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Abstract

Detecting partially occluded objects is a difficult task.

Our experimental results show that deep learning ap-

proaches, such as Faster R-CNN, are not robust at object

detection under occlusion. Compositional convolutional

neural networks (CompositionalNets) have been shown to

be robust at classifying occluded objects by explicitly rep-

resenting the object as a composition of parts. In this work,

we propose to overcome two limitations of Compositional-

Nets which will enable them to detect partially occluded ob-

jects: 1) CompositionalNets, as well as other DCNN archi-

tectures, do not explicitly separate the representation of the

context from the object itself. Under strong object occlu-

sion, the influence of the context is amplified which can have

severe negative effects for detection at test time. In order

to overcome this, we propose to segment the context during

training via bounding box annotations. We then use the seg-

mentation to learn a context-aware CompositionalNet that

disentangles the representation of the context and the ob-

ject. 2) We extend the part-based voting scheme in Compo-

sitionalNets to vote for the corners of the object’s bounding

box, which enables the model to reliably estimate bounding

boxes for partially occluded objects. Our extensive experi-

ments show that our proposed model can detect objects ro-

bustly, increasing the detection performance of strongly oc-

cluded vehicles from PASCAL3D+ and MS-COCO by 41%

and 35% respectively in absolute performance relative to

Faster R-CNN.

1. Introduction

In natural images, objects are surrounded and partially

occluded by other objects. Recognizing partially occluded

objects is a difficult task since the appearances and shapes

of occluders are highly variable. Recent work [42, 21] has

shown that deep learning approaches are significantly less

robust than humans at classifying partially occluded ob-

∗Joint first authors
†Joint senior authors

Figure 1: Bicycle detection result for an image of the MS-

COCO dataset. Blue box: ground truth; red box: detec-

tion result by Faster R-CNN; green box: detection result

by context-aware CompositionalNet. Probability maps of

three-point detection are to the right. The proposed context-

aware CompositionalNet are able to detect the partially oc-

cluded object robustly.

jects. Our experimental results show that this limitation of

deep learning approaches is even amplified in object detec-

tion. In particular, we find that Faster R-CNN is not robust

under partial occlusion, even when it is trained with strong

data augmentation with partial occlusion. Our experiments

show that this is caused by two factors: 1) The proposal

network does not localize objects accurately under strong

occlusion. 2) The classification network does not classify

partially occluded objects robustly. Thus, our work high-

lights key limitations of deep learning approaches to object

detection under partial occlusion that need to be addressed.

In contrast to deep convolutional neural networks (DC-

NNs), compositional models can robustly classify partially

occluded objects from a fixed viewpoint [11, 19] and detect

semantic parts of partially occluded object [34, 40]. These

models are inspired by the compositionality of human cog-

nition [2, 33, 10, 3] and share similar characteristics with

biological vision systems, such as bottom-up sparse com-

positional encoding and top-down attentional modulations

found in the ventral stream [30, 29, 5]. Recent work [20]

proposed the Compositional Convolutional Neural Network
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(CompositionalNet), a generative compositional model of

neural feature activations that can robustly classify images

of partially occluded objects. This model explicitly repre-

sents objects as compositions of parts, which are combined

with a voting scheme that enables a robust classification

based on the spatial configuration of a few visible parts.

However, we find that CompositionalNets as proposed in

[20] are not suitable for object detection because of two

major limitations: 1) CompositionalNets, as well as other

DCNN architectures, do not explicitly disentangle the rep-

resentation of the context from that of the object. Our ex-

periments show that this has negative effects on the detec-

tion performance since context is often biased in the training

data (e.g. airplanes are often found in blue background). If

objects are strongly occluded, the detection thresholds must

be lowered. This in turn increases the influence of the ob-

jects’ context and leads to false-positive detections in re-

gions with no object (e.g. if a strongly occluded car must

be detected, a false airplane might be detected in the sky,

seen in Figure 4). 2) CompositionalNets lack mechanisms

for robustly estimating the bounding box of the object. Fur-

thermore, our experiments show that region proposal net-

works do not estimate the bounding boxes robustly when

objects are partially occluded.

In this work, we propose to build on and significantly

extend CompositionalNets in order to enable them to detect

partially occluded objects robustly. In particular, we intro-

duce a detection layer and propose to decompose the image

representation as a mixture of context and object represen-

tation. We obtain such decomposition by generalizing con-

textual features in the training data via bounding box anno-

tations. This context-aware image representation enables us

to control the influence of the context on the detection re-

sult. Furthermore, we introduce a robust voting mechanism

to estimate the bounding box of the object. In particular, we

extend the part-based voting scheme in CompositionalNets

to also vote for two opposite corners of the bounding box in

addition to the object center.

Our extensive experiments show that the proposed

context-aware CompositionalNets with robust bounding

box estimation detect objects robustly even under severe

occlusion (Figure 1), increasing the detection performance

on strongly occluded vehicles from PASCAL3D+ [38] and

MS-COCO [26] by 41% and 35% respectively in absolute

performance relative to Faster R-CNN. In summary, we

make several important contributions in this work:

1. We propose to decompose the image representation

in CompositionalNets as a mixture model of context

and object representation. We demonstrate that such

context-aware CompositionalNets allow for precise

control of the influence of the object’s context on the

detection result, hence, increasing the robustness when

classifying strongly occluded objects.

2. We propose a robust part-based voting mechanism

for bounding box estimation that enables the accu-

rate estimation of an object’s bounding box even under

severe occlusion.

3. Our experiments demonstrate that context-aware Com-

positionalNets combined with a part-based bounding

box estimation outperform Faster R-CNN networks

at object detection under partial occlusion by a sig-

nificant margin.

2. Related Work

Region selection under occlusion. The detection of

an object involves the estimation of its location, class and

bounding box. While a search over the image can be imple-

mented efficiently, e.g. using a scanning window [24], the

number of potential bounding boxes is combinatorial with

the number of pixels. The most widely applied approach for

solving this problem is to use Region Proposal Networks

(RPNs) [13] which enable the learning of fast approaches

to object detection [12, 28, 4]. However, our experiments

demonstrate that RPNs do not estimate the bounding box of

an object correctly under occlusion.

Image classification under occlusion. The classifica-

tion network in deep object detection approaches is typi-

cally chosen to be a DCNN, such as ResNet [14] or VGG

[32]. However, recent work [42, 21] has shown that stan-

dard DCNNs are significantly less robust to partial occlu-

sion compared to humans. A potential approach to over-

come this limitation of DCNNs is to use data augmentation

with partial occlusion [8, 39] or top-down cues [36]. How-

ever, our experiments demonstrate that data augmentation

approaches have only a limited impact on the generalization

of DCNNs under occlusion. In contrast to deep learning ap-

proaches, generative compositional models [17, 43, 9, 6, 23]

have proven to be robust to partial occlusion in the context

of detecting object parts [34, 19, 40] and recognizing ob-

jects from a fixed viewpoint [11, 22]. Additionally, Com-

positionalNets [20], which integrate compositional models

with DCNN architecture, were shown to be significantly

more robust for image classification under occlusion.

Object Detection under occlusion. Sheng [37] et al.

propose a boosted cascade framework for detecting partially

visible objects. However, their approach uses handcrafted

features and can only be applied to images where objects

are artificially occluded by cutting out image patches. Ad-

ditionally, a number of deep learning approaches have been

proposed for detecting occluded objects [31, 27]; however,

these methods require detailed part-level annotations to re-

construct the occluded objects. Xiang and Savarese [35]

propose to use 3D models and to treat occlusion as a multi-

label classification task. However, in a real-world scenario,

the classes of occluders can be difficult to model in 3D and
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are often not known a priori (e.g. the particular type of fence

in Figure 1). Also, other approaches are based on videos or

stereo images [25, 16], however, we focus on object detec-

tion in still images. Most related to our work is part-based

voting approaches [41, 15] that have proven to work reli-

ably for semantic part detection under occlusion. However,

these methods assume a fixed size bounding box which lim-

its their applicability in the context of object detection.

In this work, we extend CompositionalNets to context-

aware object detectors with a part-based voting mechanism

that can robustly estimate the object’s bounding box even

under very strong partial occlusion.

3. Object Detection with CompositionalNets

In Section 3.1 we discuss prior work on Compositional-

Nets. We propose a generalization of CompositionalNets to

detection in Section 3.2, introducing a detection layer and

a robust bounding box estimation mechanism. Finally, we

introduce context-aware CompositionalNets in Section 3.3,

enabling the model to separate the context from the object

representation, making it robust to contextual biases in the

training data, while still being able to leverage contextual

information under strong occlusion.

Notation. The output of a layer l in a DCNN is refer-

enced as feature map F l = ψ(I,Ω) ∈ R
H×W×D, where I

is the input image and Ω are the parameters of the feature

extractor. Feature vectors are vectors in the feature map

f lp ∈ R
D at position p, where p is defined on the 2D lattice

of F l with D being the number of channels in the layer. We

omit subscript l in the following for convenience because

this layer is fixed a priori in our experiments.

3.1. Prior work: CompositionalNets

CompositionalNets [20] are DCNNs with an inherent ro-

bustness to partial occlusion. Their architecture resembles

that of a VGG-16 network [32], where the fully connected

head is replaced with a differentiable generative composi-

tional model of the feature activations p(F |y) and y is the

category of the object. The compositional model is defined

as a mixture of von-Mises-Fisher (vMF) distributions:

p(F |Θy) =
∑

m

νmp(F |θ
m
y ), (1)

p(F |θmy ) =
∏

p

p(fp|Ap,y,Λ), (2)

p(fp|Ap,y,Λ) =
∑

k

αp,k,yp(fp|λk), (3)

with {νm ∈ {0, 1},
∑M

m=1
νm = 1}. HereM is the number

of mixtures of compositional models and νm is a binary as-

signment variable that indicates which mixture component

is active. Θy = {θmy = {Am
y ,Λ}|m = 1, . . . ,M} are the

Figure 2: Object detection under occlusion with RPNs and

proposed robust bounding box voting. Blue box: ground

truth; red box: Faster R-CNN (RPN+VGG); yellow box:

RPN+CompositionalNet; green box: context-aware Com-

positionalNet with robust bounding box voting. Note how

the RPN-based approaches fail to localize the object, while

our proposed approach can accurately localize the object.

overall compositional model parameters and Am
y = {Am

p,y}
are the parameters of the mixture components at every po-

sition p ∈ P on the 2D lattice of the feature map F . In

particular, Am
p,y = {αm

p,0,y, . . . , α
m
p,K,y|

∑K
k=0

αm
p,k,y = 1}

are the vMF mixture coefficients, K is the number of mix-

ture components and Λ = {λk = {σk, µk}|k = 1, . . . ,K}
are the parameters of the vMF mixture distributions:

p(fp|λk) =
eσkµ

T
k fp

Z(σk)
, ‖fp‖ = 1, ‖µk‖ = 1, (4)

where Z(σk) is the normalization constant. The model pa-

rameters {Ω, {Θy}} can be trained end-to-end as described

in [20].

Occlusion modeling. Following the approach presented

in [19], CompositionalNets can be augmented with an oc-

clusion model. Intuitively, an occlusion model defines a ro-

bust likelihood, where at each position p in the image ei-

ther the object model p(fp|A
m
p,y,Λ) or an occluder model

p(fp|β,Λ) is active:

p(F |Θm
y , β)=

∏

p

p(fp, z
m
p =0)1−zm

p p(fp, z
m
p =1)z

m
p , (5)

p(fp, z
m
p =1) = p(fp|β,Λ) p(z

m
p =1), (6)

p(fp, z
m
p =0) = p(fp|A

m
p,y,Λ) (1-p(z

m
p =1)). (7)

The binary variables Zm = {zmp ∈ {0, 1}|p ∈ P} indicate

if the object is occluded at position p for mixture component
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Figure 3: Example of robust bounding box voting results.

Blue box: ground truth; red box: bounding box by Faster

R-CNN; green box: bounding box generated by robustly

combining voting results. Our proposed part-based voting

mechanism generates probability maps (right) for the object

center (cyan point), the top left corner (purple point) and the

bottom right corner (yellow point) of the bounding box.

m. The occluder model is defined as a mixture model:

p(fp|β,Λ) =
∏

n

p(fp|βn,Λ)
τn (8)

=
∏

n

(

∑

k

βn,kp(fp|σk, µk)
)τn

, (9)

where {τn ∈ {0, 1},
∑

n τn = 1} indicates which compo-

nent of the occluder model best explains the data. The pa-

rameters of the occluder model βn can be learned in an un-

supervised manner from clustered features of random natu-

ral images that do not contain any object of interest.

3.2. Detection with Robust Bounding Box Voting

A natural way of generalizing CompositionalNets to ob-

ject detection is to combine them with RPNs. However,

our experiments in Section 4.1 show that RPNs cannot reli-

ably localize strongly occluded objects. Figure 2 illustrates

this limitation by depicting the detection results of Faster

R-CNN trained with CutOut [8] (red box) and a combina-

tion of RPN+CompositionalNet (yellow box). We propose

to address this limitation by introducing a robust part-based

voting mechanism to predict the bounding box of an object

based on the visible object parts (green box).

CompositionalNets with detection layer. Composi-

tionalNets as introduced in [20] are part-based object rep-

resentations. In particular, the object model p(F |Θy)
is decomposed into a mixture of compositional models

p(F |θmy ), where each mixture component represents the ob-

ject class y from a different pose [20]. During inference,

each mixture component accumulates votes from part mod-

els p(fp|Ap,y) across different spatial positions p of the fea-

ture map F . Note that CompositionalNets are learned from

images that are cropped based on the bounding box of the

object [20]. By making the object centered in the image (see

Figure 5), each mixture component p(F |θmy ) can be thought

Figure 4: Influence of context in aeroplane detection under

occlusion. Blue box: ground truth; orange box: bounding

box by CompositionalNets (ω = 0.5); green box: bound-

ing box by Context-Aware CompositionalNets (ω = 0.2).

Probability maps of the object center are on the right. Note

how reducing the influence of the context improves the lo-

calization response.

of as accumulating votes from the part models for the object

being in the center of the feature map.

Based on this intuition, we generalize Compositional-

Nets to object detection by introducing a detection layer that

accumulates votes for the object center over all positions p
in the feature map F . In order to achieve this, we propose to

compute the object likelihood by scanning. Thus, we shift

the feature map w.r.t. the object model along all points p
from the 2D lattice of the feature map. This process will

generate a spatial likelihood map:

R = {p(Fp|Θy)|p ∈ P}, (10)

where Fp denotes the feature map centered at the position

p. Using this generalization we can perform object local-

ization by selecting all maxima in R above a threshold t
after non-maximum suppression. Our proposed detection

layer can be implemented efficiently with modern hardware

using convolution-like operations.

Robust bounding box voting. While Compositional-

Nets can be generalized to localize partially occluded ob-

jects using our proposed detection layer, estimating the

bounding box of an object under occlusion is more diffi-

cult because a significant amount of the object might not

be visible (Figure 3). We propose to solve this problem by

generalizing the part-based voting mechanism in Compo-

sitionalNets to vote for the bounding box corners in addi-

tion to the object center. In particular, we learn additional

mixture components that model the expected feature acti-

vations F around bounding box corners p(Fp|Θ
c
y), where

c = {ct, bl, tr} are the object center ct and two opposite

bounding box corners {bl, tr}. Figure 3 illustrates the spa-

tial likelihood maps Rc of all three models. We generate a

bounding box using the two points that have maximal like-

lihood. Note how the bounding boxes can be localized ac-

curately despite large parts of the object being occluded.
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Figure 5: Context segmentation results. A standard Com-

positionalNet learns a joint representation of the image in-

cluding the context. Our context-aware CompositionalNet

will disentangle the representation of the context from that

of the object based on the illustrated segmentation masks.

We discuss how the parameters of all models can be learned

jointly in an end-to-end manner in Section 3.4.

3.3. Contextaware CompositionalNets

CompositionalNets, as well as standard DCNNs, do not

separate the representation of the context from the object.

The context can be useful for recognizing objects due to

biases, e.g. aeroplanes are often surrounded by blue sky.

Relying too strongly on context can be misleading when

objects are strongly occluded (Figure 4), since the detection

thresholds must be lowered under strong occlusion. This

in turn increases the influence of the objects’ context and

leads to false-positive detection in regions with no object.

Hence, it is important to have control over the influence of

contextual cues on the detection result.

In order to gain control over the influence of con-

text, we propose a Context-aware CompositionalNets (CA-

CompositionalNets), which separates the representation of

the context from the object in the original Compositional-

Nets by representing the feature map F as a mixture of two

models:

p(fp|A
m
p,y, χ

m
p,y,Λ) =ω p(fp|χ

m
p,y,Λ)+ (11)

(1− ω)p(fp|A
m
p,y,Λ). (12)

Here, χm
p,y are the parameters of the context model that is

defined to be a mixture of vMF likelihoods (Equation 3).

The parameter ω is a prior that controls the trade-off be-

tween context and object, which is fixed a priori at test time.

Note that setting ω = 0.5 retains the original Composition-

alNet as proposed in [20]. Figure 4 illustrates the benefits

of reducing the influence of the context on the detection re-

sult under partial occlusion. The context parameters χm
p,y

and object parameters Am
p,y can be learned from the train-

ing data using maximum likelihood estimation. However,

this presumes an assignment of the feature vectors fp in the

training data to either the context or the object.

Context segmentation. Therefore, we propose to seg-

ment the training images into context and object based

on the available bounding box annotation. Here, our as-

sumption is that any feature that has a receptive field out-

side of the scope of the bounding boxes would be consid-

ered as a part of the context. We first randomly extract

features that are considered to be context into a popula-

tion during training. Then, we cluster the population us-

ing K-means++ algorithm[1] and receive a dictionary of

context feature centers E = {eq ∈ R
D|q = 1, . . . , Q}.

We apply a threshold on the cosine similarity s(E, fp) =
maxq[(e

T
q fp)/(‖eq‖ ‖fp‖)] to segment the context and the

object in any given training image (Figure 5).

3.4. Training ContextAware CompositionalNets

We train our proposed CA-CompositionalNet including

the robust bounding box voting mechanism jointly end-to-

end using backpropagation. Overall, the trainable param-

eters of our models are T c = {Ω,Λ, {Θc
y}, {χ

c
y}} where

c ∈ {ct, bl, tr}. The loss function has three main objectives:

optimizing the parameters of the generative compositional

model such that it can explain the data with maximal like-

lihood (Lg), while also localizing (Ldetect) and classifying

(Lcls) the object accurately in the training images. While

Lg is learned from images Îc with feature maps F c that are

centered at c ∈ {c, bl, tr}, the other losses are learned from

unaligned training images I with feature maps F .

Training Classification with Regularization. We op-

timize the parameters jointly using SGD:

Lcls(y, y
′) =Lclass(y, y

′) + Lweight(Ω) (13)

where Lclass(y, y
′) is the cross-entropy loss between the

network output y′ = ψ(I,Ω) and the true class label y.

We use a temperature T in the softmax classifier: f(y)i =
eyi·T

Σie
yi·T

. Lweight = ‖Ω‖
2

2
is a weight regularization on the

DCNN parameters.

Training the generative context-aware Composition-

alNet. The overall loss function for training the parameters

of the generative context-aware model is composed of two

terms:

Lg(F
c, T ) = Lvmf (F

c,Λ) (14)

+
∑

c

∑

p

Lcon(f
c
p ,A

c
y, χ

c
y) (15)

In order to avoid the computation of the normalization con-

stants {Z[σk]}, we assume that the vMF variances {σk}
are constant. Under this assumption, the vMF parame-

ters {µk} can be optimized with the loss Lvmf (F,Λ) =
C
∑

p mink µ
T
k fp, where C is a constant factor [20]. The pa-

rameters of the context-aware model Ac
y and χc

y are learned

by optimizing the context loss:

Lcon(fp,A
c
y, χ

c
y) =πpLmix(fp,A

c
p,y) (16)

12649



where πp ∈ {0, 1} is a context assignment variable that in-

dicates if a feature vector fp belongs to the context or to the

object model. We estimate the context assignments a priori

using segmentation as described in Section 3.3. Given the

assignments we can optimize the model parameters Ac
p,y by

minimizing [21]:

Lmix(F,A
c
y) =-

∑

p

(1-z↑p) log
[

∑

k

αm↑,c
p,k,yp(fp|λk)

]

(17)

The context parameters χc
p,y can be learned accordingly.

Here, z↑p and m↑ denote the variables that were inferred in

the forward process. Note that the parameters of the oc-

cluder model are learned a priori and then fixed.

Training for localization and bounding box localiza-

tion. We denote the normalized response map of the ground

truth class as Xc ∈ R
H×W and the ground truth annotation

as X̄c ∈ R
H×W . The elements of the response map are

computed as:

xcp =
xp,m̂

∑

p xp,m̂
, m̂ = argmax

m
max

p
p(fp|A

m
p,y, χ

m
p,y,Λ).

(18)

The ground truth map X̄c is a binary map where the ground

truth position is set to Xc(c) = 1 and all other entries are

set to zero. The detection loss is then defined as:

Ldetect(X
c, X̄c, F, T c) = 1−

2 · Σp(x
c
p · x̄

c
p)

∑

p x
c
p +

∑

p x̄
c
p

(19)

End-to-end training. We train all parameters of our

model end-to-end with backpropagation. The overall loss

function is:

L = Lcls(y, y
′) +

∑

c

(

ǫ1Lg(F
c, T c) (20)

+ǫ2Ldetect(X
c, X̄c, F, T c)

)

(21)

ǫ1, ǫ2 control the trade-off between the loss terms. The op-

timization process is discussed in more detail in Section 4.

4. Experiments

We perform experiments on object detection under

artificially-generated and real-world occlusion.

Datasets. While it is important to evaluate algorithms on

real images of partially occluded objects, simulating occlu-

sion enables us to quantify the effects of partial occlusion

more accurately. Inspired by the success of datasets with

artificially-generated occlusion in image classification [15],

we propose to generate an analogous dataset for object de-

tection. In particular, we build on the PASCAL3D+ dataset,

which contains 12 classes of unoccluded objects. We syn-

thesize an OccludedVehiclesDetection dataset similar to the

Figure 6: Example of images in OccludedVehiclesDetec-

tion dataset. Each row shows increasing amounts of context

occlusion, whereas each column shows increasing amounts

of object occlusion.

dataset proposed in [15] for classification, which contains 6

classes of vehicles at a fixed scale (224 pixels) and various

levels of occlusion. The occluders, which include humans,

animals and plants, are cropped from the MS-COCO dataset

[26]. In an effort to accurately depict real-world occlusions,

we superimpose the occluders onto the object, such that the

occluders are placed not only inside the bounding box of

the objects, but also on the background. We generate the

dataset in a total of 9 occlusion levels along two dimen-

sions. We define three levels of object occlusion: FG-L1:

20-40%, FG-L2: 40-60% and FG-L3: 60-80% of the object

area occluded. Furthermore, we define three levels of con-

text occlusion around the object: BG-L1: 0-20%, BG-L2:

20-40% and BG-L3: 40-60% of the context area occluded.

An example of occlusion levels are showed in Figure 6.

In order to evaluate the tested models on real-world oc-

clusions, we test them on a subset of the MS-COCO dataset.

In particular, we extract the same classes of objects and

scale as in the OccludedVehiclesDetection dataset from the

MS-COCO dataset. We select occluded images and manu-

ally separate them into two groups: light occlusion (2 sub-

levels) and heavy occlusions (3 sub-levels), with increas-

ing occlusion levels. This dataset is built from images in

both Training2017 and Val2017 set of MS-COCO due to a

limited amount of heavily occluded objects in MS-COCO

Dataset. The light occlusion set contains 2890 images, and

the heavy occlusion set contains 788 images. We term this

dataset OccludedCOCO.

Evaluation. In order to exclusively observe the effects

of foreground and background occlusions on various mod-

els, we only consider the occluded object in the image for

evaluation. Evidently, for the majority of the dataset, there

is often only one object of a particular class that is present

in the image. This enables us to quantify the effects of lev-

els of occlusions in the foreground and background on the
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FG L0 FG L1 FG L2 FG L3 Mean

method BG L0 BG L1 BG L2 BG L3 BG L1 BG L2 BG L3 BG L1 BG L2 BG L3 –

Faster R-CNN 98.0 88.8 85.8 83.6 72.9 66.0 60.7 46.3 36.1 27.0 66.5

Faster R-CNN with reg. 97.4 89.5 86.3 89.2 76.7 70.6 67.8 54.2 45.0 37.5 71.1

CA-CompNet via RPN ω=0.5 74.2 68.2 67.6 67.2 61.4 60.3 59.6 46.2 48.0 46.9 60.0

CA-CompNet via RPN ω=0 73.1 67.0 66.3 66.1 59.4 60.6 58.6 47.9 49.9 46.5 59.6

CA-CompNet via BBV ω=0.5 91.7 85.8 86.5 86.5 78.0 77.2 77.9 61.8 61.2 59.8 76.6

CA-CompNet via BBV ω=0.2 92.6 87.9 88.5 88.6 82.2 82.2 81.1 71.5 69.9 68.2 81.3

CA-CompNet via BBV ω=0 94.0 89.2 89.0 88.4 82.5 81.6 80.7 72.0 69.8 66.8 81.4

Table 1: Detection results on the OccludedVehiclesDetection dataset under different levels of occlusions (BBV as in Bound-

ing Box Voting). All models trained on PASCAL3D+ unoccluded dataset except Faster R-CNN with reg. was trained with

CutOut. The results are measured by correct AP(%) @IoU0.5, which means only corrected classified images with IoU > 0.5
of first predicted bounding box are treated as true-positive. Notice with ω = 0.5, context-aware model reduces to a Compo-

sitionalNet as proposed in [20].

light occ. heavy occ.

method L0 L1 L2 L3 L4

Faster R-CNN 81.7 66.1 59.0 40.8 24.6

Faster R-CNN with reg. 84.3 71.8 63.3 45.0 33.3

Faster R-CNN with occ. 85.1 76.1 66.0 50.7 45.6

CA-CompNet via RPN ω=0 62.0 55.0 49.7 45.4 38.6

CA-CompNet via BBV ω=0.5 83.5 77.1 70.8 51.7 40.4

CA-CompNet via BBV ω=0.2 88.7 82.2 77.8 65.4 59.6

CA-CompNet via BBV ω=0 91.8 83.6 76.2 61.1 54.4

Table 2: Detection results on OccludedCOCO Dataset,

measured by AP(%) @IoU0.5. All models are trained on

PASCAL3D+ dataset, Faster R-CNN with reg. is trained

with CutOut and Faster R-CNN with occ. is trained with

images in same dataset but occluded by all levels of occlu-

sion with the same set of occluders.

accuracy of the model predictions. Thus, the means of ob-

ject detection evaluation must be altered for our proposed

occlusion dataset. Given any model, we only evaluate the

bounding box proposal with the highest confidence given

by the classifier via IoU at 50%.

Runtime. The convolution-like detection layer has an

inference time of 0.3s per image.

Training setup. We implement the end-to-end train-

ing of our CA-CompositionalNet with the following param-

eter settings: training minimizes loss described in Equa-

tion 20, with ǫ1 = 0.2 and ǫ2 = 0.4. We applied the

Adam Optimizer [18] with various learning rates of lrvgg =
2 · 10−6, lrvc = 2 · 10−5, lrmixture model = 5 · 10−5 and

lrcorner model = 5 · 10−5 on different parts of Composi-

tionalNets. The model is trained for a total of 2 epochs with

10600 iteration per epoch. The training costs in total of 3

hours on a machine with 4 NVIDIA TITAN Xp GPUs.

Faster R-CNN is trained for 30000 iterations, with a

learning rate, lr = 1 · 10−3, and a learning rate decay,

lrdecay = 0.1. Specifically, the pretrained VGG-16 [32]

on the ImageNet dataset [7] was modified in its fully-

connected layer to accommodate the experimental settings.

In the experiment on OccludedCOCO, we set the threshold

of Faster R-CNN to 0, preventing the occluded targets to be

ignored due to low confidence and guarantees at least one

proposal in the required class.

4.1. Object Detection under Simulated Occlusion

Table 1 shows the results of the tested models on the Oc-

cludedVehiclesDetection dataset (see Figure 7 for qualita-

tive results). The models are trained on the images from the

original PASCAL3D+ dataset with unoccluded objects.

Faster R-CNN. As we evaluate the performance of the

Faster R-CNN, we observe that under low levels of occlu-

sion, the neural network performs well. In mid to high lev-

els of occlusions, however, the neural network fails to de-

tect the objects robustly. When trained with strong data

augmentation in terms of partial occlusion using CutOut

[8], the detection performance increases under strong oc-

clusion. However, the model still suffers from a 59.9% drop

in performance on strong occlusion, compared to the non-

occlusion setup. We suspect that the inaccurate prediction

is due to two major factors: 1) The Region Proposal Net-

work (RPN) in the Faster R-CNN is not able to predict ac-

curate proposals of objects that are heavily occluded. 2) The

VGG-16 classifier cannot successfully classify valid object

regions under heavy occlusion.

We proceed to investigate the performance of the region

proposals on occluded images. In particular, we replace

the VGG-16 classifier in the Faster R-CNN with a stan-

dard CompositionalNet classifier [20], which is expected

to be more robust to occlusion. From the results in Table

1, we observe two phenomena: 1) In high levels of occlu-

sion, the performance is better than Faster R-CNN. Thus,

the CompositionalNet generalizes to heavy occlusions bet-

ter than the VGG-16 classifier. 2) In low levels of occlu-
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Figure 7: Selected examples of detection results on the Oc-

cludedVehiclesDetection dataset. All of these 6 images are

the heaviest occluded images (foreground level 3, back-

ground level 3). Blue box: ground truth; green box: pro-

posals of CA-CompositionalNet via BB Voting; yellow box:

proposals of CA-CompositionalNet via RPN; red box: pro-

posals of Faster R-CNN.

sion, the performance is worse than Faster R-CNN. The

proposals generated by the RPN seem to be not accurate

enough to be correctly classified, as CompositionalNets are

high-precision models and require a precise alignment of

the bounding box to the object center.

Effect of robust bounding box voting. Our approach

of estimating corners of the bounding box substantially im-

proves the performance of the CompositionalNets, in com-

parison to the RPN. This further validates our conclusion

that the CompositionalNet classifier requires precise pro-

posals to classify objects correctly with partial occlusions.

Effect of context-aware representation. With ω = 0.5,

we observe that the precision of the detection decreases.

Furthermore, the performance between ω = 0.5 and ω = 0
follows a similar trend over all three levels of foreground

occlusions: the performance decreases as the level of back-

ground occlusion increases from BG-L1 to BG-L3. This

further confirms our understanding of the effects of the con-

text as a valuable source of information in object detection.

4.2. Object Detection under Realistic Occlusion

In the following, we evaluate our model on the Oc-

cludedCOCO dataset. As shown in Table 2 and Figure 8,

our CA-CompositionalNet with robust bounding box vot-

ing outperforms Faster R-CNN and CompNet+RPN signif-

icantly. In particular, fully deactivating the context (ω = 0)

increases the performance compared to the original model

(ω = 0.5), indicating that too much weight is put on the

contextual information in the standard CompNets. Further-

more, controlling the prior of the context model to ω =
0.2 reaches an optimal performance under strong occlusion

where the context is helpful, but does slightly decrease the

performance under low occlusion.

Figure 8: Selected examples of detection results on Occlud-

edCOCO Dataset. Blue box: ground truth; green box: pro-

posals of CA-CompositionalNet via BB Voting; yellow box:

proposals of CA-CompositionalNet via RPN; red box: pro-

posals of Faster R-CNN.

5. Conclusion

In this work, we studied the problem of detecting par-

tially occluded objects under occlusion. We found that stan-

dard deep learning approaches that combine proposal net-

works with classification networks do not detect partially

occluded objects robustly. Our experimental results demon-

strate that this problem has two causes: 1) Proposal net-

works are more strongly misguided the more context is oc-

cupied by the occluders. 2) Classification networks do not

classify partially occluded objects robustly. We made the

following contributions to resolve these problems:

CompositionalNets for object detection. Composition-

alNets have proven to classify partially occluded objects ro-

bustly. We generalize CompositionalNets to object detec-

tion by extending their architecture with a detection layer.

Robust bounding box voting. We proposed a robust

part-based voting mechanism for bounding box estimation

by leveraging the unoccluded parts of the object, which en-

abled the accurate estimation of an object’s bounding box

even under severe occlusion.

Context-aware CompositionalNets. Compositional-

Nets, and other DCNN-based classifiers, do not separate

the representation of the context from that of the object.

We proposed to segment the object from its context using

bounding box annotations and showed how the segmenta-

tion can be used to learn a representation in an end-to-end

manner that disentangles the context from the object.
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