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Abstract

Monocular depth estimation is an ill-posed problem, and

as such critically relies on scene priors and semantics. Due

to its complexity, we propose a deep neural network model

based on a semantic divide-and-conquer approach. Our

model decomposes a scene into semantic segments, such

as object instances and background stuff classes, and then

predicts a scale and shift invariant depth map for each se-

mantic segment in a canonical space. Semantic segments

of the same category share the same depth decoder, so the

global depth prediction task is decomposed into a series of

category-specific ones, which are simpler to learn and eas-

ier to generalize to new scene types. Finally, our model

stitches each local depth segment by predicting its scale and

shift based on the global context of the image. The model

is trained end-to-end using a multi-task loss for panoptic

segmentation and depth prediction, and is therefore able

to leverage large-scale panoptic segmentation datasets to

boost its semantic understanding. We validate the effective-

ness of our approach and show state-of-the-art performance

on three benchmark datasets.

1. Introduction

Depth estimation is an important component of 3D per-

ception. Compared to reconstruction techniques based on

active sensors or multi-view geometry, monocular depth es-

timation is significantly more ill-posed, and is therefore crit-

ically reliant on learning strong scene priors and semantics.

Recent works studying this problem [4, 14, 39] have

achieved significant progresses using deep convolutional

neural networks (CNNs) supervised by depth data, show-

ing that they are able to capture complex high-level scene

semantics. In addition, some works [39, 28] further feed

semantic segmentation labels to their models to boost depth

estimation accuracy in some specific domains. However,

monocular depth estimation in the wild remains challeng-
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Figure 1: Our depth prediction method jointly decomposes

an input image into both instance (a) and category segments

(b). It then independently predicts depth in a canonical

space for each segment and recomposes them into a final

globally coherent depth map (c). Note that the depth maps

are generated by our SDC-Depth Net trained with sparse

point-level depth order supervision [2].

ing due to the diversity of real world scenes.

We propose a Semantic Divide-and-Conquer Network

(SDC-Depth Net) for monocular depth estimation. We de-

compose a natural image into a number of semantic seg-

ments, and then predict, for each segment, a normalized

depth map in the range [0, 1]. We refer to this normalized

depth map as the canonical depth for a given segment. This

decomposition simplifies the depth prediction problem, as

semantic categories have much consistent depth structures

when viewed in isolation, and training category-specific

depth decoders makes it easier to learn these priors. For ex-

ample, the sky region is always infinitely far away and depth

in the ground region often varies smoothly along the vertical

direction. For object categories like people, instance-level

depth maps also have a high degree of similarity to each
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other. Once we predict the canonical depth for each seman-

tic segment, we assemble the results together based on a

global context derived from the input image. Specifically,

our model predicts the scale and shift for each segment’s

depth using the global context. The model is trained fully

end-to-end using a multi-task loss for segmentation and

depth estimation, for which we can use separate datasets to

increase the diversity of our supervision. Figure 1 demon-

strates sampled results of our approach.

Our approach is inspired by the classical divide-and-

conquer algorithm [17], but relies on semantic and in-

stance segmentation to divide the problem. Luckily, diverse

panoptic segmentation annotations are relatively easy to

collect compared to depth supervision, and we can leverage

existing large-scale panoptic segmentation datasets such as

COCO Panoptic Segmentation dataset [23] to complement

the limited depth supervision. As an auxiliary task, seman-

tic and instance segmentation not only helps split objects

and categories for local depth prediction, but also necessi-

tates the model’s understanding of shape and contour re-

gions. Thus, it can improve the model’s generalization abil-

ity, and is also useful in cases where only sparse or low

res depth annotations (e.g., depth order of point pairs as in

[2, 37], or Kinect data as in [32]) are available.

We show experiments on three benchmark datasets,

demonstrating that our method can significantly improve

the performance of depth estimation. Particularly, on the

challenging “Depth in the Wild” (DIW) dataset [2], we

achieve a new state-of-the-art error rate of 11.21% improv-

ing upon the previous best result of 13.02% [39].

In summary, we present a novel framework for monoc-

ular depth estimation based on a semantic divide-and-

conquer strategy. We present an implementation of this

high-level framework through SDC-Depth Net, a carefully

designed end-to-end trainable architecture. Experimental

validation of our approach shows consistent improvements

over the state-of-the-art on three benchmark datasets.

2. Related Work

Single Image Depth Prediction There has been a long

history of methods that have attempted to predict depth

from a single image [11, 31, 24, 26]. Recently monocular

depth estimation has gained popularity due to the ability of

CNNs to learn strong priors from images corresponding to

geometric layout. Among others, Laina et al. [14] propose

a fully convolutional architecture with up-projection blocks

to handle high-dimensional depth regression. In [19], a two-

stream convolutional network is proposed, which simulta-

neously predicts depth and depth gradients to preserve more

depth details. Besides using deep networks alone, recent

works have shown that the combination of deep networks

and shallow models [18, 25, 36, 40, 30] can also deliver su-

perior depth estimation performance. Meanwhile, different

forms of supervision and learning techniques have also been

explored in recent works to improve the generalization abil-

ity of depth estimation models, including self-supervised

learning with photometric losses from stereo images [6, 8]

or multiple views [43, 34, 7], transfer learning using syn-

thetic images [42, 42, 1], and those using sparse [2, 37] or

dense [21, 35, 33, 20] relative depth as supervisions.

Augmenting Depth with Semantic Segmentation Some

recent works [41, 39, 28] propose to improve monocular

depth estimation with semantic segmentation annotations.

For instance, Liu et al. [24] propose to guide single image

depth estimation with semantic labels using Markov ran-

dom fields. Xu et al. [39] develop a multi-modal distil-

lation module, which can leverage intermediate depth and

segmentation predictions to refine the final output. In [12]

a synergy network together with an attention-driven loss is

proposed to better propagate semantic information to depth

prediction. In comparison, [41] presents a task-recursive

learning strategy, which can refine both depth and segmen-

tation predictions through task-level interactions. Another

related work to ours is [28], where depth estimation is

learned in a unsupervised manner by integrating both se-

mantic segmentation and instance edges as input.

Although improvement has been achieved, these ap-

proaches have their own drawbacks. For one, existing

works estimate depth for different categories with a single

model. We argue that the depth values of different cate-

gories may exhibit different properties and subject to a vari-

ety of data distributions. Covering all these variations with

one model may be sub-optimal. In addition, besides seman-

tic categories, object instance information may also play

a crucial role in depth estimation. However, compared to

semantic segmentation, instance detection/segmentation is

less explored in monocular depth estimation. Compared to

these existing works, our proposed method performs depth

estimation for each segment independently by investigating

their semantic and instance information. We disentangle

canonical depth estimation and depth scale inference lead-

ing to more accurate depth prediction results.

3. Sematic Divide-and-Conquer Network for

Monocular Depth Estimation

We present SDC-Depth Net, an end-to-end trainable

depth prediction network based on the aforementioned Se-

mantic Divide-and-Conquer strategy. Our SDC-Depth Net

consists of four parts: a backbone network, a segmentation

module, a depth prediction module, and a depth aggregation

module. Figure 2 overviews the proposed method.

The backbone network, shared by the segmentation and

the depth prediction modules, extracts features of an in-

put image. The segmentation module performs semantic

and instance segmentation to divide the image into semantic
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Figure 2: Overview of the proposed SDC-Depth Net for depth prediction. Our method decomposes the input images into

category and instance segments, predicts depth maps for each individual segments specifically, and stitches the segment-level

depth into the final output.

segments. For each semantic segment, the depth estimation

module infers a category-specific depth map in a canonical

space, as well as scale and shift parameters based on the

global context. The aggregation module then stitches and

aggregates the per-segment depth maps to generate a glob-

ally consistent depth map.

In our experiments, we adopt a feature pyramid network

(FPN) [22] with ResNet-50 [10] as the backbone network.

We use a fully convolutional network (FCN) [22, 38] and a

Mask R-CNN model [9] for semantic and instance segmen-

tation respectively. The FCN network performs semantic

segmentation for C categories, where the first K categories

are object classes (e.g. person, car) and the rest belong to

stuff classes (e.g. road, grass). The Mask R-CNN network

detects object instance masks for the K object classes. We

now discuss each part in detail.

3.1. Per­Segment Depth Estimation

Given a semantic segment, such as a category mask or

an instance mask, the depth prediction module predicts a

segment-centered canonical depth map, as well as a trans-

formation to convert the canonical depth to the global depth

space. In this way, we decompose depth prediction into lo-

cal segment depth prediction and global transformation es-

timation, which we will show to be beneficial compared to

the direct prediction baseline.

We use two depth prediction streams to handle semantic

category segments and instance segments respectively. The

category segment stream operates in the category-level by

predicting depth for each entire category jointly, whereas

for countable object classes, the absolute depth of an in-

stance can vary a lot depending on its position in the scene.

Therefore, the instance-wise depth stream is further de-

signed to improve the depth map on a per instance basis.

Category-wise Depth Estimation. Given a semantic cat-

egory, we use a two-branch architecture to predict its canon-

ical depth and global transformation. As shown in Figure 3,

the local branch consists of a stack of convolutional layers,

which takes as input the backbone image feature pyramid

and predicts the canonical depth for each semantic category.

We use the sigmoid function to normalize the output depth

into the canonical space. The global depth decoding branch

contains a Global Average Pooling (GAP) layer and a stack

of fully connected layers. It maps the input feature pyramid

to a vector characterizing the global context of the input im-

age, which is used to infer the global transformation Tc(·)
for the c-th semantic category. Then, the global depth for

the c-th category is computed as Dc = Tc(D̃c). In our

experiments, we adopt an affine transformation Tc(D̃c) =
wc · D̃c + bc for simplicity.

Instance-wise Depth Estimation. For object classes,

such as human, car, etc., we can borrow the ROIAlign tech-

nique from Mask R-CNN [9] to extract features per object

instance, and map these to a depth map. However, the reso-

lution of the default ROIAlign features is too low (28× 28)

for accurate depth prediction, especially for larger objects.

To address this issue, we propose a new network archi-

tecture for high-resolution instance depth estimation (c.f .

Figure 3). The instance stream consists of two branches, a
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Figure 3: Our two-stream depth prediction module for cate-

gory and instance-wise depth estimation. Each stream con-

tains a local depth representation branch to infer canon-

ical depth (normalized to [0, 1]) and a global decoding

branch to estimate a scale-and-shift transformation based

on global context (either GAP output or the combination of

RoIAligned instance features and box positions).

fully convolutional local branch and an instance depth de-

coding branch. The local branch operates in a fully con-

volutional manner, which takes the backbone image feature

pyramid as input and predicts a category-agnostic depth rep-

resentation map F̃ of size H ×W × Z for the entire input

image (Z is set to 32 in our experiments). Given the bound-

ing box location of the i-th object instance, its instance level

depth map representation F̃
i ∈ R

Hi×Wi×Z can be com-

puted by cropping from F̃ , where Hi × Wi is the spatial

size of its bounding box.

To predict the depth for the i-th instance, the depth de-

coding branch extracts a fixed-length feature vector from

the instance region using ROIAlign1 on the backbone fea-

ture. Given the category ci ∈ {1, 2, . . . ,K} of the in-

stance inferred by the segmentation module, the depth de-

coding branch then takes as input the ROIAlign feature vec-

tor as well as the normalized bounding box coordinates of

the instance, and predicts a linear depth decoding function

Hi(·) = Gi ◦ Ci(·) corresponding to the ci-th object cate-

gory. The function Ci is a 1× 1 convolutional layer, which

linearly combines the Z channels of the instance depth rep-

resentation map F̃
i into a instance-centric canonical depth

map. The function Gi is an affine transformation, which

further transforms the canonical depth into the global depth

Fi ∈ R
Hi×Wi by adjusting its scale and shift. The pa-

rameters of the two functions for different object categories

are produced by the depth decoding branch in a category-

specific manner. Assume the total number of transforma-

tion parameters for each category is n. The depth decoding

1We use the same implementation of ROIAlign in [9].

branch predicts K sets of parameters through an output vec-

tor of length n × K. We select the ci-th set of parameters

for the i-th instance.

3.2. Segmentation Guided Depth Aggregation

Now we have produced the category depth maps {Dc ∈
R

H×W |c = 1, . . . , C} and a set of object instance depth

maps {Fi ∈ R
Hi×Wi |i = 1, 2, . . . , N} for a total num-

ber of N object instances within the input image. To make

the final depth prediction, a depth aggregation module com-

bines per-segment depth maps based on the semantic seg-

mentation and the instance segmentation results.

Our depth aggregation module proceeds in two steps.

Given instance depth maps Fi and their category labels, the

first step performs local updates to the region of each in-

stance in its corresponding category depth map {Dc|c =
1, 2, . . . ,K}. To this end, we associate each object cate-

gory depth map Dc with an normalization mask Mc with

the same spatial size H ×W , whose elements are all initial-

ized to constant value 1. The normalization masks are used

to record the update from each instance depth map, and nor-

malize the final depth map accordingly. Given the category

ci and bounding box location of the i-th instance, we de-

note the instance region on the corresponding depth map

Dci and the normalization mask Mci , as D
i
ci
∈ R

Hi×Wi

and M
i
ci
∈ R

Hi×Wi , respectively. The depth map and the

normalization mask can then be locally updated as follows:

D
i

ci
←D

i

ci
+ v × pi ⊙ S

i ⊙ F
i,

M
i

ci
←M

i

ci
+ v × pi ⊙ S

i,
(1)

where v is a hyper-parameter to balance the weight of in-

stance depth maps (v is set to 10 in our experiments); ⊙
indicates the element-wise multiplication; pi denotes the

probability of the i-th instance belonging to category ci,
and S

i of spatial size Hi ×Wi represents the upsampled

segmentation mask of the i-th instance. Both pi and S
i are

generated by the instance segmentation model of our seg-

mentation module, and are used to measure the reliability

of the i-th instance prediction.

After all instance regions have been updated, each cate-

gory depth map Dc is computed:

Dc ←Dc/Mc (2)

where the division is performed element-wisely. More de-

tails of the first step is summarized in Algorithm 1.

The second step aggregates all of the updated cate-

gory depth maps Dc according to the semantic segmenta-

tion results. This can be performed through the following

weighted combination:

D =
C∑

c=1

Pc ⊙Dc, (3)
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Algorithm 1 Update category depth maps with instance

depth maps.

Input: Category-specific depth maps {Dc|c = 1, 2, . . . ,K},
instance-specific depth maps F

i, instance segmentation

masks S
i, instance category ci, instance classification prob-

ability pi, i = 1, 2, . . . , N .

Output: Updated category-specific depth maps {Dc|c =

1, 2, . . . ,K}
1: Initialize normalization mask Mc for each category c
2: for i = 1, 2, . . . , N do

3: Locate instance regions D
i

ci
and M

i

ci
on depth map and

normalization masks.

4: Locally update depth map by D
i

ci
←D

i

ci
+v×pi⊙S

i⊙
F

i

5: Locally update energy mask by M
i

ci
←M

i

ci
+v×pi⊙S

i

6: end for

7: Normalize each category depth map Dc ←Dc/Mc

where D represents the final depth map. Pc is the per-class,

per-pixel segmentation result predicted by the semantic seg-

mentation module, where for a class c, an element located at

(x, y) represents the probability of the corresponding pixel

belonging to that class.

3.3. Network Training

The whole system can be trained in an end-to-end man-

ner using the following loss function:

L = αILI + αSLS + αDLD, (4)

where we use standard implementations of the instance seg-

mentation loss LI [9], and semantic segmentation losses

LS[27]. The depth prediction loss LD varies depending on

the depth supervision. On training datasets with dense depth

annotations (e.g., NYU-Depth V2 [32] and Cityscapes [3])

we use a standard L1 loss, and on datasets with relative

depth annotations between pairs of random points (e.g.,

DIW dataset [2]), we use the ranking loss proposed in [2].

More details of the loss functions and their loss weights

αI , αS , αD are present in the supplementary materials. All

four modules of our method can then be jointly trained by

minimizing the overall loss function in (4).

4. Experiments

4.1. Implementation

We adopt ResNet50 pre-trained on the ImageNet clas-

sification task to initialize our backbone network. Detailed

architecture design for our depth prediction module can be

found in the supplementary materials. We resize each in-

put image to have a minimum side of 256 pixels while

maintaining its aspect ratio. Data augmentation techniques

including random flipping, scaling and color jitter have

also been employed to avoid over-fitting. Our network is

trained using Adam optimizer [13] with a mini-batch of 4

input images. Our whole network has 50.4 M parameters

and runs at 10.23 FPS for 19 semantic categories on one

NVIDIA GTX 1080 TI GPU. Source code is available at

https://bit.ly/39oty26.

We evaluate our method on three depth datasets, in-

cluding Cityscapes [3], DIW [2] and NYU-Depth V2 [32],

which involve either dense or sparse depth annotations,

and contain diverse scenes. The performance of com-

pared methods are measured by: RMSE in both linear

and log space, absolute and squared relative error (Abs

Rel and Sq Rel), depth accuracy (with thresholds 1.25,

1.252 and 1.253), and weighted human disagreement rate

(WHDR) [4, 2]. We adopt the evaluation code of [5] to cal-

culate the above metrics.

4.2. Cityscapes Results

Cityscapes [3] is a large dataset for urban scene under-

standing, containing both depth and panoptic segmentation

annotations of 20 semantic categories. We train our model

for 25 epochs on the training set of 2975 images with the

initial learning rate of 5e-3. We evaluate the trained model

on the validation (500 images) and test (1525 images) sets,

and compare to 3 state-of-the-art methods including Laina

et al. [14], Xu et al. [39], and Zhang et al. [41]. Among

them, Xu et al. [39], and Zhang et al. [41] train their model

on both depth estimation and semantic segmentation in a

multi-task manner. Table 1 reports the results. Our method

achieves higher performance than compared methods, par-

ticularly in terms of RMSE and depth accuracy. This should

be mainly attributed to the fact that our method predicts

each category and instance depth independently with spe-

cific depth decoders. Since Xu et al. and Zhang et al.

also leverage semantic segmentation annotation, their per-

formance is superior than Laina et al. Qualitative results

are shown in Figure 4.

4.3. DIW Results

DIW [2] is a large-scale dataset containing images of

diverse scenes in the wild, where each image is manually

annotated with the relative depth order (either closer or fur-

ther away from the camera) between one randomly sampled

point pair. The whole dataset is split into 421K training

images and 74K test images. Since DIW dataset does not

contain segmentation annotations and the COCO panoptic

segmentation dataset [23] also contains images of uncon-

strained scenes, we simultaneously train our model on DIW

and COCO for relative depth estimation and segmentation,

respectively. In order to reduce computational complexity,

we adopt the super-class annotation of COCO dataset to

train our segmentation module, containing 15 stuff and 12

object classes. During training, we sequentially feed train-

ing images from both datasets to the network in each itera-
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Method
Error Accuracy

RMSE RMSE (log) Abs Rel Sq Rel δ < 1.25 δ < 1.252 δ < 1.253

Laina et al. [14] 7.273 0.448 0.257 4.238 0.765 0.893 0.940

Xu et al. [39] 7.117 0.428 0.246 4.060 0.786 0.905 0.945

Zhang et al. [41] 7.104 0.416 0.234 3.776 0.776 0.903 0.949

Ours 6.917 0.414 0.227 3.800 0.801 0.913 0.950

Table 1: Comparison with state-of-the-art methods on Cityscapes test set [3]. Best results are in bold font, second best are

underlined.

Ours is worse Ours is better

Figure 4: Qualitative results on Cityscapes dataset. The first three rows are input images, ground truth, and our predicted

depth maps, respectively. The last two rows are error map comparisons of our method against Xu et al. [39] and Zhang et

al. [41], respectively, where dark red indicates our method achieves lower error and dark blue is the opposite.

Method Chen et al. [2] Xian et al. [37] Xu et al. [39] Ours

WHDR 22.14% 14.98% 13.02% 11.21%

Table 2: Comparison with state-of-the-art methods on DIW

dataset [2]. The best result is in bold font.

tion, and update network parameters using the accumulated

gradients. Network training starts with an initial learning

rate of 1e-3 and converges at around 45K iterations.

We compare our method against three state-of-the-art ap-

proaches, including Chen et al. [2], Xian et al. [37], and Xu

et al. [39], where Xu et al. [39] is trained on both DIW and

COCO dataset using the same training strategy as ours. Ta-

ble 2 shows the comparison results in terms of WHDR. Xian

et al. achieves lower WHDR than Chen et al. Meanwhile,

Xu et al. outperforms Xian et al. by exploring additional

segmentation data. In comparison, our proposed method

adopt a divide-and-conquer strategy to estimate depth for

each segments independently, thus achieves the best perfor-

mance. Figure 5 compares the predicted depth maps of Xu

et al. [39] and our proposed method.
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Method
Error Accuracy

RMSE RMSE (log) Abs Rel δ < 1.25 δ < 1.252 δ < 1.253

Laina et al. [14] 0.584 0.198 0.136 0.822 0.956 0.989

Xu et al. [40] 0.593 - 0.125 0.806 0.952 0.986

Qi et al. [29] 0.569 - 0.128 0.834 0.960 0.990

Lee et al. [15] 0.572 0.193 0.139 0.815 0.963 0.991

Fu et al. [5] 0.509 0.188 0.116 0.828 0.965 0.992

Zhang et al. [41] 0.501 0.181 0.144 0.815 0.962 0.992

Xu et al. [39] 0.582 - 0.120 0.817 0.954 0.987

Ours 0.497 0.174 0.128 0.845 0.966 0.990

Table 3: Comparison with state-of-the-art methods on NYU-Depth V2 dataset [32].

Image Xu et al. [39] Ours

Figure 5: Qualitative results on DIW test set [2]. All meth-

ods are trained on sparse point-level supervison.

4.4. NYU­Depth V2 Results

The NYU-Depth V2 dataset contains 464 indoor scenes,

where 249 of them are for training and the rest for testing.

We train our networks by randomly sampling 40K images

from the 249 training scenes and following the multi-task

training strategy introduced in Section 4.3. We adopt an ini-

tial learning rate of 1e-3 and train the network for 15 epochs.

We compare our method to seven state-of-the-art meth-

ods. Among them, Lee et al. [16] and Fu et al. [5] use all

the 120K training images, and Xu et al. [39] and Zhang

et al. [39] also use the available segmentation supervision.

As shown in Table 3, the proposed method performs fa-

vorably against state-of-the-art approaches, particularly in

terms of depth accuracy by using a limited amount of seg-

mentation annotations. We believe our performance can be

SDC-A SDC-B SDC-C SDC-D

Design

Choice

Cat. ✗ ✓ ✓ ✓

Ins. ✗ ✗ ✓ ✓

DEnt. ✗ ✗ ✗ ✓

Err.
RMSE 7.203 6.962 6.958 6.917

Abs Rel 0.276 0.236 0.234 0.227

Acc.
δ < 1.25 0.767 0.794 0.797 0.801

δ < 1.252 0.895 0.911 0.911 0.913

δ < 1.253 0.941 0.949 0.951 0.950

Table 4: Ablation study on Cityscapes dataset [3]. Compo-

nents tested are category (Cat.) and instance (Ins.) depth

estimation, and disentangling canonical depth and scale in-

ference (DEnt). The best results are in bold font.

further improved by using more segmentation data from in-

door scenes.

4.5. Ablation Study

To achieve more comprehensive understanding of our

method, we perform ablative study on Cityscapes [3] and

DIW [2] datasets by adjusting different modules of our

method. Unless otherwise stated, we follow the same ex-

perimental setup as described in Section 4.1.

Effects of semantic divide-and-conquer. The proposed

SDC-Depth Net learns category and instance aware depth

estimation with disentangled canonical depth and scale in-

ference mechanism. To investigate the impact of the above

design choices, we compare the performance of baselines

(SDC-A to SDC-D) containing different subsets of these

choices on the Cityscapes dataset as shown in Table 4. It

can be observed that category aware depth estimation plays

a very important role in improving the depth accuracy. In-

stance aware depth estimation and disentangled depth pre-

diction also yield a considerable performance gain. To fur-

ther verify their effectiveness, Figure 6 compares the depth

accuracy of baseline methods with respect to different cat-

egories on Cityscapes validation set. The performance gain
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Figure 6: Depth accuracy of our variants across semantic

categories on Cityscapes validation set [3].

Road Sky Building

Person Vehicle

Figure 7: Average canonical depth maps of stuff (top) and

object (bottom) categories predicted by our SDC-Depth

Net. For each object category (bottom), we present both its

averaged depth map (left, red border) as well as one random

instance depth map of that category (right, blue border).

of the category-aware depth estimation is consistent cross

all categories while instance-aware depth estimation is more

effective for object categories.

We also visualize the average canonical depth maps, for

a number of different segments (Figure 7). We can see how

by splitting the depth prediction at a segment level, the net-

work can learn simpler category-specific depth priors.

Benefits of segmentation annotation. To evaluate how

much our method benefits from additional segmentation an-

notations, we train 4 instances of our SDC-Depth Net on

DIW and COCO datasets using different portions (25%,

50%, 75%, and 100%, respectively) of the COCO dataset

for training. In addition to this, we also train two base-

line networks that are encoder-decoder architectures that di-

rectly predict depth maps with a similar parameter count

to SDC-Depth Net. One of the baseline is trained only on

DIW, named as BNet-DIW. The other one is trained on both

0 25 50 75 100
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11.5
12.0
12.5
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13.5
14.0
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Figure 8: WHDR on DIW test set [2] of SDC-Depth Net

and baseline methods trained on different portion of COCO

training data. As our method has access to more and more

segmentation labels, we see that quality improves beyond

that of baseline approaches (BNet is a standard U-Net [2]

with similar parameter count).

DIW and COCO datasets in a multi-task learning manner,

named as BNet-DIW-COCO, as in [35]. The comparison

results in terms of depth accuracy on DIW test set are shown

in Figure 8. It can be observed that the performance can be

consistently improved by using more segmentation training

data, and when using all the COCO training data, the pro-

posed method outperforms BNet-DIW-COCO with a sig-

nificant margin.

5. Conclusion

We present a semantic divide-and-conquer strategy to re-

duce monocular depth estimation into that of individual se-

mantic segments. Based on this idea, the SDC-Depth Net is

designed, which decomposes an input images into segments

of different categories and instances, and infers the canon-

ical depth as well as the scale-and-shift transformation for

each segment using specifically trained parameters. An ag-

gregation method is also developed to stitch the per-segment

depth into the final depth map. The whole network can be

trained fully end-to-end by leveraging additional segmenta-

tion annotations. Experiments on three popular benchmarks

demonstrates the effectiveness of our method.
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