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Abstract

This work addresses the problem of 3D human pose and

shape estimation from a sequence of point clouds. Exist-

ing sequential 3D human shape estimation methods main-

ly focus on the template model fitting from a sequence of

depth images or the parametric model regression from a se-

quence of RGB images. In this paper, we propose a nov-

el sequential 3D human pose and shape estimation frame-

work from a sequence of point clouds. Specifically, the pro-

posed framework can regress 3D coordinates of mesh ver-

tices at different resolutions from the latent features of point

clouds. Based on the estimated 3D coordinates and fea-

tures at the low resolution, we develop a spatial-temporal

mesh attention convolution (MAC) to predict the 3D coor-

dinates of mesh vertices at the high resolution. By assigning

specific attentional weights to different neighboring points

in the spatial and temporal domains, our spatial-temporal

MAC can capture structured spatial and temporal features

of point clouds. We further generalize our framework to the

real data of human bodies with a weakly supervised fine-

tuning method. The experimental results on SURREAL, Hu-

man3.6M, DFAUST and the real detailed data demonstrate

that the proposed approach can accurately recover the 3D

body model sequence from a sequence of point clouds.

1. Introduction

Recovering 3D human shapes has numerous real-world

applications in robotics, augmented reality (AR) and virtu-

al reality (VR). Particularly, with the recent advancemen-

t of depth sensors such as Microsoft Kinect, 3D human

shape estimation from depth images has gained popularity

in the 3D computer vision community. 3D human shape

estimation from depth images aims to recover 3D mesh-

es of human bodies [26, 8, 44, 29]. However, accurate-

ly estimating 3D human body shapes from depth images
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is highly challenging since there are arbitrary deformations

and self-occlusions with human bodies. In addition, view-

point changes of depth cameras and severe random noises

on depth images make the problem more difficult.

Most of 3D body shape estimation methods from depth

images [16, 12, 11, 5, 41, 42] mainly focus on utilizing tem-

poral information to build point correspondences between

consecutive frames and recover the 3D model of each frame

with the correspondences. In the case of large discrepancy

between the 3D template model and an input depth image, it

is difficult to establish correct correspondences using the n-

earest neighboring search method. Thus, these methods are

not effective to recover the 3D body model from a single

depth image. In addition, since these methods sequentially

recover 3D human body models from depth images, the cor-

respondence errors are accumulated over the sequences. In

[38], the local descriptors of 3D human shapes are learned

to construct the dense correspondences and the 3D model-

s are then recovered by fitting the template model to input

depths. Nonetheless, these works mainly focus on recover-

ing 3D human body models from a sequence of depth im-

ages. Few efforts are made on the 3D body model recovery

from a sequence of point clouds.

Point clouds can provide more geometry information

than depth images. It is desirable to recover the 3D hu-

man body models from a sequence of point clouds so that

3D geometric structures of point clouds can be exploited.

We aim to directly infer sequential 3D body models by ex-

tracting local features of a sequence of point clouds. Thus,

we do not need to construct point correspondences between

consecutive frames and avoid the error accumulation during

the process of sequential 3D body model recovery.

Instead of estimating the SMPL [25] model parameters

of human bodies, in this paper, we propose a sequential 3D

human shape estimation method from point clouds by pre-

dicting the vertex coordinates of multi-resolution 3D body

meshes. First, we employ PointNet++ [31] to extract the la-

tent features of point clouds of sequential frames separately.
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We then develop a spatial-temporal mesh attention convolu-

tion to regress vertex coordinates of the 3D body meshes at

different resolutions from the latent features. Based on the

generated mesh at the low resolution, we construct a spatial

mesh attention convolution (MAC) by dynamically assign-

ing specific attentional weights to the one-ring neighbor-

hoods of the mesh vertices on the current frame. Similarly,

we also construct a temporal MAC by assigning attention-

al weights to the corresponding mesh vertices on the con-

secutive frames. The spatial MAC can capture local struc-

tured features of point clouds in the spatial domain while the

temporal MAC can fuse structured features of point cloud-

s on sequential frames to form a temporal representation.

In addition, our method can be generalized well to the re-

al data captured by depth sensors with a weakly-supervised

fine-tuning method. The experimental results on SURRE-

AL [37], Human3.6M [17], DFAUST [7] and the real data

of human bodies demonstrate the effectiveness of the pro-

posed method. In summary, the main contributions of our

method are as follows:

• We innovatively formulate the problem of 3D human

pose and shape estimation from a sequence of point

clouds.

• We propose a spatial-temporal mesh attention convo-

lution to progressively regress the vertex coordinates

of the 3D human meshes.

• We propose a weakly-supervised fine-tuning algorith-

m for the 3D body model recovery of the real human

bodies with detailed surfaces.

2. Related Work

3D human body modeling from depth images. The ex-

isting methods of 3D human body modeling from depth

images can be roughly divided into template-based and

template-less methods. The template-based methods uti-

lize template priors for the 3D body model recovery such

as embedded skeleton [39, 40], template models [11], or

parametric models [5, 44, 29]. These template priors en-

capsulate much prior knowledge of the template, thus mak-

ing the 3D body reconstruction robust. For example, Guo

et al. [11] deforms a pre-scanned template model to each

input depth through a novel L0 based motion regularizer

which effectively reduces the accumulated error in large

motions. Template-less methods [26, 16, 9, 12, 8] create

the 3D body models without any prior knowledge about the

body shape. These methods volumetrically fuse all captured

depth maps to reconstruct 3D models in realtime, but they

are restricted to slow motions. Recently, some approach-

es [41, 42, 47] extend to deal with large human motions

by incorporating template priors into template-less method-

s. For both template-based and template-less methods, it

is required to build point correspondences for each frame

through the closest 3D point searching method. The built

correspondences are prone to be inaccurate in the case of a

single input depth due to large discrepancy of human poses

and shapes between the template and the depth. Point cor-

respondences can be predicted directly for depth images of

human bodies through a random forest [30] or by match-

ing learned feature descriptors [38]. Based on the predict-

ed point correspondences, 3D body models are then recov-

ered by deforming the template to depth data. LBS Autoen-

coder [23] fits articulated mesh models to point clouds by

inferring the joint angles and deformation of a LBS tem-

plate, which is mainly proposed for point clouds with com-

plete 3D shape but not point clouds of depth images.

3D human pose and shape from color images. Most

methods of 3D body shape estimation from color images fit

a parametric body model [2, 25] or a template model [13]

to a set of observations on the input color images, such as

keypoints and silhouettes. For example, Bogo et al. [6] first

detects 2D body joints and then fits the SMPL model [25] to

these 2D joint locations. Many deep learning based meth-

ods [35, 27, 22, 36] infers the 3D body shape directly from

color images using convolutional networks. DensePose [10]

estimates dense human pose by learning dense correspon-

dences between an RGB image and a template body model.

Kanazawa et al. [18] infers the SMPL parameters through

an iterative 3D regressor from the latent features on a single

RGB image. A Graph CNN method [21] first attaches the

extracted features from an input color image to 3D vertex

coordinates of a template mesh and then predicts the vertex

coordinates of 3D body meshes using a convolutional mesh

regression. Recent works [49, 48, 1, 33] attempt to recover

the surface details of 3D human shapes beyond the paramet-

ric model from color images. For example, Zhu et al. [49]

proposes a hierarchical mesh deformation framework to re-

store detailed body shapes by utilizing body joints, silhou-

ettes, and per-pixel shading information.

3D human pose and shape from videos. In recent years,

feed-forward convolutional networks are often adopted to

encode temporal features from image sequences in 3D hu-

man pose and shape estimation [19, 45]. Recent studies [4]

suggest that feed-forward convolutional models not only

perform more accurately than canonical recurrent architec-

tures [14, 24] on a broad range of sequence modeling tasks,

but also are simpler and easier to train. Kanazawa et al. [19]

learns to capture 3D human dynamics from video by us-

ing a temporal convolutional network which reduces uncer-

tainty and jitter in 3D prediction of single-view approach-

es [18]. Zhang et al. [45] refines the temporal convolutional

network of [19] with a causal structure so that only past

temporal context is used to predict 3D human motion from

video. Some works [15, 35, 43, 46, 3] recover the sequen-

tial 3D models by enforcing temporal consistency across
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Figure 1. Overview of the proposed framework. Our framework can predict the 3D body model sequence from an input sequence of point

clouds of a human body. The proposed spatial-temporal mesh attention convolution regresses 3D coordinates of mesh vertices at different

resolutions by capturing structured spatial and temporal features of point clouds. Please refer to Sect. 3 for detailed description.

consecutive frames. Tung et al. [35] maps a color image

sequence to a sequence of corresponding 3D meshes based

on the consistency constraint that 3D motion of mesh ver-

tices when projected should match 2D optical flow. Zan-

fir et al. [43] extends the single image method to video by

imposing temporally coherent pose and motion reconstruc-

tions. The bundle adjustment algorithm proposed in [3] can

jointly optimize the per-frame estimations of [18] over the

whole video, and exploit temporal consistency of model pa-

rameters to resolve ambiguities. In this work, we use feed-

forward convolutional networks for 3D body model estima-

tion by proposing a temporal encoder on mesh structure.

3. Proposed Approach

Given a sequence of point clouds of a human body, our

goal is to estimate the sequential 3D body models that can

fit to the corresponding point clouds in the sequence. The

framework of our proposed method is illustrated in Fig. 1.

In the framework, we first extract local features of the point

clouds of each frame independently. Then, based on the

extracted features, a spatial-temporal mesh attention con-

volution (MAC) network is proposed to predict the 3D

body mesh of each frame from coarse to fine. The spatial-

temporal MAC can exploit both spatial and temporal fea-

tures encoded in the coarse meshes to infer the finer mesh-

es at the high resolution. In addition, we generalize our

method to real point clouds of human bodies by a weakly-

supervised fine-tuning method.

3D human body model. We adopt Skinned Multi-Person

Linear model (SMPL) [25] as the 3D human body model.

SMPL is a widely used statistical model which can gen-

erate various 3D body models with natural human shapes

and poses. Based on a set of shape and pose parame-

ters, the SMPL model can output a 3D body model with

N = 6, 890 vertices. Please refer to [25] for more details.

In our method, instead of estimating the model parameters,

we directly predict the 3D coordinates of the model vertices

that can fit to the input point clouds accurately. From the

predicted model vertices, we can easily obtain the SMPL

parametric models through a model fitting method [25].

3.1. Spatialtemporal mesh attention convolution

Since PointNet++ [31] can characterize geometric struc-

tures of point clouds well, we employ PointNet++ to ex-

tract the latent features of point clouds of each frame. We

then develop a spatial-temporal MAC network to generate

multi-resolution 3D body meshes from the extracted fea-

tures. As shown in Fig. 1, at the high resolution, we first

upsample the coarse mesh from the previous low resolution

and then employ the spatial-temporal MAC to generate the

finer mesh with a fixed topology. The mesh upsampling is

performed by left-multiplying the upsampling matrix with

the mesh. We pre-compute the upsampling matrices of the

SMPL template model at different resolutions as [32]. The

proposed spatial-temporal MAC can capture the structured

features of point clouds stored on the mesh vertices in both

the spatial and temporal domains. The spatial MAC dy-

namically assigns specific attentional weights to the one-

ring neighborhoods of the mesh vertices on a single frame

while the temporal MAC assigns attentional weights to the

corresponding mesh vertices on the consecutive frames. We

apply the spatial-temporal MAC in a coarse-to-fine manner

to generate the final 3D human body model.

3.1.1 Spatial mesh attention convolution

At the frame l, we first employ the upsampling operation

to generate a high-resolution mesh Gk with q vertices at

the k-th resolution. For conciseness, we ignore the frame

stamp l in the following derivations of this subsection. We

then regress the vertex coordinates of the mesh Gk from

the input features of q vertices through a MLP network. We

formulate the following 3D coordinate loss to generate the

vertex coordinates of the high-resolution mesh:

Lcoord(k) =

q
∑

i=1

‖ pi − p̃i ‖
2
2, (1)
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where pi is the coordinates of vertex i on the generated

mesh Gk, and p̃i is the ground truth coordinates of vertex i

on G̃k. The mesh G̃k is downsampled from the full ground

truth model with the downsampling operation [32]. We al-

so map the input features of mesh vertices into a new set

of vertex features h = {h1,h2, ...,hq}(hi ∈ R
F ) with a

MLP layer, where F is the feature dimension of each vertex.

Figure 2. An illustration of our spatial mesh attention convolution

(a) and temporal mesh attention convolution (b). Spatial mesh at-

tention convolution is performed on the one-ring neighborhoods

of the mesh vertices on a single frame, while temporal mesh atten-

tion convolution is performed on the corresponding mesh vertices

of consecutive frames.

With the attention mechanism [28], we construct a spa-

tial MAC to capture local structured features of the one-ring

neighborhoods of the vertices on the generated mesh Gk. In

the constructed spatial MAC, different one-ring neighbor-

hoods of the mesh vertices are assigned to specific atten-

tional weights. The attentional weights of each vertex with

its neighbors are related to the differences of vertex coordi-

nate and feature vector, which are computed as follows:

σij = σ([∆pij ,∆hij ]), j ∈ N (i), (2)

where ∆pij = pj − pi, ∆hij = hj − hi, and N (i) is

the neighbor set of vertex i (including itself). By taking the

concatenation of vertex coordinate and feature vector differ-

ences as the input, the spatial attentional weights are learned

by the attention mechanism σ, which is a MLP network in

our experiments. To handle the neighbors across different

vertices and spatial scales, the attentional weights are nor-

malized across all the neighbors of vertex i as follows:

σ̃ij = softmax(σij) =
exp(σij)

∑

s∈N (i) exp(σis)
, (3)

where σij is the attentional weight vector of vertex j to ver-

tex i. The final output features of vertex i after spatial MAC

can be computed by a linear combination of the neighbor

features with the normalized attentional weights:

h̃i =
∑

j∈N (i)

σ̃ijhj + bi, (4)

where bi ∈ R
F is a learnable bias.

3.1.2 Temporal mesh attention convolution

Temporal context provided by the sequential frames can al-

leviate the problems of occlusion uncertainty and shape am-

biguity in single-view approaches. Thus, it is necessary to

encode the temporal features and use them in the recovery

of sequential 3D models. The mesh vertices store features

for vertex coordinate regression which encodes the infor-

mation of the 3D body shape. These features can provide

much useful information for the 3D model estimation of

other frames in a sequence. Since the sequential frames

have the corresponding mesh topology at the same resolu-

tion, we can temporally fuse the features of the same mesh

vertex across all the frames. We apply a temporal mesh at-

tention convolution for mesh vertices to exploit useful infor-

mation from consecutive frames. Specifically, for a vertex

i on the mesh Gk of frame l, we compute the attentional

weight of frame j to frame l on vertex i as follows:

εilj = ε(h̃i
j − h̃i

l), j ∈ {1, 2, ...fn}, (5)

where fn is the frame number of a sequence sample, h̃i
j

and h̃i
l are the i-th vertex features after spatial MAC on the

mesh Gk of frame j and l, respectively. The temporal at-

tention mechanism ε maps the feature vector difference to

the temporal attentional weights, which is a MLP network

in our experiments. The temporal attentional weights are

also normalized across all the frames as follows:

ε̃ilj =
exp(εilj)

∑fn

t=1 exp(ε
i
lt)

. (6)

The final output features of vertex i in frame l after temporal

MAC can be computed as follows:

ĥi
l =

fn
∑

j=1

ε̃iljh̃
i
j + bil, (7)

where bil ∈ R
F is a learnable bias. Through K = 4 dif-

ferent resolutions shown in Fig. 1, the mesh is upsampled

to 1, 723 vertices. We finally apply another spatial MAC to

map the vertex features to 3D vertex coordinates. The mesh

regression loss is defined as follows:

Lmesh =

N
∑

i=1

‖ vi − ṽi ‖
2
2, (8)

where ṽi is the coordinates for vertex i of frame l on the

ground truth model. To avoid the high vertex redundancy

and reduce the training time, we predict the 3D models with

1, 723 vertices that is a factor of 4 downsampled on the o-

riginal SMPL vertices. The 3D models of original scale can

be easily obtained through a mesh upsampling [32] on the

7278



predicted 3D models. Then, the overall loss function of our

method is defined as:

L =

fn
∑

l=1

(Lmesh + λ

K
∑

k=1

Lcoord(k)), (9)

where λ is the regularization parameter.

3.2. Weaklysupervised finetuning for real detailed
data

Since there are no ground truth 3D models for real bodies

with details such as clothes, we fine-tune the network on

this kind of real data in a weakly-supervised manner. By

testing on real point clouds using the pre-trained models, we

can obtain 3D models V which are roughly consistent with

the input point clouds in poses and shapes. Although the

predicted 3D models V does not fit the input point clouds

well, we can use them to supervise the fine-tuning on real

clothed data. We define the mesh regression loss in the fine-

tuning network as follows:

L′
mesh = L3D + βLLaplacian + γLedge, (10)

where L3D is the 3D correspondence loss, LLaplacian is the

Laplacian loss, Ledge is the edge loss, β and γ are the reg-

ularization parameters. The 3D correspondence loss forces

the vertices of the estimated models to align to the corre-

sponding points on the point clouds, defined as follows:

L3D =
1

Nc

N
∑

i=1

mi ‖ vi − pi ‖
2
2, (11)

where vi is the i-th vertex on the estimated 3D models, pi is

the corresponding point of vi on the input point clouds, Nc

is the number of valid correspondences, and mi is 0 or 1 (if

it is a valid correspondence, mi = 1; otherwise, mi = 0).

The point correspondences are initially built based on V and

updated iteratively during the fine-tuning process. Since the

3D correspondence loss only constrains the visible vertices

of the body models, the occluded body parts are prone to

be recovered with unnatural shapes. Thus, we introduce the

Laplacian loss [34] to preserve the surface smoothness:

LLaplacian =
N
∑

i=1

‖ δi − δ̂i ‖
2
2, (12)

where δi = vi−
1
Ni

∑

j∈N (i) vj is the Laplacian coordinate

of vertex i on the estimated 3D models, N (i) is the neigh-

bor set of vertex i, Ni is the number of vertices in the set

N (i), and δ̂i is the Laplacian coordinate of vertex i on V .

In addition, we apply the edge loss [2] to penalize unnatural

edges and enforce edge length consistency of 3D models:

Ledge =

N
∑

i=1

∑

j∈N (i)

(‖vi − vj‖
2
2 − ‖v̂i − v̂j‖

2
2)

2, (13)

where vi and v̂i denote vertex i on the estimate models

and V , respectively. We formulate the 3D coordinate loss

L′
coord(k) of the estimated meshes at different resolutions

using the same three losses defined in Eq. 10 with different

mesh topologies. By optimizing the total fine-tuning objec-

tive L′ =
∑fn

l=1(L
′
mesh+λ

∑K

k=1 L′
coord(k)), the estimated

3D models can be registered to the input point clouds.

4. Experiments

In this section, we first elaborate our implementation de-

tails and then evaluate our method by comparing with the

state-of-the-art methods. Finally, we perform ablative anal-

ysis on our method and test it on the real data.

4.1. Implementation details

Datasets. We conduct experiments on the SURREAL [37],

Human3.6M [17], DFAUST [7], and real data. The train-

ing dataset of SURREAL contains 55, 001 clips of 3D body

models, each clip with mostly 100 frames long. We u-

niformly sample 10, 000 clips to generate 200, 000 subse-

quences with 5 frames long both for male and female as

the training data. DFAUST dataset [7] contains more than

40, 000 registered scans of real undressed bodies, which

have shapes and motions beyond the SMPL model. Since

there are the corresponding SMPL models for DFAUST

dataset, we generate 50, 000 subsequences for both men

and women as the training data. We render the 3D mod-

els to depth images from different views and make the res-

olution of the rendered images nearly the same as real da-

ta to simulate real depths. The rendered depths are finally

converted to point clouds for the training. For SURREAL,

Human3.6M and DFAUST, we uniformly sample 100 se-

quences with about 100 frames long for both male and fe-

male as the test data. Note that the test data does not include

any same subject in the training data. We have captured a

small real dataset with a Kinect V2 sensor which contains

more than 8100 frames with different subjects under various

motions. Our network is fine-tuned with Eq. 10 on samples

from SURREAL, DFAUST and the real captured data.

Architecture and experimental settings. The raw point

clouds of depth images are uniformly downsampled to L =
2, 500 points in our experiments. We use the original Point-

Net++ [31] to extract local features on the point clouds. The

extracted 1, 024-dim feature vector is first transformed to

(27∗256)-dim vector with a fully-connected layer and then

reshaped to 27 vertices with 256-dim feature vector. Our

spatial-temporal MAC networks consist of four different

mesh resolutions with upsampling factors of {4, 4, 2, 2}, fi-

nally outputting 3D coordinates of 1, 723 vertices. The fea-

ture channels at different resolutions are {256, 128, 64, 32},

respectively. We use mlp{256, 256, 3} for the vertex co-

ordinate regressor. For both spatial and temporal atten-

tion mechanism, we first learn the attentional weights with
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mlp{16, 16} and then map them to the weights with the

same size as the input features using a followed MLP layer.

Each mesh convolution is followed by a ReLu layer except

the last one of regressing the 3D coordinates. The learning

rate is set to 1 × 10−4. The length of each training sample

is 5 frames long. We try to use training samples with larger

frame length, but the training takes much longer time. By

using the length of 5 frames, our method can yield a good

accuracy of reconstruction. We use Adam optimizer [20]

with the batch size of 8. We empirically set λ = 1, β = 60,

and γ = 100. The running time for a test sample is about

24.7ms on average with a NVIDIA 2080 Ti GPU.

Error metrics. The compared methods are evaluated

through both quantitative and qualitative experiments. We

quantify reconstruction error with the Mean Average Vertex

Error (MAVE) over all vertices of all recovered 3D models

in millimeter (mm):

ǫ =
1

Nf

Nf
∑

k=1

1

N

N
∑

i=1

√

‖(vi − v̂i)‖22, (14)

where Nf is the number of test samples, vi is the i-th vertex

on the recovered 3D model, v̂i is the corresponding vertex

of vi on the ground truth model, and N is the vertex number.

4.2. Comparison to stateoftheart methods

We first compare our 3D body model estimation method

with three kinds of model fitting methods from depth im-

ages. Pure model fitting method [25] deforms the SMPL

template to the depths using the searched point correspon-

dences between the template and input depths. Bogo et

al. [6] first detects 2D body joints and then fits the SMPL

template to the detected joints. Wei et al. [38] builds the

point correspondences by matching the learned feature de-

scriptors for depth images of human bodies. The 3D mod-

els are then generated by fitting the SMPL template to point

correspondences found using [38]. We deform the estimat-

ed models of both [6] and [38] to the input depths further

using searched point correspondences. The reconstruction

errors with different methods are listed in Table 1. The com-

parison results on the DFAUST data using different methods

are shown in Fig. 3. Please refer to the supplementary video

for comparison results on depth sequences. The pure model

fitting method has higher recovery error due to large dis-

crepancy between the template and the input depths. The

performance of [6] and [38] highly relies on the estima-

tion of detected joints and learned point correspondences,

respectively. Inaccurate joints and point correspondences

might cause large reconstruction error using these methods.

In contrast, our method predicts the 3D body models di-

rectly from point clouds without building point correspon-

dences, thus leading to much higher recovery accuracy.

Since there is no deep learning method of 3D body model

Methods SURREAL Human3.6M DFAUST

Pure model fitting [25] 140.6 148.3 110.1

Bogo et al. [6] 56.1 60.5 57.5

Wei et al. [38] 58.6 64.1 62.2

Kanazawa et al. [18] 54.3 59.8 58.1

Kanazawa et al. [19] 52.7 57.3 56.1

Kolotouros et al. [21] 49.5 54.3 52.2

Our method (Non parametric) 18.2 21.4 19.7

Our method (Parametric) 19.4 22.8 20.3

Table 1. Reconstruction errors (mm) with different methods tested

on sequences from the three public datasets.

Figure 3. The visualization of reconstruction accuracies using d-

ifferent methods on the DFAUST data. (a) The input scan. (b)

The fitted parametric result of our method. (c) The predicted non-

parametric result of our method. (d) Kolotouros et al. [21]. (e)

Kanazawa et al. [19]. (f) Kanazawa et al. [18]. (g) Wei et al. [38].

(h) Bogo et al. [6]. (i) The result of pure model fitting.

estimation from depth images, we extend RGB-based net-

works for the comparison by adding a 3D correspondence

loss defined as Eq. 11. We train the regression network [18]

on depth images and compare it with our method. We also

compare our method with the recent method [21] by ex-

tracting features on depth images and regressing 3D mesh-

es through Graph CNN. Kanazawa et al. [19] proposes a

temporal encoder method for recovering the SMPL model-

s from videos. We compare the temporal encoder of [19]

with our method by employing their method on depth im-

ages. As shown in Table 1 and Fig. 3, the comparison results

demonstrate that our method can outperform the state-of-

the-art methods in recovering sequential 3D body models

from a sequence of depth images. Rather than estimating

the SMPL parameters as [18] and [19], our method adopts

a spatial-temporal MAC network to predict 3D coordinates

of mesh vertices in a coarse-to-fine manner, thus resulting

in higher fitting accuracy to the point clouds. In Graph CNN

of [21], the spatial neighbors of vertices are convoluted by

a neighborhood averaging operation. Different from [21],

our spatial MAC method learns the neighboring relationship

for each vertex based on the differences of feature vectors

and spatial positions, which can capture more discrimina-

tive features from neighboring vertices. The comparison

results with temporal encoder of [19] demonstrate that our

spatial-temporal MAC can successfully exploit both spatial

and temporal features on the mesh vertices across sequential

frames. Especially, by fitting the SMPL model [25] to our

regressed mesh vertices, the estimated parametric models

have the similar accuracy to that of our regressed 3D mesh-
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es, demonstrating it can accurately recover the parametric

SMPL models from the non-parametric prediction.

4.3. Ablative analysis

Spatial mesh attention convolution. We first evaluate the

effectiveness of our spatial mesh attention convolution (S-

MAC) by comparing our method with and without SMAC.

For our method without SMAC, we do not apply the linear

combination of neighboring vertex features with the learned

attentional weights after the feature mapping. In addition,

we test our method by replacing the attention model in the

SMAC with a simply neighborhood averaging method [21].

The reconstruction errors using different methods are list-

ed in Table 2. Our method with SMAC can achieve much

lower errors than other methods, demonstrating the effec-

tiveness of our SMAC. Compared to the simply averaging

method, our SMAC can capture local geometry structure

better in the coarse-to-fine regression framework by dynam-

ically assigning the weights for the neighboring vertices.

Temporal mesh attention convolution. We also evaluate

the effectiveness of the proposed temporal mesh attention

convolution (TMAC) by comparing our method with and

without TMAC. The comparison results shown in Table 2

demonstrate our method with TMAC can improve estima-

tion accuracy of mesh vertices by encouraging the network

to exploit discriminative temporal features. In addition, us-

ing the data of sequential frames can mitigate shape uncer-

tainty and ambiguity. From the example shown in Fig. 4,

the occluded hand fails to be recovered accurately without

TMAC. In contrast, our method with TMAC faithfully esti-

mates the 3D hand shape with a higher accuracy by utilizing

the hand features observed from the sequential views.

Figure 4. Reconstruction accuracies with and without temporal

mesh attention convolution (TMAC). (a) The three input depths

from consecutive five frames. (b, c) The results of frame 1 with

and without TMAC shown from two views, respectively. By ex-

ploiting the hand features from the neighboring frames through

TMAC, our method can recover 3D shape of the occluded hand

more accurately (surrounded in rectangle).

Spatial-temporal mesh attention convolution. We further

evaluate our spatial-temporal MAC by comparing it with a

3D regression method [18] of estimating SMPL models. In

the 3D regression method, we extract features from point

clouds using PointNet++ [31] and replace the 2D joint loss

Methods SURREAL Human3.6M DFAUST

our method 18.2 21.4 19.7

Without SMAC 45.3 49.1 47.6

Simply averaging SMAC 25.7 26.5 25.9

Without TMAC 21.2 22.9 22.2

3D regression 65.8 68.4 65.3

Table 2. Reconstruction errors (mm) of our method, our method

without spatial mesh attention convolution (SMAC), our method

with simply averaging SMAC, our method without temporal mesh

attention convolution (TMAC), and the 3D regression method.

Point Number SURREAL Human3.6M DFAUST

2,500 18.2 21.4 19.7

5,000 18.0 20.8 19.3

7,500 17.9 20.7 19.1
Table 3. Reconstruction errors (mm) with different number of sam-

pled points using our method.

in [18] with the 3D correspondence loss. As shown in Ta-

ble 2, the recovery accuracy using the 3D regression method

is worse than our method, showing that it is difficult to accu-

rately estimate SMPL model parameters from point clouds.

In contrast, our method can accurately estimate 3D coordi-

nates of mesh vertices from coarse to fine by leveraging the

mesh topology through the spatial-temporal MAC.

Figure 5. An example of weakly-supervised fine-tuning on “Girl

2” data. (a) The input depth. (b, c) The results before and af-

ter weakly-supervised fine-tuning, respectively. The overlay with

alignment is shown between the 3D model and the raw depth.

Weakly-supervised fine-tuning on real data. To evaluate

the effectiveness of our weakly-supervised fine-tuning on

real detailed data, we compare the estimation results before

and after the weakly-supervised fine-tuning. An example is

shown in Fig. 5. Due to the lack of real detailed samples

in training data, the predicted 3D models before the fine-

tuning cannot fit to the input data well. Although there is

relatively large recovery error for the predicted 3D models,

they align with the point clouds roughly. With the super-

vision of the initially predicted 3D models, our fine-tuning

network can generate more accurate 3D models that have

consistent shapes and poses with the input real data.

The number of sampled points. We also investigate the

influence of the number of sampled points L on the recon-

struction accuracy using 2, 500, 5, 000, and 7, 500 sampled

points. Table 3 shows the reconstruction errors using dif-

ferent number of sampled points. We observe that there is

a slight improvement of the recovery accuracy with an in-
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Figure 6. Some recovered 3D models using our method on real data. For each result, we show the extracted raw depth scan, the predicted

non-parametric mesh and the fitted parametric model. From top to bottom: “Kungfu” data from [11], “Boy” data, “Girl” data from [11], and

“Girl 2” data. Note that we show the raw depth scan instead of sampled points here for better visualization. Please see the supplementary

video for reconstruction results of the entire sequences.

creasing number of points. However, the training process

also takes much longer. To strike a balance between estima-

tion accuracy and running efficiency, we choose L = 2, 500
in our experiments. This experiment verifies that our ap-

proach is robust to a small number of sampled points since

we can obtain a good accuracy with L = 2, 500 points.

4.4. Test on real data

We test our method on real data of clothed human bod-

ies with a variety of shapes and poses captured by a Kinect

V2 sensor. “Kungfu” data and “Girl” data are from [11],

and “Boy” data and “Girl 2” data are captured by ourselves.

Fig. 6 shows some reconstruction results in the sequences.

Please refer to the supplementary video for reconstruction

results of the complete sequences. The input to our method

is a sequence of 2500 uniformly sampled points from raw

point clouds. We generate the 3D body models for five con-

secutive frames each time. Since our method predicts the

3D models from the point clouds directly without building

point correspondences, there is no problem of error accu-

mulation when handling the entire sequences. Although

there are serious self-occlusions and arbitrary deformations

on the real data, our method still can robustly and accurately

estimate the 3D body shapes that fit to the input point clouds

well. Through the proposed weakly-supervised fine-tuning,

our method can generalize reliably to real point clouds of

clothed bodies. Our method may fail in the cases of ex-

tremely large poses and loose clothes like long skirts. By

applying our method on more real detailed data, we can

generate a large dataset of 3D body models aligned with the

real data for the needs of this kind of data in the community.

The human motions are always tracked by searching point

correspondences on successive depth frames in traditional

approaches, while our method reconstructs the sequential

3D models directly from point clouds, which is a novel way

to track human motions in a sequence.

5. Conclusion

In this paper, we addressed the problem of sequential

3D human pose and shape estimation from a sequence of

point clouds. Instead of estimating the parametric models,

we propose a spatial-temporal mesh attention convolution

to accurately predict vertex coordinates of 3D meshes at d-

ifferent resolutions in a coarse-to-fine manner from latent

features of point clouds. By dynamically assigning atten-

tional weights to neighboring points in the spatial and tem-

poral domains, the proposed spatial-temporal mesh atten-

tion convolution can exploit both local structured features

of point clouds of a single frame and temporal structured

features of point clouds of consecutive frames, which im-

proves the recovery accuracy of sequential 3D body models.

In addition, our method is successfully generalized to real

detailed data captured by depth sensors through a weakly-

supervised fine-tuning method. The experimental results on

SURREAL, Human3.6M, DFAUST and real detailed data

demonstrate the effectiveness of the proposed method.
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Romero Adriana, Liò Pietro, and Bengio Yoshua. Graph

attention networks. International Conference on Learning

Representations, 2018.

[29] Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J.

Black. ClothCap: Seamless 4D clothing capture and retar-

geting. ACM Transactions on Graphics, 36(4), July 2017.

[30] Gerard Pons-Moll, Jonathan Taylor, Jamie Shotton, Aaron

Hertzmann, and Andrew Fitzgibbon. Metric regression

forests for correspondence estimation. International Journal

of Computer Vision, 113:163–175, July 2015.

[31] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J.

Guibas. PointNet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in Neural Informa-

tion Processing Systems, pages 5099–5108, 2017.

[32] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and

Michael J. Black. Generating 3D faces using convolutional

mesh autoencoders. In European Conference on Computer

Vision, pages 725–741, 2018.

[33] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-

ishima, Angjoo Kanazawa, and Hao Li. PIFu: Pixel-aligned

implicit function for high-resolution clothed human digitiza-

tion. Proceedings of the IEEE International Conference on

Computer Vision, 2019.

[34] Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alex-
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