulary and other

characteristics of the Chinese language. Fig. 6 shows the

distribution of the length of questions and answers. Differ-

ent from English words which can be segmented by space

directly, Chinese words are composed of multiple Chinese
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Figure 6. Percentage of question and answer length in EST-VQA

dataset. Questions are tokenized by words. En and Ch stand for

English and Chinese respectively.

Set
English Chinese All

# I # Q # I # Q # I # Q

Train 11,383 12,638 9,374 10,506 20,757 23,144

Test 2,267 2,514 2,215 2,500 4,482 5,014

Total 13,650 15,152 11,589 13,006 25,239 28,158

Table 2. Volume of the EST-VQA dataset.

characters in a continuous sentence. Therefore, we use [30]

to tokenize Chinese questions for counting the percentage

of question length. From Fig. 6, it is clear that most of the

English and Chinese questions have between 6 to 8 words,

and the majority of their answers are of a single word.

In summary, as shown in Table 2, 25,239 images and

28,158 QA pairs are separated into 20,757 images with

23,144 questions for the training set and 4,482 images with

5,014 questions for the testing set.

2.2. Evidence­based Evaluation (EvE) Metric

We observed an intriguing trend among the classification

based approaches for scene text VQA task. That is to say, if

the ground-truth answer was included in the pre-generated

answer dictionary, a generic VQA model may predict a cor-

rect answer without reading the textual content. However,

such methods rely heavily on the pre-defined answer pool

and so, they are unable to handle questions with out-of-

vocabulary answers. Therefore, it is unclear whether such

models truly have the capability to understand and reason

about the questions or they are merely over-fitting to the

fixed answer space. Inspired by this observation, we in-

troduce a new evaluation protocol, named Evidence-based

Evaluation (EvE) metric, which will require a VQA model

to provide evidence to support the predicted answers. Under

this metric, it will be much more difficult for naive classifi-

cation models to achieve inflated performance.

Generally, EvE metric consists of two steps: a) check

the answer; b) check the evidence. In the former, we use

the normalized Levenshtein similarity score (see Eq. (2)). In

the latter, we adopt the widely used IoU metric to determine

whether the evidence is sufficient or insufficient. Suppose

Bgt and Bdet are the ground-truth and predicted bounding

box respectively, then the evidence sufficiency score, E is

Question: How many milligrams are the Valium 2?

A: ‘2’ A: [[𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3, 𝑥4, 𝑦4], ‘2’]

A: [[ ҧ𝑥1, ത𝑦1, ҧ𝑥2, ത𝑦2, ҧ𝑥3, ത𝑦3, ҧ𝑥4, ത𝑦4, ] ‘2’]

(a) Without Evidence (b) Incorrect Evidence

(d) Sufficient Evidence

✓

✘

✘

A: [[𝑥1′ , 𝑦1′ , 𝑥2′ , 𝑦2′ , 𝑥3′ , 𝑦3′ , 𝑥4′ , 𝑦4′], ‘2’]
(c) Insufficient Evidence

✘

Figure 7. In EvE metric, evidence in the form of bounding box

should be provided as well as the predicted answer. Green and

red bounding boxes are ground-truth and predicted evidence re-

spectively. Incorrect: (a) answer without evidence; (b) answer

with inappropriate evidence; (c) answer with insufficient evidence.

Correct: (d) answer with appropriate evidence. It is worth men-

tioning that all of the above answers would be marked as correct in

the conventional VQA evaluation metric because all of them give

the right answer ‘2’.

defined as:

Ei
τ = f(

Bgt ∩Bdet

Bgt ∪Bdet

) =











Incorrect, E = 0

Insufficient, 0 < E < θ

Sufficient, E ≥ θ

(3)

where θ = 0.5 is a predefined threshold. Under the EvE

metric, only correct answers with sufficient evidence con-

tribute to the final performance se (see Fig. 7) where it is

given by:

se(ans, gt, E) =

{

sl, if E sufficient

0, else
(4)

where sl is the normalized Levenshtein similarity score as

defined in Eq. (2).

2.3. Tasks

Both Text-VQA [29] and OCR-VQA [24] follow the

same rules as presented in generic question answering task.

Although ST-VQA [4] proposed three tasks, the only differ-

ence between each of the tasks is the size of external infor-

mation (vocabulary), which is insignificant and unreason-

able to properly evaluate the models’ full capability. For in-

stance, in the strongly contextualized task, all ground-truth

answers are provided in a dictionary for every image with

a set of distractors, which makes the VQA model prone to

overfit the provided vocabulary. Besides, it becomes more
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Figure 8. Overview of the QA R-CNN architecture

difficult for these models that are trained on a fixed dictio-

nary to generalize to other datasets.

As a result of this, we propose three related tasks namely

as Cross Language Challenge, Localization Challenge, and

Traditional Challenge that will be detailed next to improve

the task diversity. An online evaluation server will be set up

for results submission.

• Cross Language Challenge (CLC): As the proposed

EST-VQA dataset is a bilingual VQA dataset that con-

tains both English and Chinese QA pairs. This chal-

lenge aims to explore a model’s ability in extract-

ing common knowledge between different languages.

Under this challenge, the candidates are requested

to submit results predicted by both the monolin-

gual (English-only, Chinese-only) and bilingual mod-

els with an identical framework (e.g. network struc-

ture) for evaluations. The proposed EvE metric is used

to evaluate the model’s performance in this challenge.

• Localization Challenge (LC): To gain insights into

a VQA model, we encourage candidates to train an

evidence based VQA model to simultaneously predict

the answer and its corresponding bounding box as ev-

idence, instead of simply employing an off-the-shelf

OCR system to obtain the OCR tokens. Hence, the

main objective of this challenge is to explore the VQA

model’s ability in understanding the question and lo-

cating the correct image space that contains the an-

swers. That is to say, this challenge requires the VQA

model to provide the spatial location where an answer

will be most likely to appear in an image based on a

question. Compared to the full challenge, LC ignores

the text recognition error and the difficulties of com-

bining multiple OCR tokens for long answers. IoU be-

tween the predicted and ground-truth bounding box is

employed as the performance metric for this challenge.

• Traditional Challenge (TC): We maintain the tradi-

tional VQA challenge that is consistent with the ex-

isting VQA datasets in which this challenge does not

consider the evidence for the predicted answers. The

normalized Levenshtein similarity score between the

prediction and ground-truth is employed as the metric

for this challenge.

3. Baselines and Results

3.1. Baseline Methods

This section presents the naive baseline models and two

state-of-the-art VQA methods [28, 29] that were employed

in the experiments. This helps to show the difficulty of the

proposed EST-VQA dataset and the new tasks. The entire

EST-VQA dataset is separated into training and testing sets

(see Table 2), and 10% data from the training set is used for

validation.

Vocabulary Upper Bound: As both [28] and [29] are clas-

sification based, two dictionaries are built under the widely

used rules. Specifically, a small vocabulary (SV) is built

with 927 English and 365 Chinese answers that appeared

more than once in the training set and a Larger Vocabulary

(LV) is built with 8,102 English and 8,212 Chinese unique

answers. We explore the upper bound accuracy of the pre-

generated SV and LV. We assume that answers included in

the dictionaries can always be predicted correctly with per-

fect evidence to calculate the upper bound accuracy.

OCR Upper Bound: Since the traditional VQA models

cannot obtain OCR tokens and info directly, we employ

the state-of-the-art pre-trained text detection and recogni-

tion models [21, 27] to extract OCR bounding boxes and

characters. To evaluate the effectiveness of the OCR sys-

tem, we calculate the OCR upper bound accuracy on the

test set. All of the answers and evidence are directly ob-

tained from the OCR results (and suppose the correct one

can always be selected), it also considers combinations of

up to 4 OCR tokens for multi-word answers.

Random OCR Tokens: To assess arbitrary chance, this

baseline returns a random OCR token and its bounding box

from the OCR results for each question to obtain the random

accuracy.

State-of-the-art Approaches: Both state-of-the-art generic

[28] and scene text [29] VQA models are employed as base-

lines to verify the difficulties of the EST-VQA dataset. It

is important to note that these methods cannot provide ev-

idence to support their predicted answers. Therefore, we

queried the predicted answers from OCR results, i.e., if

there are any identical OCR tokens to the predicted answer,

then one of the predicted bounding boxes would be ran-
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Model

CLC (%) LC (%) TC (%) ∆r

Mono. Bi. Bi. Mono. Bi.

En Ch En Ch S L Acc En Ch Acc En Ch En Ch Acc

SV UB - - - - - - - - - - 31.1 7.8 31.3 8.9 20.1 -

LV UB - - - - - - - - - - 48.0 16.1 48.3 17.0 32.7 -

OCR UB 33.9 24.5 33.9 24.5 44.1 14.3 29.2 50.0 37.8 43.9 38.5 28.2 38.5 28.2 33.3 -

Random 4.4 1.1 4.7 1.2 5.1 0.8 3.0 15.1 5.1 10.1 5.8 1.5 5.9 1.5 3.7 0.81

P[28]+SV 4.3 0.1 4.5 0.1 4.3 0.2 2.3 17.2 1.8 9.5 8.0 0.7 7.7 0.7 4.2 0.54

P[28]+LV 4.7 0.2 4.4 0.2 4.2 0.3 2.3 17.4 2.4 9.9 9.2 0.8 8.2 0.6 4.4 0.52

L[29]+SV 8.2 1.2 8.4 2.0 9.6 0.8 5.2 18.0 5.4 11.7 12.0 2.6 13.2 3.3 8.2 0.63

L[29]+LV 7.7 0.5 6.8 0.7 6.8 0.7 3.8 18.5 3.9 11.2 12.0 1.6 11.2 1.7 6.5 0.58

QA R-CNN 7.7 1.4 8.8 3.2 10.8 1.1 6.0 18.3 7.3 12.8 9.6 2.2 10.6 4.0 7.3 0.82

QA R-CNN w/ tricks 7.4 1.5 8.4 2.9 10.3 1.0 5.7 18.3 7.2 12.8 11.8 7.9 12.7 9.4 11.0 0.52

Table 3. Quantitative results of the three tasks in EST-VQA dataset. Mono. and Bi. represent monolingual and bilingual model respectively

while S and L are short (one word) and long (more than one word) answers. Scores in bold are the best performance across models.
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Figure 9. CLC score under different τ

domly selected as evidence, otherwise bounding box of the

token which has the smallest normalized Levenshtein dis-

tance is selected.

QA R-CNN: It is noteworthy that all of the aforementioned

baseline methods cannot simultaneously output the answer

and its corresponding bounding box as evidence. There-

fore, we propose QA R-CNN. Generally, QA R-CNN con-

sists of two parts: Focusing Module (FM) and Reasoning

Module (RM) (see Fig. 8). The core component in FM is

a customized Faster R-CNN network trained for text detec-

tion task. Compared to the regular Faster R-CNN which

only predicts the bounding box and object category, QA R-

CNN also outputs a focusing score for each of the bounding

boxes. Technically, word embedding of question is first ex-

tracted by GloVe [26] for English questions and Word2Vec

[19] for Chinese questions. Then, the embedding is fed

into LSTM layers to obtain question features. Following

this, both question and image features are concatenated to

classify the bounding box into answer area and non-answer

area. This enables the QA R-CNN to gain the ability to

draw its attention to the area that the answer may appear

in the image. As such, a straightforward idea is that the

model can directly use the underlying text of the bounding

box with the highest focusing score as the question’s an-

swer. However, the rich semantics of the textual content will

not be considered. Therefore, RM is introduced to further

improve the pipeline. In RM, we follow the similar archi-

tecture in LoRRA where the semantics of detected text are

further explored. Specifically, word embedding of the OCR

tokens is extracted by FastText [11] models that are pre-

trained on English/Chinese Wikipedia, and then the OCR

embedding is fused with both image features and question

embedding for further classification. Different from other

classification-based approaches, we do not use a pre-defined

fixed dictionary as the answer space but only use the de-

tected OCR tokens, i.e., only the detected text can be used

as the answer. In the end, the weighted score of FM and RM

are summed up for the final prediction.

3.2. Results

Quantitative Results: Table 3 summarizes the results of

the baselines and our method on the EST-VQA dataset. The

penalty threshold τ is practically set to 0.75 during the eval-

uation to ensure the answer quality. Fig. 9 shows the CLC

score under different τ for bilingual models.

We first measure the upper bound performance of the two

pre-defined dictionaries SV and LV. Similar to other scene

text VQA datasets, SV and LV can achieve high accuracy

on English questions, i.e., 31.1 and 48.0 respectively. How-

ever, they failed catastrophically on the Chinese questions

due to the language features and lower overlapping of an-

swers between the training and testing splits. Hence, it is

more difficult for the classification based method to obtain

a promising performance on the Chinese split in the EST-

VQA dataset. We also provide the upper bound accuracy

of the OCR results that are generated by [21, 27], and it

achieves better accuracy on Chinese questions compared to

the fixed vocabularies. Then a baseline using random OCR

token is set as a comparison with other approaches, and this

heuristic method only achieves 3.0 and 3.7 overall score for

the CLC and TC tasks respectively.

To further justify the need for EST-VQA, we trained two

state-of-the-art approaches, i.e., Pythia (P) [28] and LoRRA

(L) [29]. As shown in Table 3, both methods perform

badly on Chinese questions due to a large amount of out-

of-vocabulary answers in the test set. Also, as the CLC task

requires a model to provide evidence as well as the answer,

the accuracy of all of the studied methods dropped signifi-

cantly when compared to the TC score. This is because the

models infer the answers without actually reading the tex-

tual content in the images (see Fig. 3(c) and 3(d)), thus they

10132



Q: What is the room number?

A: 708

P+SV: 2006

P+LV: caffe

L+SV: 18

L+LV: 18

QA R-CNN: 8

QA R-CNN w/t: 8

8

Q: When was this photo uploaded?

A: 2012

P+SV: snowbird

P+LV: 108

L+SV: 2012

L+LV: 29/08/2012

QA R-CNN: 2012

QA R-CNN w/t: 2012

2012

Q:这里是河南中路多少门牌号?

A: 20

P+SV: wells fargo

P+LV: 春昇
L+SV: 20

L+LV: 长
QA R-CNN: 三
QA R-CNN w/t: 20

三

Q:伟业水电安装的联系人是谁?

A: 张生
P+SV: 烧烤时代
P+LV: 上海
L+SV: 档口装
L+LV: 不王
QA R-CNN: 冠前
QA R-CNN w/t: 冠前

冠前

Q: What’s the text on the bottom?

A: snowbird

Figure 10. Visualization of the output answers on the EST-VQA dataset from different models (first four images). Green and Red bounding

boxes are ground-truth and predicted evidence by QA R-CNN. (More examples can be found at https://arxiv.org/abs/2002.10215)

can not provide reasonable evidence to support the answer.

In contrast, the proposed QA R-CNN shows more robust

results on the three tasks (see Table 3).

To further explore the proposed CLC task, we also

trained a QA R-CNN with bells and whistles, many heuris-

tic manual rules are adopted to lift the performance. Under

this model, it outputs answers predominantly from the vo-

cabulary for a certain type of questions. And if the model

failed to detect the corresponding text, question related text

would be picked up from the dictionary (e.g. digits for

“what number”) as the answer. Although this heavy model

achieves top performance on the TC task, its CLC score is

even lower than the baseline QA R-CNN. Such a scenario

suggests that the evaluation protocol used in the current

conventional VQA task is not reasonable to some extent,

because the VQA models can easily overfit to the answer

space by using tricks. Therefore, we introduce a reasonable

score ∆r to measure the percentage of answers with suffi-

cient evidence, and it is denoted as ∆r = CLCall

TCall

. Lower

∆r means that the model has outputted many unreason-

able but correct answers, which suggests that it might either

overfit to the answer pool or use too many manual rules to

achieve a higher score under conventional evaluation pro-

tocol. As shown in Table 3, the QA R-CNN w/ tricks ob-

tained the lowest reasonable score although it outperforms

all other models under the traditional evaluation protocol.

Another interesting observation is that all methods achieve

extremely low accuracy on the questions that have a longer

answer. We believe this is because current models cannot

combine multiple texts to generate a long answer. However,

how to solve this issue is out of the scope of this paper, and

thus we leave it for future work.

Qualitative Results: Fig. 10 illustrates some selected visu-

alization results of the baseline methods. Surprisingly, we

found that some models do not learn the concept of ques-

tion type at all. For example, the ‘P+LV’ model outputs a

word ‘caffe’ for the question ‘What is the room number?’

that asks for a number, and ‘L+LV’ predicts a character

‘长’ (long) for the question ‘这里是河南中路多少门牌

号’ (What is the house number of this shop here in Henan

Middle Road?) that is also asking a number. Furthermore,

incorrect recognition results will cause the models to out-

put incorrect answers. Based on the first sample of Fig. 10,

although the bounding box of the answer ‘708’ was pre-

dicted correctly, it was however recognized as ‘8’ and was

further outputted as the answer. An interesting case is the

‘L+LV’ model answers the question ‘When was this photo

uploaded?’ with ‘29/08/2012’ when only ‘2012’ appeared

in the original image. Such a phenomenon tells us that

similar answers in the vocabulary could interfere with the

decision of classifier. Another noteworthy example is that

‘P+SV’ model predicts ‘snowbird’ for the question ‘When

was this photo uploaded’. We queried another image with

the answer ‘snowbird’ in the training set (see the last im-

age in Fig. 10) and it shows that the ‘P+SV’ model out-

puts the same answer when the image contains similar vi-

sual features. Therefore, we believe that this VQA model

might rely too heavily on the image feature and learned to

map the image feature with the answer space but it does not

truly understand the question. Additionally, for the ques-

tion that requires stronger reasoning ability and image with

many texts, such as the third sample in Fig. 10, ‘伟业水电

安装的联系人是谁? (Who is the contact person for Weiye

Hydropower Installation?)’, none of the models are able to

predict the answer correctly.

4. Conclusion

We have introduced a new bilingual scene text+evidence

VQA dataset named EST-VQA that is annotated with both

English and Chinese QA pairs. Three related challenges

are proposed, namely Cross Language, Localization and

Traditional that are designed to evaluate the generalization

of VQA models. An evidence-based measure of an algo-

rithm’s capacity to reason is also proposed that requires the

VQA model to provide a bounding box for the predicted an-

swer. This metric aims to uncover whether the VQA model

learns deeper relationships between text and image content,

rather than overfitting to a pre-defined dictionary. Future

work includes extension of the proposed EvE metric to ex-

isting VQA datasets in the hope that it might improve gen-

eralization and thus the practicality of VQA technologies.
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