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Abstract

Most of the existing person re-identification (re-ID)

methods achieve promising accuracy in a supervised man-

ner, but they assume the identity labels of the target domain

is available. This greatly limits the scalability of person

re-ID in real-world scenarios. Therefore, the current per-

son re-ID community focuses on the cross-domain person

re-ID that aims to transfer the knowledge from a labeled

source domain to an unlabeled target domain and exploits

the specific knowledge from the data distribution of the tar-

get domain to further improve the performance. To reduce

the gap between the source and target domains, we propose

a Smoothing Adversarial Domain Attack (SADA) approach

that guides the source domain images to align the target

domain images by using a trained camera classifier. To sta-

bilize a memory trace of cross-domain knowledge transfer

after its initial acquisition from the source domain, we pro-

pose a p-Memory Reconsolidation (pMR) method that re-

consolidates the source knowledge with a small probabil-

ity p during the self-training of the target domain. With

both SADA and pMR, the proposed method significantly

improves the cross-domain person re-ID. Extensive exper-

iments on Market-1501 and DukeMTMC-reID benchmarks

show that our pMR-SADA outperforms all of the state-of-

the-arts by a large margin.

1. Introduction

Person re-identification (re-ID) aims at re-targeting per-

son images across non-overlapping camera views given a

query image. Recently, most of the existing person re-ID

approaches achieve a dramatic improvement using a large

number of annotations. However, these person re-ID sys-

tems often assume that large-scale identity labels of a tar-

get domain are available, which greatly limits their scala-
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bility in real-world scenarios. When applied to a new s-

cenario, they suffer from serious performance degradation,

e.g., from 92.0% to 47.5% on the Market-1501 dataset [52].

How to transfer the knowledge from a labeled source do-

main to an unlabeled target domain for person re-ID and

how to exploit the specific knowledge from an unlabeled

target domain to boost person re-ID methods become hot

topics in the current person re-ID community. It is widely

called cross-domain person re-ID.

Recently, lots of cross-domain person re-ID methods

have achieved promising progress. A common approach to

solve this problem is to directly apply a pre-trained model

of a source domain to a target domain for evaluation. How-

ever, there exists a large domain gap between the source

and target domains due to different lightings, background-

s, poses, and camera views. To deal with the large domain

gap problem, several GAN based methods [6, 19, 4, 18] are

proposed. For example, [6] proposed to directly use a cy-

cle generative adversarial model to reduce the domain gap

problem. However, due to the diversity of person images,

the person identity information of the generated images is

hard to preserve without any identity constraint. Based on

[6], [19, 44, 4] used person segmentation tools to extract

person masks as extra information to help GAN to preserve

the person identity information. Although they can greatly

improve the performance of the cross-domain person re-ID,

they largely depend on the performance of the person seg-

mentation task that implicitly requires person mask annota-

tions. These extra annotations could also limit their scala-

bility in practice.

Instead of focusing on the image-based knowledge trans-

fer, some researchers attempt to exploit the underlying data

distributions of the target domain by person identity clus-

tering for self-training. For example, a progressive unsu-

pervised learning method [8] that iterates k-means cluster-

ing and CNN fine-tuning is proposed to learn discriminative

features for person re-ID. Based on [8], several clustering
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methods [31, 23] use DBSCAN and hierarchical clustering

methods to mine positive and negative samples of the target

domain for pseudo-label self-training. However, these ap-

proaches simply use the pre-trained model of the source do-

main as an initial model for the feature learning of the target

domain. After several iterations, the transferred knowledge

from the source domain is gradually forgotten due to the de-

cline of memory retention of convolutional neural networks

(CNNs).

To address these two problems, we propose a new ap-

proach by narrowing the domain gap and strengthening the

source transferred knowledge. Specifically, to reduce the

domain bias between the source and target domains, we

propose a smoothing domain attack approach to align the

source domain towards the target domain at the image lev-

el. Given a source domain Ds with Ns cameras (labeled

as 1, 2, ..., Ns) and a target domain Dt with Nt cameras (la-

beled as Ns+1, Ns+2, ..., Ns+Nt), a (Ns+Nt)-category

camera-based classifier is trained by predicting the labels of

these cameras. Given a source image, we randomly gen-

erate a target camera label as the new label of the source

image to align the target domain. This is achieved by fixing

the weights of the classifier and allowing the smoothed gra-

dient to change the pixels of the source images. To avoid

the decline of memory retention of the source knowledge,

we propose to reconsolidate the source knowledge with a

small probability p during the self-training of the target do-

main. Instead of directly applying the source pre-trained

model to the target domain, we propose to select the source

dataset to reconsolidate the source memory with a random

variable that follows a Bernoulli distribution. With both SA-

DA and pMR, the proposed method significantly improves

the cross-domain person re-ID.

Overall, the contributions of this paper are:

• We propose a smoothing adversarial domain attack

(SADA) approach to force the source images to align

the target images at the image-level, so as to reduce the

gap between the source and target domains.

• We propose a p-Memory Reconsolidation (pMR) ap-

proach that has a small probability p to avoid the de-

cline of memory retention of the source knowledge.

• Extensive experiments on Market-1501 and

DukeMTMC-reID benchmarks show that our

pMR-SADA outperforms all of the state-of-the-arts

by a large margin.

2. Related Work

Supervised person re-ID. Most of the current person

re-ID methods focus on deep based models [41, 36, 37, 56]

due to the remarkable representation capacity of neural net-

works [11, 42, 40]. Early works [51, 46, 7, 21, 39, 5, 3]

designed different network structures and loss functions to

boost the performance of re-ID. Recently, some body-part

based methods [33, 50, 49, 32, 35, 10, 38] and attention-

based methods [9, 17, 34, 55] have been proposed to further

improve accuracy. The part-based models split the last con-

volutional feature maps into several parts to learn discrim-

inative local feature representations by considering human

body structures. The attention-based approaches aim at em-

phasizing informative regions while depreciating harmful

ones. Although these methods achieve high performance,

they require large-scale labeled datasets in the target do-

main, which limits their scalability in real-world scenarios.

Unsupervised cross-domain person re-ID. The unsu-

pervised cross-domain person re-ID aims at transferring the

knowledge from a labeled source domain to an unlabeled

target domain, which reduces the time-consuming labeling

works on the target domain. The current methods can be

divided into two groups. In the first group, some methods

attempt to reduce the domain gap at the image or feature

levels by designing consistent domain losses. For example,

Lin et al. [22] proposed to reduce the data distribution dis-

crepancy between the source domain and the target domain

by minimizing the maximum mean discrepancy (MMD) of

the two domains. Lei et al. [28] extended to the camera-

level discrepancy and used a gradient reversal layer to re-

duce distribution discrepancy. Recent methods focused on

GAN-based style transfer methods [6, 44, 4, 18, 25], which

can transform images from source domain styles to target

domain styles. For example, M2M-GAN [19], PTGAN

[44], and CR-GAN [4] translated image styles by adding

a mask-based person identity loss to preserve identity infor-

mation. However, most of these method requires other ex-

tra information (e.g., person masks), which implicitly used

other expensive annotations and thus could limit their scala-

bility in practice. In the second group, some methods focus

on exploiting the data distribution characteristics of the tar-

get domain and estimating the labels of the target dataset

for self-training. For example, [8, 31, 23] used K-means,

DBSCAN or hierarchical clustering methods to mine pos-

itive and negative samples of the target domain. Our pro-

posed method belongs to this group and is built upon the

clustering-based algorithm. The main differences are that

our approach method considers a smoothing domain attack

to align the source and target domains and introduces a new

p-memory reconsolidation algorithm to solve the decline of

memory retention of the source transferred knowledge.

Continual learning. Continual learning (CL) performs

learning through a sequence of tasks and it is often assumed

CL accesses to one task at once. CL aims to improve pre-

vious, current and future learning tasks, especially previous

learning tasks due to catastrophic forgetting [26]. To reduce

catastrophic forgetting, early works [2, 30] focused on s-

tudying linear models to retain knowledge. Recently, lots of
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deep models [1, 29] used a shared backbone and n specific

branches for n learning tasks. Besides, [26, 14, 13]proposed

regularization approaches that adjust the learning objective

to prevent catastrophic forgetting. Our proposed pMR dif-

fers from CL in several aspects. First, pMR focuses on one-

directional learning (source→target) while CL has to bal-

ance both previous and new learning tasks. Second, pMR

can simultaneously access to all of the tasks while CL ac-

cesses to one task at once. Also, pMR focuses on simi-

lar learning tasks while CL does not has such a constraint.

Third, pMR only focuses on restoring shared knowledge

while CL attempts to memory all of the knowledge of pre-

vious learning tasks, which leads to different optimization

algorithms.

3. The Proposed Method

Cross-domain person re-ID is to transfer the knowledge

from a labeled source domain to an unlabeled target do-

main. In this section, we first provide an overview of the

proposed method in Section 3.1. Then we focus on two

main components of our method in Section 3.2 and Section

3.3. After that, a complete algorithm is provided in Section

3.4.

3.1. Overview of the Proposed Framework

The overview of our proposed method is illustrated in

Figure 1, which consists of two main components, i.e.,

a smoothing adversarial domain attack (SADA) and a p-

memory Reconsolidation (pMR). Specifically, the SADA

module is to force the source images to align the target do-

main distribution at the image level. After that, the aligned

source images are used to pre-train a deep model. The pre-

trained model is then transferred to the target domain for

Density-Based Spatial Clustering (DBSC). Due to the fact

that convolutional neural networks have no memory capac-

ity, one would think if the knowledge transferred from the

source domain will be forgotten during the self-training of

the target domain. To solve this problem, a pMR module

is naturally introduced. The pMR module takes the aligned

source images as input with a probability p and takes the

target images with probability 1 − p. With the proposed

pMR approach, we found that pMR obtains consistent im-

provement in all of the experiments against direct transfer.

3.2. Smoothing Adversarial Domain Attack

SADA is an iterative adversarial attacker that aims at

aligning a camera-based distribution of the source images

to be that of the target images. We need to make sure that

each person ID in the aligned source domain contains differ-

ent target camera classes, which enables the cross-camera

feature learning against the camera view variances. In this

paper, the source images of each person ID are randomly

aligned to target camera classes, which satisfies this require-

ment. Let Ds = {(Ii, zi)}
Ms

i=1
denote a source domain with

Ns cameras (zi ∈ [1, Ns]) and Dt = {(Ij , zj)}
Mt

j=1
denote

a target domain with Nt cameras (zj ∈ [Ns +1, Ns +Nt]),
where z represents camera identity, which is available in

both the source and target domain. Ms and Mt is the num-

ber of the source and target images, respectively. We train

a (Ns +Nt)-category classifier g(·; Θ) that can distinguish

(Ns +Nt) camera-based distributions. Given a source im-

age (Ii, zi) (the subscript i of I is omitted for simplicity

below) and a random target camera ID zj , the alignment of

the source domain and the target domain is achieved by an

iterative adversarial attacker [16], which can be formulated

as {
Iadv0 = I

Iadvk+1
= ClipI,ϵ{I

adv
k −∇Iadvk }

(1)

where Iadvk is an adversarial result of the k-th iteration.

ClipI,ϵ represents a function which performs per-pixel clip-

ping of the image. The gradient is computed by

∇Iadvk = αsign(∇IJ(I
adv
k , zj)) (2)

zj is a random camera ID of the target domain. J(I, z)
is the cross-entropy function of the neural network and

J(I, z) = −logp(z|g(I; Θ)). Note that we fix Θ during the

attack process. Eqs. (1) and (2) attempt to push the source

domain towards the target domain at the image level until

the source domain is guided to be classified as the given tar-

get camera zj . One drawback of Eq. (2) is that the output

of the sign function could lead to uneven pixel changes (iso-

lated points) due to the inaccurate location of the gradient.

Those isolated points violate the smoothness of the natural

images and thus could increase domain attack iterations to

reverse the source camera ID zi as the target camera ID zj .

To this, we propose a smooth iterative adversarial domain

attack approach, which can be formulated as

∇Iadvk = αsign(smooth(∇IJ(I
adv
k , zj))) (3)

where smooth(·) denotes a smoothing function. In this pa-

per, we use a mean filter as a choice of smooth(·). We will

show the fast convergence of the smoothing adversarial do-

main attack in the experiment section.

3.3. p­Memory Cross­Domain Transfer Learning

3.3.1 Review of Clustering Based Cross-Domain Re-ID

We provide a brief introduction for a conventional clus-

tering based cross-domain person re-ID approach. Let

Ds = {(I
′

i , yi)}
Ms

i=1
denote a labeled source domain and

Dt = {Ii}
Mt

i=1
denote an unlabeled target domain, where

yi represents a person identity and I
′

i denotes an aligned

image of Ii. One can use a supervised learning algorith-

m to pre-train an initial feature extractor f(·;W0) param-

eterized by W0 on Ds. Let x
i
t = F (I;w0) and Xt =
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Figure 1. The overview of our proposed method. It consists of two main components, i.e., a smoothing adversarial domain attack (SADA)

and a p-memory Reconsolidation (pMR). First, we train a (Ns+Nt)-class camera-based classifier using both the source and target images.

Second, this camera-based classifier forces the source images to align the target images. Third, the aligned source images are used to pre-

train a deep model as a transferred model that is applied to the target domain for Density-Based Spatial Clustering (DBSC). Because the

knowledge transferred from the source domain will be forgotten during the target distribution mining, a pMR module is naturally introduced

to reconsolidate the transferred knowledge. The pMR module takes the aligned source images as input with probability p and the target

images with probability 1− p .

{x1
t ,x

2
t , ...,x

Mt

t } be a set of target feature vectors and C

denote a clustering algorithm. We perform the algorithm

C and obtain {X∗

t , X̄
∗

t } = C(Xt), where X
∗

t ∩ X̄
∗

t = ∅
and X

∗

t ∪ X̄
∗

t = Xt. X
∗

t denotes confident instances with

pseudo-labels y∗t and X̄
∗

t denotes noisy ones at the current

iteration. We construct a pseudo-labeled subsetD∗

t by using

the corresponding indexes of X∗

t and their pseudo-labels y∗t .

Finally, a supervised learning [12] algorithm onD∗

t is given

as follows

Lt
triplet =

P∑

i=1

K∑

a=1

[m +

hardest positve
︷ ︸︸ ︷

max
p=1...K

dist(xi
a,x

i
p)

− min
j = 1...P
n = 1...K

j ̸= i

dist(xi
a,x

j
n)

︸ ︷︷ ︸

hardest negative

]+

(4)

where xa, xp, and xn represent an anchor instance, a pos-

itive instance, and a negative instance, respectively. P de-

notes person classes/identities. For each person identity, K

images are sampled. m denotes a margin. dist(·) denotes

a distance metric. xi
j corresponds to the j-th feature vector

of the i-th person in the batch. Eq. (4) aims at the self-

training of the target domain. The supervised learning and

clustering alteratively iterates.

3.3.2 p-Memory Reconsolidation

Directly applying the pre-trained model that trains on the

source images to the target domain often provides a good

initialization for further learning of the target domain. We

refer to this pipeline as Direct Transfer for simplicity.

Direct transfer implicitly assumes that knowledge in the

source domain can be fully transferred to the target do-

main and there is no need for another transfer. However,

such an assumption does not hold because residual convolu-

tional neural networks have no memory units like recurren-

t neural networks and thus cannot memory the transferred

knowledge after the long-term iterations, especially in self-

training that could take too much time for the alternative it-

erations between feature learning and clustering. Therefore,

the memory of the transferred knowledge would gradually
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Algorithm 1: Smoothing Adversarial Domain

Attack Algorithm

Input: Ds = {(Ii, zi)}
Ms

i=1
, Dt = {(Ij , zj)}

Mt

j=1
,

zi ∈ {1, 2, ..., Ns},
zj ∈ {Ns + 1, Ns + 2, ..., Ns +Nt},Ds =

{(Ii, yi)}
Ms

i=1

Output: An aligned source dataset

D
′

= {(Ik, yk)}
Ms

k=1

1 Train a (Ns +Nt)-category camera classifier

g(·; Θ) with {Ds ∪Dt};
2 D

′

= ∅;
3 for i = 1 : Ms do

4 Randomly select a target camera label

z ∈ {Ns + 1, Ns + 2, ..., Ns +Nt};
5 I = Ii;

6 while Prediction of I by g is not z do

7 Compute∇I according to Eq. (3);

8 I ← ClipI,ϵ{I −∇I};

9 end

10 D
′

← D
′

∪ (I, yi)

11 end

be forgotten during the self-training on the target domain.

We call this the transfer amnesia problem.

Figure 2 shows that there exists a transfer amnesia prob-

lem when the traditional cluster-based cross-domain mod-

el is adopted for the transfer from the DukeMTMC-reID

dataset to the Market-1501 dataset. We evaluate the rank-

1 accuracy and mean Average Precision (mAP) on the test

set of DukeMTMC-reID during the self-training on Market-

1501. The self-training model is initialized with a pre-

trained model on DukeMTMC-reID. It is observed that

without using any constraint, both rank-1 accuracy and

mAP gradually decreases as iterations increase, showing

that the transferred knowledge is lost over the self-training

of the target domain. This finding is consistent with the for-

getting curve of human memory.

To solve the transfer amnesia problem, we propose a p-

memory reconsolidation approach with a small probability

p that stabilizes a memory trace after its initial transfer. We

formulate it as

L = (1− ξ)Lt
triplet + ξLs

triplet (5)

where ξ follows a Bernoulli distribution B(1, p) with a s-

mall probability p. A small p can reconsolidate the cross-

domain transferred knowledge and often accelerates the

self-training because the source dataset is often much larg-

er than the confident pseudo-labeled set. Ls
triplet is similar

to Lt
triplet, but defined on the source domain. For each e-

poch, we optimize Eq. (5) by sampling the source dataset

1 2 3 4 5 6
30

45

60

75

Iterations

M
a

tc
h

e
s
 (

%
)

w/O pMR, rank−1

w/ pMR, rank−1

w/O pMR, mAP

w/ pMR, mAP

memory reconsolidation

transfer amnesia

Figure 2. Transfer amnesia problem. We evaluate the rank-1 ac-

curacy and mean Average Precision (mAP) on the test set of the

DukeMTMC-reID dataset during the self-training on the Market-

1501 dataset. The self-training model is initialized with the pre-

trained model on DukeMTMC-reID.

or the pseudo-labeled target dataset following a Bernoulli

distribution with a probability p to consolidation memory.

3.4. Algorithm

In this section, we provide an overview of the proposed

algorithm, as shown in Algorithm 2. Specifically, we train

a (Ns +Nt)-category camera-based classifier and use it to

guide the source images to align the target images based on

the SADA algorithm at the image level. With the aligned

source images, we train a feature extractor as the model

initialization. When alternatively iterating clustering and

feature representation learning during the self-training, the

pMR approach is proposed to solve the transfer amnesia

problem and further improve the cross-domain person re-

ID.

Algorithm 2: Algorithm Overview

Input: Ds = {(Ii, zi)}
Ms

i=1
, Dt = {(Ij , zj)}

Mt

j=1
,

Ds = {(Ii, yi)}
Ms

i=1
, Dt = {Ii}

Mt

i=1

Output: A feature extractor f(·;W ∗)
1 Compute aligned source images based on

Algorithm 1 and return D
′

;

2 Pre-train the model on D
′

and obtain W0;

3 Initialize f(·;W ) with W0;

4 for i = 1 : iters do

5 Perform the clustering algorithm C on Dt

and construct a pseudo-labeled dataset D∗

t ;

6 for j = 1 : epochs do

7 Optimize f(·;W ) by Eq. (5);

8 end

9 end
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4. Experiments

In this section, we evaluate our proposed method on two

large-scale person re-ID benchmark datasets, i.e., Market-

1501 [52] and DukeMTMC-reID [53]. We compare our

proposed method with state-of-the-art methods in Section

4.1 and Section 4.2. We then present ablation studies to re-

veal the importance of each main component/factor of our

method in Section 4.3.

Implementation. To align the source and target domain-

s, we train a camera-based classifier using the Adam opti-

mizer with a mini-batch size of 32. The learning rate is set

to 0.0003 and is divided by 10 after 30 and 50 epochs. We

train the network for 70 epochs. When performing smooth-

ing adversarial domain attack, we normalize the source im-

ages and set ϵ = 0.02 for “Market-15017→DukeMTMC-

reID” and ϵ = 0.001 for “DukeMTMC-reID7→Market-

1501”. The maximum attack iteration is 50. When perform-

ing self-training, we use the SGD optimizer. The learning

rate is set to 6e − 5. We train 10 iterations. For each iter-

ation, we train 70 epochs. The mini-batch size is 128. We

set p = 0.3 for the Bernoulli distribution. We the DBSCAN

clustering method for self-training.

Evaluation Metrics. We adopt the standard Cumulative

Match Characteristic (CMC) and mean Average Precision

(mAP) as evaluation metrics.

Datasets. The Market-1501 dataset with six cameras is

collected at Tsinghua University. Overlap exists among d-

ifferent cameras. Overall, this dataset contains 32,668 an-

notated bounding boxes of 1,501 identities. Among them,

12,936 images from 751 identities are used for training, and

19,732 images from 750 identities plus distractors are used

for the gallery. As for query, 3,368 hand-drawn bounding

boxes from 750 identities are adopted. Each annotated i-

dentity is present in at least two cameras.

DukeMTMC-reID has 8 cameras. There are 1,404 iden-

tities appearing in more than two cameras and 408 identities

(distractor ID) who appear in only one camera. Specially,

702 IDs are selected as the training set and the remaining

702 IDs are used as the testing set. In the testing set, one

query image is picked for each ID in each camera and the re-

maining images are put in the gallery. In this way, there are

16,522 training images of 702 identities, 2,228 query im-

ages of the other 702 identities and 17,661 gallery images

(702 ID + 408 distractor ID).

4.1. Comparison with the State­of­the­art on the
Market­1501 Dataset

We compare our proposed method with a broad range

of existing state-of-the-art approaches on the Market-1501

dataset. The experimental results are reported in Table

1. It is encouraging to see that our proposed outperform-

s all of the state-of-the-art approaches by a large margin.

In particular, the competing methods can be classified in-

to two groups. The first group includes five hand-crafted

models, i.e., LOMO [20], BoW [52], DIC [15], ISR [24],

and UDML [27]. Compared with the best handcrafted fea-

ture representation DIC, the proposed model obtains 32.8%,

23.0%, and 37.1% improvement on rank-1, rank-5, and

mAP metrics, respectively. The experimental results on the

Market-1501 dataset clearly show the superiority of our ap-

proach against other hand-crafted feature representations,

even though we only use the labels of the source domain for

transfer learning and self-training on the unlabeled target

domain.

The second group includes ten state-of-the-art deep ap-

proaches, i.e., CAMEL [47], PUL [8], TJ-AIDL [43], MAR

[48], ATNet [25], UCDA-CCE [28], CR-CAN+TAUDL [4]

(denoted as CR-CAN+ in Table 1), CASCL [45], ECN [54],

and PDA-Net [18]. Among these deep models, UCDA-

CCE [28], ATNet [25], CASCL [45] focused on domain

adaption while ignored the underlying distribution of the

target domain, which leads to moderate performance. TJ-

AIDL [43] and PDA-Net [18] exploited extra information

to improve the performance, e.g., attribute and pose. CR-

CAN+TAUDL (together with feature learning on the target

domain) [4] and PDA-Net [18] used generative adversarial

nets (GANs) to generated target-style images and obtained

good performance. CAMEL [47], PUL [8], MAR, [48], and

ECN [54] attempted to explore the distributions of the target

domain using self-training approaches. These approaches

provide available self-space techniques and produce com-

petitive results. Our proposed method also belongs to this

pipeline but outperforms all of them. Compared with the

second-best method CR-GAN+TAUDL, our model obtains

5.3%, 2.1%, 1.4% and 5.8% improvement on rank-1, rank-

5, rank-10, and mAP metrics. The mAP is the most impor-

tant metric in multiple camera network surveillance because

it can measure the retrieval of all target person images giv-

en a query. Note that CR-GAN+TAUDL uses a segmenta-

tion method to help the image generation which implicitly

used segmentation annotations. Our proposed method does

not need extra information. The significant improvement

of our model could be attributed to the deployment of the

p-memory approach and the alignment of the image-level

domains, which can deal with the transfer amnesia problem

and narrow the domain gap at the image level.

4.2. Comparison with the State­of­the­art on the
DukeMTMC­reID Dataset

We compare our proposed method with thirteen state-

of-the-art methods on the DukeMTMC-reID dataset, which

are described in Section 4.1. The experimental results are

reported in Table 2. It is observed that our method outper-

forms all of the state-of-the-arts. Compared with the best

handcrafted feature representation UDML, the proposed

model obtains 56.0%, 53.9%, and 51.1% improvement on
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Table 3. Ablation studies on the importance of each main component/factor of our proposed method. The main components include a

baseline, a LMP/LAP operation, a smoothing adversarial domain attack (denoted as SADA), and a p-memory reconsolidation approach

(pMR), please refer to Section 4.3 for detailed analyses.

Components DukeMTMC-reID7→Market-1501 Market-15017→DukeMTMC-reID

Baseline LMP/LAP SADA pMR rank-1 rank-5 rank-10 mAP rank-1 rank-5 rank-10 mAP

✓ ✗ ✗ ✗ 71.4 81.6 84.9 46.3 52.2 62.6 67.2 36.5

✓ ✓ ✗ ✗ 78.1 88.2 91.6 55.5 71.0 81.6 85.0 50.5

✓ ✓ ✗ ✓ 80.3 90.3 93.1 57.7 70.1 80.9 84.1 46.7

✓ ✓ ✓ ✗ 80.7 90.1 92.7 57.4 71.9 82.9 86.4 52.3

✓ ✓ ✓ ✓ 83.0 91.8 94.1 59.8 74.5 85.3 88.7 55.8

Table 1. Comparison to the state-of-the-art unsupervised results

on the Market-1501 dataset. Red indicates the best and Blue the

second best. Measured by %.

Methods Reference
Market-1501

rank-1 rank-5 rank-10 mAP

LOMO [20] CVPR’15 27.2 41.6 49.1 8.0

BoW [52] ICCV’15 35.8 52.4 60.3 14.8

DIC [15] BMVC’15 50.2 68.8 - 22.7

ISR [24] TPAMI’15 40.4 62.2 - 14.3

UDML [27] CVPR’16 34.5 52.6 59.6 12.4

CAMEL [47] ICCV’17 54.5 73.1 - 26.3

PUL [8] ToMM’18 45.5 60.7 66.7 20.5

TJ-AIDL [43] CVPR’18 58.2 74.8 81.1 26.5

MAR [48] CVPR’19 67.7 81.9 - 40.0

ATNet [25] CVPR’19 55.7 73.2 79.4 25.6

UCDA-CCE [28] ICCV’19 64.3 - - 34.5

CASCL [45] ICCV’19 64.7 80.2 85.6 35.6

ECN [54] CVPR’19 75.1 87.6 91.6 43.0

PDA-Net [18] ICCV’19 75.2 86.3 90.2 47.6

CR-CAN+ [4] ICCV’19 77.7 89.7 92.7 54.0

pMR-SADA This work 83.0 91.8 94.1 59.8

Table 2. Comparison to the state-of-the-art unsupervised results on

the DukeMTMC-reID dataset. Red indicates the best and Blue the

second best. Measured by %.

Methods Reference
DukeMTMC-reID

rank-1 rank-5 rank-10 mAP

LOMO [20] CVPR’15 12.3 21.3 26.6 4.8

BoW [52] ICCV’15 17.1 28.8 34.9 8.3

UDML [27] CVPR’16 18.5 31.4 37.6 7.3

CAMEL [47] ICCV’17 40.3 57.6 - 19.8

PUL [8] ToMM’18 30.0 43.4 48.5 16.4

TJ-AIDL [43] CVPR’18 44.3 59.6 65.0 23.0

MAR [48] CVPR’19 67.1 79.8 - 48.0

ATNet [25] CVPR’19 45.1 59.5 64.2 24.9

UCDA-CCE [28] ICCV’19 55.4 - - 36.7

CASCL [45] ICCV’19 51.5 66.7 71.7 30.5

ECN [54] CVPR’19 63.3 75.8 80.4 40.4

PDA-Net [18] ICCV’19 63.2 77.0 82.5 45.1

CR-CAN+ [4] ICCV’19 68.9 80.2 84.7 48.6

pMR-SADA This work 74.5 85.3 88.7 55.8

rank-1, rank-5, and mAP metrics, respectively. Compared

with the second best method CR-GAN+TAUDL, our mod-

el obtains 5.6%, 5.1%, 4.0% and 7.2% improvement on

rank-1, rank-5, rank-10, and mAP metrics. The significant

improvement demonstrates the superiority of the proposed

method.

4.3. Ablation Studies and Further Analyses

In this section, we further study the importance of each

main component/factor of our method by isolating this com-

ponent/factor. Specifically, the main components of our

proposed method includes a baseline, a Local Max Pooling

(short for LMP) [6], domain attack (short for Attack), and a

p-Memory approach. We extend the local max pooling to a

Local Average Pooling (short for LAP), which is similar to

LMP. we concatenate the output of LMP/LAP of each part

as the final feature representation. The procedure is only

used in the testing phase. In our experiment, we empirical-

ly found that LAP is the better on Market-1501 and LMP

is better on DukeMTMC-reID, so we use these setting on

all of our experiments. The experimental results of ablation

studies are shown in Table 3.

Effectiveness of LMP/LAP. To show the effectiveness

of LMP/LAP, we conduct an ablation study by comparing

the first and second rows in Table 3. It is observed that

with LMP/LAP the performance has 6.7%, 6.6%, 6.7%,

and 9.2% improvement using four metrics (rank-1, rank-

5, rank-10, and mAP) on Market-1501. The improvement

on DukeMTMC-reID is 18.8%, 19.0%, 17.8%, and 14.0%

with four metrics. The significant improvement could be

attributed to the fact that LMP/LAP can reduce the impact

of noisy signals by the differences of the source and target

domains and thus provide a good initialization for the self-

training, leading to significant improvement.

Effectiveness of Smooth Adversarial Domain Attack

(SADA). To show the effect of the SADA, we set a baseline

by removing this component from the proposed method, as

shown in the third and fifth rows of Table 3. We can see

that with the domain attack, the model has 2.7%, 1.5%,

1.0%, and 2.1% improvement with four metrics on Market-
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Figure 3. Effect of Parameter Memory Factor p.

1501, and 4.4%, 4.4%, 4.6%, and 9.1% with four metrics

on DukeMTMC-reID. This ablation study demonstrates the

effectiveness of the domain attack. It indicates that the SA-

DA can guide the source images to align the target images

at the image level.

Effectiveness of p-Memory Reconsolidation (pMR).

To show the effectiveness of the pMR, we study the impor-

tance of this component by removing it from the proposed

method. As shown in the fourth and fifth rows of Table

3, with the p-memory reconsolidation, the performance im-

proves 2.3%, 1.7%, 1.4%, and 2.4% with four metrics on

Market-1501, and 2.6%, 2.4%, 2.3%, and 3.5% with four

metrics on DukeMTMC-reID. The experimental analyses

show the effectiveness of the pMR. We conclude that pMR

can reconsolidation the source transferred knowledge of tra-

ditional clustering-based cross-domain re-ID and improve

the cross-domain person re-ID.

Effectiveness of both Domain Attack and p-Memory.

We also study the good benefits of the combination of both

domain attack and p-memory, which is shown in the second

and the fifth rows. We observed that with both domain at-

tack and p-memory, the performance improves largely, i.e.,

4.9%, 3.6%, 2.5% and 4.3% with four metrics on Market-

1501, 3.5%, 3.7%, 3.7%, and 5.3% with four metrics on

DukeMTMC-reID.

Effect of Parameter Memory Reconsolidation Factor

p. Parameter p is a probability that controls the random vari-

able ξ in Eq. (5), which is used to control the probability of

recalling the memory of the source domain. We vary p from

0.0 to 1.0, where p = 0.0 denotes there is no memory re-

consolidation during the self-training of the target domain,

and p = 1.0 denotes there is no self-training on the target

domain. The rank-1 and mAP accuracies are shown in Fig-

ure 3. It is observed that when p = 0.3, our model obtains

the best result.

Effect of Smoothing Adversarial Domain Attack. We

investigate the faster convergence of the smoothing adver-

Table 4. Effect of Smoothing Adversarial Domain Attack.

#Iterations Duke7→Market Market7→Duke

w/o smoothing 39.4 4.8

w/ smoothing 18.3 1.9

sarial domain attack by comparing the traditional iterative

adversarial attack method. We adopt an evaluation metric

that computes the average iterative times of the success-

ful domain attack of an image. The experimental results

are reported in Table 4. It is observed that when aligning

the images from DukeMTMC-reID to Market-1501, the s-

moothing adversarial domain attack method only takes 18.3

attack iterations for each image while traditional method

needs 39.4 iterations. When aligning the images from

DukeMTMC-reID to Market-1501, our method takes 1.9 it-

erations while the traditional method takes 4.8 iterations.

Compare SADA with GAN based methods. Compared

with GAN based methods, SADA is easy to train. SADA

only needs to train a camera classifier (≈2 hours) and re-

quires several domain attacks per image. GAN based meth-

ods are hard to converge (≈16 hours for CycleGAN). In

Table 5, we remove our self-training for fair comparison.

SADA achieves a competitive accuracy with two GANs [6].

Table 5. Compare SADA with GANs for Duke→Market (%)

CycleGAN [6] SPGAN+LMP [6] SADA +LMP

rank-1/mAP 48.1/20.7 58.1/26.9 59.6/27.1

training time ≈16 hours ≈16 hours ≈2 hours

5. Conclusion

In this paper, we propose a smoothing adversarial do-

main attack approach to force the source images to align the

target images at the image-level. With the domain attack,

the gap between the source and target domains is narrowed

at the image level, leading to better cross-domain transfer

learning. To avoid the transfer amnesia problem, we also

propose a p-memory reconsolidation approach that has a s-

mall probability p to reconsolidation the transferred source

knowledge. Extensive experiments on Market-1501 and

DukeMTMC-reID benchmarks show that our pMR-SADA

outperforms all of the state-of-the-arts by a large margin.

Acknowledgments

This project was supported by the National Natu-

ral Science Foundation of China (U1611461, 61573387,

61672544) and the Key Field R & D Program of Guang-

dong Province (2019B010155003).

10575



References

[1] R. Aljundi, P. Chakravarty, and T. Tuytelaars. Expert gate:

Lifelong learning with a network of experts. In CVPR, pages

3366–3375, 2017. 3

[2] J. Baxter. A model of inductive bias learning. Journal of

artificial intelligence research, 12:149–198, 2000. 2

[3] W. Chen, X. Chen, J. Zhang, and K. Huang. Beyond triplet

loss: a deep quadruplet network for person re-identification.

In CVPR, pages 403–412, 2017. 2

[4] Y. Chen, X. Zhu, and S. Gong. Instance-guided context ren-

dering for cross-domain person re-identification. In ICCV,

pages 232–242, 2019. 1, 2, 6, 7

[5] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng. Per-

son re-identification by multi-channel parts-based cnn with

improved triplet loss function. In CVPR, pages 1335–1344,

2016. 2

[6] W. Deng, L. Zheng, Q. Ye, G. Kang, Y. Yang, and

J. Jiao. Image-image domain adaptation with preserved

self-similarity and domain-dissimilarity for person re-

identification. In CVPR, pages 994–1003, 2018. 1, 2, 7,

8

[7] S. Ding, L. Lin, G. R. Wang, and H. Chao. Deep fea-

ture learning with relative distance comparison for person

re-identification. Pattern Recognition, 48(10):2993–3003,

2015. 2

[8] H. Fan, L. Zheng, C. Yan, and Y. Yang. Unsupervised person

re-identification: Clustering and fine-tuning. ACM Transac-

tions on Multimedia Computing, Communications, and Ap-

plications (TOMM), 14(4):83, 2018. 1, 2, 6, 7

[9] P. Fang, J. Zhou, S. K. Roy, L. Petersson, and M. Harandi.

Bilinear attention networks for person retrieval. In ICCV,

pages 8030–8039, 2019. 2

[10] Y. Fu, Y. Wei, Y. Zhou, H. Shi, G. Huang, X. Wang, Z. Yao,

and T. Huang. Horizontal pyramid matching for person re-

identification. In AAAI, volume 33, pages 8295–8302, 2019.

2

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, pages 770–778, 2016. 2

[12] A. Hermans, L. Beyer, and B. Leibe. In defense of the

triplet loss for person re-identification. arXiv preprint arX-

iv:1703.07737, 2017. 4

[13] H. Jung, J. Ju, M. Jung, and J. Kim. Less-forgetting learning

in deep neural networks. arXiv preprint arXiv:1607.00122,

2016. 3

[14] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Des-

jardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A.

Grabska-Barwinska, et al. Overcoming catastrophic forget-

ting in neural networks. Proceedings of the national acade-

my of sciences, 114(13):3521–3526, 2017. 3

[15] E. Kodirov, T. Xiang, and S. Gong. Dictionary learning with

iterative laplacian regularisation for unsupervised person re-

identification. In BMVC, volume 3, page 8, 2015. 6, 7

[16] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial exam-

ples in the physical world. arXiv preprint arXiv:1607.02533,

2016. 3

[17] W. Li, X. Zhu, and S. Gong. Harmonious attention network

for person re-identification. In CVPR, pages 2285–2294,

2018. 2

[18] Y. J. Li, C. C. Lin, Y. B. Lin, and Y. F. Wang. Cross-dataset

person re-identification via unsupervised pose disentangle-

ment and adaptation. In ICCV, pages 7919–7929, 2019. 1,

2, 6, 7

[19] W. Liang, G. Wang, J. Lai, and J. Zhu. M2m-gan: Many-

to-many generative adversarial transfer learning for person

re-identification. arXiv preprint arXiv:1811.03768, 2018. 1,

2

[20] S. Liao, Y. Hu, X. Zhu, and S. Z. Li. Person re-identification

by local maximal occurrence representation and metric

learning. In CVPR, pages 2197–2206, 2015. 6, 7

[21] L. Lin, G. R. Wang, W. Zuo, X. Feng, and L. Zhang. Cross-

domain visual matching via generalized similarity measure

and feature learning. IEEE TPAMI, 39(6):1089–1102, 2016.

2

[22] S. Lin, H. Li, C. T. Li, and A. C. Kot. Multi-task mid-level

feature alignment network for unsupervised cross-dataset

person re-identification. arXiv preprint arXiv:1807.01440,

2018. 2

[23] Y. Lin, X. Dong, L. Zheng, Y. Yan, and Y. Yang. A bottom-up

clustering approach to unsupervised person re-identification.

In AAAI, volume 33, pages 8738–8745, 2019. 2

[24] G. Lisanti, L. Masi, A. D. Bagdanov, and A. Del Bimbo. Per-

son re-identification by iterative re-weighted sparse ranking.

IEEE TPAMI, 37(8):1629–1642, 2014. 6, 7

[25] J. Liu, Z. J. Zha, D. Chen, R. Hong, and M. Wang. Adaptive

transfer network for cross-domain person re-identification.

In CVPR, pages 7202–7211, 2019. 2, 6, 7

[26] D. Lopez-Paz and M. Ranzato. Gradient episodic memory

for continual learning. In NeurIPS, pages 6467–6476, 2017.

2, 3

[27] P. Peng, T. Xiang, Y. Wang, M. Pontil, S. Gong, T. Huang,

and Y. Tian. Unsupervised cross-dataset transfer learning for

person re-identification. In CVPR, pages 1306–1315, 2016.

6, 7

[28] L. Qi, L. Wang, J. Huo, L. Zhou, Y. Shi, and Y. Gao. A

novel unsupervised camera-aware domain adaptation frame-

work for person re-identification. In ICCV, pages 8080–

8089, 2019. 2, 6, 7

[29] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer,

J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, and R. Had-

sell. Progressive neural networks. arXiv preprint arX-

iv:1606.04671, 2016. 3

[30] P. Ruvolo and E. Eaton. Ella: An efficient lifelong learning

algorithm. In ICML, pages 507–515, 2013. 2

[31] L. Song, C. Wang, L. Zhang, B. Du, Q. Zhang, C. Huang, and

X. Wang. Unsupervised domain adaptive re-identification:

Theory and practice. arXiv preprint arXiv:1807.11334,

2018. 2

[32] C. Su, J. Li, S. Zhang, J. Xing, W. Gao, and Q. Tian. Pose-

driven deep convolutional model for person re-identification.

In ICCV, pages 3960–3969, 2017. 2

[33] Y. Sun, L. Zheng, Y. Yang, Q. Tian, and S. Wang. Beyond

part models: Person retrieval with refined part pooling (and

10576



a strong convolutional baseline). In ECCV, pages 480–496,

2018. 2

[34] C. Wang, Q. Zhang, C. Huang, W. Liu, and X. Wang. Mancs:

A multi-task attentional network with curriculum sampling

for person re-identification. In ECCV, pages 365–381, 2018.

2

[35] G. Wang, Y. Yuan, X. Chen, J. Li, and X. Zhou. Learning

discriminative features with multiple granularities for person

re-identification. In 2018 ACM Multimedia Conference on

Multimedia Conference, pages 274–282. ACM, 2018. 2

[36] G. C. Wang, J. Lai, P. Huang, and X. Xie. Spatial-temporal

person re-identification. In AAAI, pages 8933–8940, 2019. 2

[37] G. C. Wang, J. Lai, and X. Xie. P2snet : Can an image

match a video for person re-identification in an end-to-end

way? IEEE TCSVT, 28:2777–2787, 2018. 2

[38] G. C. Wang, J. Lai, Z. Xie, and X. Xie. Discovering under-

lying person structure pattern with relative local distance for

person re-identification. arXiv preprint arXiv:1901.10100,

2019. 2

[39] G. R. Wang, L. Lin, S. Ding, Y. Li, and Q. Wang. Dar-

i: Distance metric and representation integration for person

verification. In AAAI, 2016. 2

[40] G. R. Wang, P. Luo, X. Wang, L. Lin, and etc. Kalman nor-

malization: Normalizing internal representations across net-

work layers. In NeurIPS, pages 21–31, 2018. 2

[41] G. R. Wang, G. C. Wang, X. Zhang, J. Lai, and L. Lin.

Weakly supervised person re-identification: Cost-effective

learning with a new benchmark. arXiv preprint arX-

iv:1904.03845, 2019. 2

[42] G. R. Wang, K. Wang, and L. Lin. Adaptively connected

neural networks. In CVPR, pages 1781–1790, 2019. 2

[43] J. Wang, X. Zhu, S. Gong, and W. Li. Transferable joint

attribute-identity deep learning for unsupervised person re-

identification. In CVPR, pages 2275–2284, 2018. 6, 7

[44] L. Wei, S. Zhang, W. Gao, and Q. Tian. Person transfer gan

to bridge domain gap for person re-identification. In CVPR,

pages 79–88, 2018. 1, 2

[45] A. Wu, W. S. Zheng, and J. H. Lai. Unsupervised person re-

identification by camera-aware similarity consistency learn-

ing. In ICCV, pages 6922–6931, 2019. 6, 7

[46] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Deep metric learning for

person re-identification. In ICPR, pages 34–39. IEEE, 2014.

2

[47] H. X. Yu, A. Wu, and W. S. Zheng. Cross-view asymmetric

metric learning for unsupervised person re-identification. In

ICCV, pages 994–1002, 2017. 6, 7

[48] H. X. Yu, W. S. Zheng, A. Wu, X. Guo, S. Gong, and J. H.

Lai. Unsupervised person re-identification by soft multilabel

learning. In CVPR, pages 2148–2157, 2019. 6, 7

[49] H. Zhao, M. Tian, S. Sun, J. Shao, J. Yan, S. Yi, X. Wang,

and X. Tang. Spindle net: Person re-identification with hu-

man body region guided feature decomposition and fusion.

In CVPR, pages 1077–1085, 2017. 2

[50] L. Zhao, X. Li, Y. Zhuang, and J. Wang. Deeply-learned

part-aligned representations for person re-identification. In

ICCV, pages 3219–3228, 2017. 2

[51] L. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, and Q.

Tian. Mars: A video benchmark for large-scale person re-

identification. In ECCV, pages 868–884. Springer, 2016. 2

[52] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian.

Scalable person re-identification: A benchmark. In ICCV,

pages 1116–1124, 2015. 1, 6, 7

[53] Z. Zheng, L. Zheng, and Y. Yang. Unlabeled samples gener-

ated by gan improve the person re-identification baseline in

vitro. In ICCV, 2017. 6

[54] Z. Zhong, L. Zheng, Z. Luo, S. Li, and Y. Yang. Invariance

matters: Exemplar memory for domain adaptive person re-

identification. In CVPR, pages 598–607, 2019. 6, 7

[55] S. Zhou, F. Wang, Z. Huang, and J. Wang. Discriminative

feature learning with consistent attention regularization for

person re-identification. In ICCV, pages 8040–8049, 2019.

2

[56] J. Zhuo, Z. Chen, J. Lai, and G. C. Wang. Occluded person

re-identification. arXiv preprint arXiv:1804.02792, 2018. 2

10577


