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Abstract

The state of the art person search methods separate per-

son search into detection and re-ID stages, but ignore the

consistency between these two stages. The general per-

son detector has no special attention on the query tar-

get; The re-ID model is trained on hand-drawn bounding

boxes which are not available in person search. To ad-

dress the consistency problem, we introduce a Task-Consist

Two-Stage (TCTS) person search framework, includes an

identity-guided query (IDGQ) detector and a Detection Re-

sults Adapted (DRA) re-ID model. In the detection stage,

the IDGQ detector learns an auxiliary identity branch to

compute query similarity scores for proposals. With consid-

eration of the query similarity scores and foreground score,

IDGQ produces query-like bounding boxes for the re-ID

stage. In the re-ID stage, we predict identity labels of de-

tected bounding boxes, and use these examples to construct

a more practical mixed train set for the DRA model. Train-

ing on the mixed train set improves the robustness of the re-

ID stage to inaccurate detection. We evaluate our method

on two benchmark datasets, CUHK-SYSU and PRW. Our

framework achieves 93.9% of mAP and 95.1% of rank1 ac-

curacy on CUHK-SYSU, outperforming the previous state

of the art methods.

1. Introduction

Person search is the extension of person re-identification

(re-ID). Person search aims to localize specific targets in the

whole scenarios. It can be seen as the organic combination

of person detection and re-ID, which meets the practical re-

quirements. It is applicable for many fields, such as video

surveillance systems, people finder systems in parks, self-

service supermarket and so on. Therefore, more and more

researchers put attention on person search task.
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Figure 1. The consistency problem in the detection stage. The red

boxes indicates non-query pedestrians and the green box indicates

the query target in gallery image. The person detector produces

bounding boxes of each pedestrian, which leads to a large gallery

size for the re-ID stage.

Deep-learning based person search methods can be di-

vided into two classes. One is two-step, which separates

the network parameters of the two tasks. In this way, per-

son search is regarded as a sequential procedure with two

stages, detection and re-ID. The other is end-to-end, which

learns a shared feature representation for person detection

and person re-ID. The model receives the training signals

from the two tasks at the same time. However, the detection

task focuses on the commonness of pedestrians while the

re-ID task focuses on the uniqueness of pedestrians. There

exists a conflict between two tasks in joint learning, which

eventually influences the optimization of model. Thus, we

adopt the two-step structure in this paper.

Exists two-stage methods fail to notice the consistency

requirements between the sub-tasks in person search. For

the detection stage, a general person detector is not consis-

tent with the follow re-ID task. The general person detec-

tor produces bounding boxes of each pedestrian (Fig. 1),

so that the re-ID stage suffers from a large gallery size,

which increases the difficulty of recognition. Besides, be-

cause the query targets are not received particular atten-

tion, the problems of false alarm (on the background) and

missed detection on query targets are more critical. This

kind of detection error will lead to further matching errors

inevitably. Therefore, the detector in person search frame-
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Detected bbox
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Figure 2. The consistency problem in the re-ID stage. The first

line are examples from re-ID train set, the second line are corre-

sponding detection results. In actual search process, the detected

bounding boxes are more vulnerable to problems of misalignment,

occlusions and body part missing.

work should serve for the re-ID stage to recognize the query

targets. Training a superior general person detector does not

meet the consistency requirement of the re-ID stage. It is

worth mentioning that the end-to-end method QEEPS [18]

has exploited query information in the detection process.

However, the features used in their QRPN are extracted

by the base network, which focuses on the commonness of

the pedestrians. Their attention mechanism helps suppres-

sion background proposals, but be less effective on different

pedestrians. Therefore, we need a detector that focuses on

the query targets to meet the consistency requirement.

For the re-ID stage, the re-ID model is not consistent

with the complex detection results. Compared with the

hand-drawn bounding boxes, the detected bounding boxes

are more vulnerable to problems of misalignment, occlu-

sions and body part missing (Fig. 2). Since the person

search datasets provide identity annotations only on hand-

drawn boxes, exists two-step methods train the re-ID model

on cropped ideal person images. However, the inputs of the

re-ID stage are detected bounding boxes in actual practice.

Therefore, there is an inconsistency between the re-ID stage

with the detection outputs. As a result, the re-ID model out-

puts error recognition result in inaccurate detected bound-

ing boxes. This consistency problem in re-ID stage de-

grades the search performance and limits the practicability.

Han et al. [8] also notice the performance degradation of the

re-ID model on detection boxes. They refine the detection

boxes by a learnable affine transformation. For one thing,

this method is of no help to missed detection. For another

thing, the upper bounding of the refinement is approaching

the ground truth, so the performance improvement is con-

strained. Therefore, the consistency problem is an unsolved

issue in person search.

In this paper, we propose a novel two-stage framework

to eliminate the inconsistencies in the detection and re-

ID stage respectively. For the detection stage, we pro-

pose an identity-guided query (IDGQ) detector to produce

query-like bounding boxes. Considering the commonness

information in general person detector does not differen-

tiate query targets from other pedestrians, the IDGQ de-

tector has an auxiliary identity branch to compute query

similarity scores for proposals in the whole scenarios. By

considering both query-like similarity score and foreground

score, IDGQ outputs more accurate query-like bounding

boxes and fewer non-query bounding boxes. In order to

improve the discrimination of the identity branch, we pro-

pose a novel classification loss. For each gallery image, by

minimizing the probability of the labeled examples being

recognized as different pedestrians in the same image, the

auxiliary branch can output superior query-like similarity

score for query proposal than other proposals. Thus, it fur-

ther focuses IDGQ detector on query-like proposals.

For the re-ID stage, we propose a Detection Results

Adapted (DRA) re-ID model. In order to make the re-ID

model adapted to the detection results, we provide a mixed

train set to the DRA model, which contains hand-drawn and

detected bounding boxes at the same time. Specifically, the

identity labels of detected boxes are predicted based on the

ground truth boxes according to the IoU overlap. These an-

notated detected bounding boxes will be used to train the

DRA model. Further, considering that the quality of the de-

tected examples is uneven, and the majority of the mixed

set is the easy accurate-detected example, we propose an

example reweighting algorithm. This algorithm automati-

cally reweights examples with consideration of quality and

hardness. Thus, the DRA has both steady convergence rate

and robustness to inaccurate detection.

The experimental results on two benchmark datasets

show that our detector achieves a higher recall and accuracy

on query targets. The re-ID part achieves a higher match-

ing performance when testing on the detection results. Our

framework achieves 93.9% of mAP and 95.1% of rank1 ac-

curacy on CUHK-SYSU, outperforming the state of the art

of two-stage methods.

2. Related Work

Person Search. The person search task aims to locate

and identify a person at the same time. A simple solution

is to combine person detection with person re-ID sequen-

tially, but the search performance will be restricted to the

two components, and the setting of re-ID is different from

person search. In 2014, Xu et al. [24] introduce the concept

of person search and propose a model based on hand-crafted

features using the strategy of sliding windows.

Recently, with the rise of deep learning methods and the

large-scale person search datasets, several frameworks are

proposed. Some works attempt to solve location and re-ID

in an end-to-end way. Xiao et al. [23] propose an end-

to-end person search model, and jointly train person detec-

tion network and re-ID network. Liu et al. Yan et al. [25]

propose a region-based feature learning model, and build a

graph for pedestrians in the different input images to learn
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contextual information.

Other works solve person search by two steps, i.e. train-

ing two parameter independent models for detection and re-

ID. Zheng et al. [32] test various combinations of detectors

and recognizer, and propose a CWS way to transfer classi-

fication confidence from the detector to the re-ID network.

These two-step methods [32, 3] improve the search perfor-

mance by feeding more information from the detector or

input images to the recognizer.

Person search and re-ID datasets. Though the study of

person re-ID [27, 1] made a great progress in recent years,

most of recent image-based re-ID datasets (such as VIPeR

[7], PRID2011 [10], CUHK01 [14], CUHK02 [13], iLIDS-

VID [33] and Duke-MTMC [20]) draw gallery bounding

boxes by using human labor. These ideal bounding boxes

are unavailable in practical applications. Therefore, some

datasets use bounding boxes produced by person detector,

such as CUHK03 [15], Market1501 [30] and MARS [29].

It is worth mentioning that CUHK03 also provide a hand-

drawn version. Many experiment results show that the using

detected bounding boxes leads to an inferior re-ID accuracy

than the hand-drawn version. Therefore, false detection and

misalignment are actually a critical problem in practice.

As for person search datasets, both PRW and CUHK-

SYSU provide only ground truth bounding boxes for the

training of the re-ID part. In the testing phase, the pedes-

trian bounding boxes are all produced by the detector. To

the best of our knowledge, all of the previous person search

works which have explicit re-ID process train the re-ID

model the ground truth bounding boxes. Therefore, there

is a gap between the training phase and the testing phase of

the re-ID part.

3. A Task-Consistent Two-stage Framework

for Person Search

In this section, we present our task-consistent person

search framework TCTS. As shown in Fig. 3, given a query

image and a gallery image, the IDGQ detector produces

proposals and computes the query similarity score and fore-

ground score for each proposal. After selection, the outputs

of the IDGQ detector are query-like boxes, which are then

fed into the DRA net.

3.1. IdentityGuided Query Detector

IDGQ detector produces query-like bounding boxes for

the re-ID stage by an auxiliary identity branch. As illus-

trated in Fig. 3, the IDGQ detector has a shared base net-

work and two branch networks. The first branch is the auxil-

iary identity branch. In order to introduce the identity infor-

mation into the detector, we train the auxiliary branch by a

classification loss, called IDGQ loss. In this way, the auxil-

iary branch can compute identity similarity scores between

query target and proposals. In the other branch, we keep

the standard head of faster R-CNN [19], because the binary

classifier can output accurate foreground scores. These two

scores guide the IDGQ detector to keep query-like and fore-

ground proposals.

Specifically, given a cropped query image and a gallery

image, the base network and RPN first produce proposals

on the gallery image. Then, the identity branch extracts fea-

tures for query and proposals, donated by xq and xgi
re-

spectively. The identity similarity scores are computed by

a similarity function S(·). At the same time, the detection

branch outputs the foreground score of proposal sfi . The

final score for proposal i is calculated by:

si = S(xq,xgi
)× sfi (1)

After then, only proposals with high query similarity and

foreground scores will be kept. The query-like bounding

boxes are consistent with the re-ID task.

It is worth discussing how to design a suitable loss func-

tion for it. The target of the identity branch is to output su-

perior query-like similarity scores for query proposals than

other proposals. Therefore, it has some differences with the

traditional classification or re-ID task. Next, we first intro-

duce two common classification losses. Then, we derive our

proposed IDGQ loss.

Softmax loss is widely used in the classification task.

For an example xi, Softmax loss uses a Softmax function

to calculate the probability on each class and use a cross-

entropy loss function to optimize the log-likelihood of each

class in probability space. OIM loss is proposed for person

search task in [23]. Unlike the Softmax loss, the OIM loss

stores a feature center for each person. The center is modi-

fied in every iteration by a weighted sum operation. Based

on this parameter-free structure, the unlabeled identities are

exploited as the form of a circular queue. The probability

of xi being recognized as each identity is calculated by a

Softmax function.

We have not directly adopted these classification losses

for two reasons. For one thing, similar examples in the

same image should be discriminated, while the false pos-

itive on the similar examples in different images are accept-

able. Therefore, the solution obtained by traditional classifi-

cation losses may be not optimal. For another thing, the un-

labeled examples are not fully exploited in these two losses.

Though OIM loss also takes into consideration unlabeled

identities, the length of the circular queue is an artificial pa-

rameter. If the length is too large, the primitive features in

the circular queue are outdated to represent unlabeled iden-

tities. If small, the optimizing direction and solution are

changed significantly in different mini-batch.

We propose an IDGQ loss to improve the accuracy of

the query similarity score in the IDGQ detector. For each
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Figure 3. The illustration of our proposed task-consistent two-stage framework. The orange box is the IDGQ detector. In IDGQ, the shared

base network extracts common features for detection and identity branches. Then region proposal network(RPN) generates proposals on

the feature maps. The identity branch is trained by our proposed IDGQ loss. In the search process, the detection branch and identity branch

output foreground scores and query similarity scores, respectively. The green box is our proposed DRA re-ID model. DRA is trained on

the mixed train set containing both hand-drawn and detected boxes. In the backward, DRA-ER reweights examples by weight factors.

labeled example, the IDGQ loss pulls the positive examples

from the different images closer, so that the images from the

same people can receive a high similarity score. Besides,

the IDGQ loss pushes the example away from the negative

examples (including unlabeled examples) in the same im-

ages, which reduce the similarity between different people.

Further, in order to effectively exploit unlabeled identities,

our IDGQ loss learns a variable number of centers for unla-

beled samples.

We store the feature centers ci of each identity in the

memory. For a labeled example xi in a training image, we

construct a reference list R, which contains the feature cen-

ter cyi
, the other labeled examples {xj |j 6= i} in the same

image and all of the unlabeled example centers u. the prob-

ability of example xi being recognized as the identity i is:

pi =
exp(cTi xi/τ)

∑

v∈R exp(vTxi/τ)
(2)

where τ is the temperature coefficient. The probability of

example i being recognized as the unlabeled center k is:

pk =
exp(uT

k xi/τ)
∑

v∈R exp(vTxi/τ)
(3)

IDGQ loss optimizes the log-likelihood of its center. The

loss function LIDGQ is:

LIDGQ = −log(pi) (4)

The unlabeled centers are updated when the inputs are

unlabeled examples. We maintain a center list for unla-

beled examples, which contains a representative feature and

a member list. In the begining, the number of centers is the

number of unlabeled examples. Given an unlabeled exam-

ple x, the maximum of pk is represented as pk∗ . The unla-

beled centers are updated as follow:

{

uk∗ = αuk∗ + (1− α)x, if pk∗ > pi;

uU+1 = x, if pk∗ < pi.
(5)

3.2. Detection Results Adapted ReID Model

In order to train a DRA re-ID model, we construct a

mixed train set containing hard-drawn and detected bound-

ing boxes. The detected bounding boxes on the whole

scenes are annotated by a pre-trained detector. We predict

the identity label of each detected bounding box by the IoU

overlap with ground truth. It is worth mentioning that we

remove all unlabeled pedestrians from the train set, because

the IGDQ detector can effectively suppress the unlabeled

pedestrian in advance. In this way, the re-ID train set has

15,085 hand-drawn bounding boxes and 15,198 detected

ones. Because there may be several detected boxes on the
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same person, the number of the detected boxes is larger

than hand-drawn ones. Besides, considering the missed de-

tection problem in the pre-trained detector, there are some

identities never appear in the detected part of the train set.

After investigation on the mixed train set, we divide

training examples into three types: accurate bounding

boxes, misaligned bounding boxes and distractors. Accu-

rate includes all of the hand-drawn bounding boxes and

some detected bounding boxes which have a large IoU

overlap with corresponding ground truth boxes. These ex-

amples ensure the convergence rate of the model, but too

many easy examples can lead the model to fit these ideal

bounding boxes. Misaligned and distractors have misalign-

ment or human part missing. The difference is that mis-

aligned bounding boxes reserve the main focus on corre-

sponding pedestrians. Therefore, these examples are of ben-

efit to train a consistent re-ID model to the detection results.

By contrast, distractors miss critical details of pedestrians.

These distractors examples bring wrong gradients direction

and lead to a suboptimal model. In a word, the DRA need

to focus on different train data at different time.

Example reweight can meet the changing need of DRA

by adjusting the importance of examples. We propose

an Examples Reweight algorithm for Detection Results

Adapted Re-ID, called DRA-ER. We introduce a weighted

factor w to determine the example weights. In cross-entropy

loss, it is represented as:

Lw(xi) = −wilogpyi
(6)

To solve the excess easy examples, we design a hardness

factor wh to balance the importance of hard and easy exam-

ples. The well-trained easy examples are down-weighted

so that they draw less attention. Because the distractors are

usually hard to be recognized, they have a large wh, too.

Formally, given a labeled example xi, the probability of

being recognized as the true class is pyi
. The hardness fac-

tor wh is defined as:

whi
= exp((1− pyi

)/T1) (7)

where T1 is the temperature coefficient. When pyi
→ 1,

the hardness factor achieves a minimum. At the begin, all

examples have a small pyi
, so the hardness factor wq →

1 for each example. After the model converges on hand-

drawn bounding boxes, the hand-drawn and well-detected

examples are down-weighted.

In order to further down-weight the distractor proposals,

a quality factor wq is added to measure the quality of pro-

posals. For detected bounding boxes, we can compute the

Intersection over Union (IoU) with the ground truth. In this

way, the hand-drawn bounding boxes have IoU = 1. The

quality factor of the proposal is defined as:

wqi = 1−
2

1 + exp((Ii/I∗ − 1)/T2)
(8)

where T2 is the temperature coefficient, Ii indicates the IoU

between this example and its ground truth, I∗ is the thresh-

old to determinate the positive pedestrian example.

The final weight is normed to keep a steady learning rate:

wi =
Nwhi

wqi
∑n

j whj
wqj

(9)

4. Experiments

In this section, we conduct experiments on the two

benchmark datasets, CUHK-SYSU and PRW. We compare

TCTS with the state of the art methods. Besides, we report

the ablation study results of each component in TCTS.

4.1. Benchmark

CUHK-SYSU [23]. The data come from two sources,

street snap, and movie screenshot. For street snap, images

are captured by using a hand-held camera in a town. The

movies and TV dramas screenshots provide more diversi-

fied scenes and different camera states. They cover a wide

range of perspectives, lighting, resolutions, occlusions, and

background conditions. The dataset contains 18,184 pic-

tures and 8,432 identities. 96,143 pedestrian boundaries are

marked in total, and different identities are assigned to peo-

ple matched in different scenes. The train set has 11,206

images with 5,532 identities, and the test set has 6,978 im-

ages with 2,900 identities.

PRW [32]. The video frames are captured by 6 cameras

in Tsinghua university. All pedestrian bounding boxes are

marked manually. A total of 11,816 frames are collected

and 4,310 pedestrian bounding frames are obtained. If the

pedestrian appears in the MarKet-1501 dataset, a positive

identity label is added. Thereby, 34,304 pedestrian bound-

ing frames are labeled with identity labels (from 1 to 932),

and the remaining pedestrian bounding frames are labeled

with “-2” labels. These people with “-2” labels are not used

in the testing of person re-ID, but can be potentially used in

the training.

4.2. Network Details and Model Training

Network Details. Our proposed IDGQ is implemented

based on Faster R-CNN[6]. We use ResNet-50 as our back-

bone network. The base network has four blocks from

conv1 to conv4. The detection and identity branches are

built upon conv4 6. The identity branch adopts conv5 1 in

ResNet-50, and the detection branch adopts conv5. The fea-

tures of the identity branch are projected to a L2-normalized

256-dimensional subspace, and features are projected to a
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Table 1. Comparison of mAP(%) and rank-1 accuracy(%) with the

state-of-the-art on CUHK-SYSU. The gallery size is set to 100.

Methods mAP rank-1

en
d

-t
o

-e
n

d OIM[23] 75.5 78.7

IAN[21] 76.3 80.1

NPSM[17] 77.9 81.2

RCCA[2] 79.3 81.3

QEEPS[18] 84.4 84.4

GRAPH[25] 84.1 86.5

tw
o

-s
te

p

ACF[26]+DSIFT[28]+Euclidean 21.7 25.9

ACF+DSIFT+KISSME[11] 32.3 38.1

ACF+LOMO[16]+XQDA[16] 55.5 63.1

ACF+IDNet[23] 56.5 63.0

CCF[26]+DSIFT+Euclidean 11.3 11.7

CCF+DSIFT+KISSME 13.4 13.9

CCF+LOMO+XQDA 41.2 46.4

CCF+IDNet 50.9 57.1

CNN+DSIFT+Euclidean 34.5 39.4

CNN+DSIFT+KISSME 47.8 53.6

CNN+LOMO+XQDA 68.9 74.1

CNN+IDNet 68.6 74.8

CNN+MGTS[3] 83.0 83.7

CNN+CLSA[12] 87.2 88.5

Re-ID Driven[8] 93.0 94.2

TCTS 93.9 95.1

L2-normalized 1,024-dimensional subspace in the detec-

tion branch. Obviously, the identity branch is a light net-

work with less computational efforts. The positive score

threshold is set to 0.4 ∗max(sq) in IDGQ, where sq is the

query similarity score. For the DRA re-ID model, we con-

struct a re-ID baseline with batch normalize layers based on

ResNet-50.

Model Training. For the detection stage, we first train

the network without the identity branch on benchmark

datasets, then initialize IDGQ with this pre-trained model.

Especially, the first stage of the base network is fixed af-

ter initialized. We train the pre-trained detection model for

50K iterations using Stochastic Gradient Descent (SGD) al-

gorithm with momentum set to 0.9. After initialized with

the pre-trained model, we train the whole network for 50K

iterations using the SGD algorithm. For both pre-training

and training, the learning rate is 0.001 for the first 30K it-

erations, and decays to 0.0001. The batch size is set to 2

because the detector part has a lot of intermediate results.

To avoid potential problems of local optima and slow con-

vergence, we use the average of the losses from the last 100

iterations. The temperature coefficient is set to 1/50. The

center update coefficient α is set to 0.5.

For the re-ID stage, the DRA model is pre-trained on Im-

ageNet. All the training images are resized to 256 × 128.

The batch size is set to 128. We adopt the Adam algo-

rithm with default hyper-parameters set in PyTorch. The
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Figure 4. The mAP performance under different gallery size on

CUHK-SYSU.

initial learning rate is 3.5e − 4. Besides, we adopt label

smooth, random erasing [34] and triplet loss [9] to improve

the search performance. The temperature coefficients T1

and T2 are set to 0.3 and 5 respectively.

4.3. Comparison with Stateoftheart Methods

We compare our TCTS framework with several state-of-

the-art methods. Some of these are methods solve person

search task by two steps. [32] uses off-the-shelf detectors,

including ACF[4], CCF[26] and CNN detector, and hand-

crafted descriptors, including DSIFT[28] and LOMO[16],

and distance metrics, including Euclidean, KISSME[11]

and XQDA[16]. [3], [12] and [8] use Faster-RCNN[19]

as detector and proposed re-ID model to solve person

search. Other methods are joint learning methods, including

OIM[23], IAN[21], NPSM[17] and RCCA[2].

In order to evaluate the model robustness to the varia-

tion of gallery size, we repeat the experiment on CUHK-

SYSU dataset under the different gallery sizes ([50, 100,

500, 1000, 2000, 4000]), and make a comparison to other

deep-learning based methods. In Fig. 4, our method outper-

forms other methods under 6 kinds of gallery sizes, which

proves the strong robustness of TCTS.

Results on CUHK-SYSU. Table 1 reports the perfor-

mance of TCTS, and gives comparisons with the state of

the art approaches for the CUHK-SYSU dataset. In the

table, the “CNN” detector is the Faster R-CNN[6] with a

ResNet-50 backbone network. “GT” indicates directly us-

ing the ground truth bounding boxes as the detector results.

“IDNet” learns discriminative re-ID feature representations

by using Softmax loss to train a classifier for the person

with different identities. “MGTS” indicates a Mask-guided

Two-Stream CNN Model. “CLSA” indicates a Cross-Level

Semantic Alignment deep learning approach. The training

scheme can be seen in [22]. The gallery size is set to 100.

From Table 1, we can draw the following conclusions:
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Table 2. Comparison of mAP(%) and rank-1 accuracy(%) with the

state-of-the-art on PRW. The gallery size is set to 6,112.

Methods mAP rank-1

en
d

-t
o

-e
n

d OIM[23] 21.3 49.9

IAN[21] 23.0 61.9

NPSM[17] 24.2 53.1

GRAPH[25] 33.4 73.6

QEEPS[18] 37.1 76.7

tw
o

-s
te

p

ACF[26] + LOMO[16] + XQDA 10.3 30.6

ACF + IDEdet[32] 17.5 43.6

ACF + IDEdet + CWS[32] 17.8 45.2

DPM[5] + LOMO + XQDA 13.0 34.1

DPM + IDEdet 20.3 47.4

DPM + IDEdet + CWS 20.5 48.3

LDCF + LOMO + XQDA 11.0 31.1

LDCF + IDEdet 18.3 44.6

LDCF + IDEdet + CWS 18.3 45.5

CNN+MGTS[3] 32.6 72.1

CNN+CLSA[12] 38.7 65.0

Re-ID Driven[8] 42.9 70.2

TCTS 46.8 87.5

(1) Among deep-learning based methods, the two-step

frameworks outperform the end-to-end ones, and the advan-

tages are becoming more and more obvious. The main rea-

son is that the conflict between two tasks in joint learning in-

fluences the optimization of model. For example, our TCTS

outperforms the best end-to-end method “QEEPS” by 9.8%

on mAP and 8.6% on rank-1 accuracy. It is worth mention-

ing that “QEEPS” proposes a QRPN to produce query-like

proposals like us. In QRPN, the query guidance is achieved

by channel attention base on query features. Because the

query features are extracted by the base network but not its

ClsIdenNet, we argue that IDGQ can pay more attention to

query target than QRPN.

(2) Both the mAP scores and rank-1 accuracy of TCTS

are higher than comparative methods. In particular, it out-

performs the best two-step method “Re-ID Driven” [8] by

0.9% on both the mAP performance and rank-1 accuracy.

In [8], they argue that the detected bounding boxes may be

suboptimal for the following re-ID task, so they propose a

learnable refinement network for providing refined detec-

tion boxes. Compared with “Re-ID Driven”, our IDGQ can

also reduce missed detection on query target, and the DRA

model is more robust to unavoidable detection errors. These

advantages bring more performance improvement.

Results on PRW. We also compare the different meth-

ods on the PRW dataset. The evaluation results are shown

in Tab. 2. In the table, “IDEdet” [31] indicates first train-

ing an R-CNN model on PRW, then fine-tuning the R-CNN

model with the IDE method. “CWS” indicates incorporat-

ing detection confidence into the similarity measurement.

In this experiment, the gallery size of the test dataset is set

Table 3. Evaluating effectiveness of IDGQ detector and our pro-

posed IDGQ loss on CUHK-SYSU. The number of ground truth

boxes is 8,340.

Methods Boxes Num Recall mAP rank-1

Faster R-CNN 54,658 96.9 91.4 92.4

IDGQ 27,563 98.2 93.9 95.1

IDGQ(OIM) 27,332 97.3 92.0 92.9

to 6,112.

Compared with other methods, our TCTS improves

about 4% on the mAP and 17.3% on the rank-1 accuracy.

In the test set of PRW, the full set is used as gallery, so

there is a tremendous number of detected bounding boxes.

In the IDGQ detector, the identity branch suppresses non-

query proposals so that the gallery size of the re-ID stage

is under control. Besides, each query target appears around

50 times in gallery images, which brings notable inter-class

variations. The result of mAP shows the identity branch

can output accurate query similarity scores in this situation,

which proves the effectiveness of the IDGQ loss.

4.4. Ablation Study

To validate the effectiveness of each component of

TCTS, we implement several ablation experiments on the

CUHK-SYSU dataset. The gallery size is set to 100 for all

experiments.

IDGQ and IDGQ loss. In TCTS, we use the IDGQ de-

tector to produce more accurate query-like bounding boxes

and less non-query bounding boxes. In this experiment, we

evaluate the effectiveness of the IDGQ detector and IDGQ

loss. In Tab. 3. “recall” indicates only the recall on query

targets. “Boxes Num” is the number of detected boxes for

all query targets. The positive score threshold is set to 0.5

in Faster R-CNN, and is 0.4 ∗max(sq) in IDGQ, where sq
is the query similarity score.

From the table, we observe that IDGQ has a higher

query recall than faster R-CNN. The reason is that some

query proposals with low foreground scores receive high

query similarity scores, so their final scores will be above

the threshold. Besides, the improvement in query recall is

achieved by even less bounding boxes. In another word, be-

sides the query target, faster R-CNN produces around 5.5
non-query boxes. The number is reduced to 2.3 in IDGQ.

It demonstrates that IDGQ effectively focuses on query-like

proposals. Besides, the 39,514 unlabeled images are clus-

tered into 3,278 centers. It proves the effectiveness of the

learning of variable unlabeled centers.

If we replace IDGQ loss with OIM loss, the search per-

formance decreases from 93.9% to 92.0% on mAP. It ver-

ifies that IDGQ loss obtains a more optimal solution than

OIM loss.

Comparison between Hardness Factor and Focal

Loss. As shown in Fig. 5, our hardness weight (T = 0.3)
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Figure 5. The weight varied with the probability of ground truth

class for our hardness factor and the focal loss.

Table 4. Evaluating effectiveness of DRA-ER algorithm.

Train set mAP rank-1

Hand-drawn 93.1 94.0

Detected 82.9 83.8

Mixed 86.9 88.2

Mixed+ER 93.9 95.1

has a similar change curve with focal loss (γ = 2, α =
0.25). The curve of the hardness weight uses relative values

due to the normalization in Eq.9. Compared with focal loss,

our proposed hardness factor is more suitable for the person

search training sets. The hardness factor reduces losses of

easy examples to a small value, but no to 0 as the focal loss

does. Considering the easy positive examples have differ-

ent identities and the scale of the training set is limited, the

hardness factor keeps the variety of training examples.

In our experiments, if we replace the hardness factor with

the weight factor in the focal loss, the model only achieves

similar performance as baseline trained on the hand-drawn

training set.

Effectiveness of the DRA-ER algorithm. We propose

a DRA-ER algorithm to automatically reweight examples

by the need of the model. In this experiment, we first ver-

ify the uneven quality problem in detected bounding boxes,

and then evaluate the effectiveness of the example reweight

algorithm in the mixed set. “Hand-drawn” indicates using

hand-drawn boxes only, “Detected” indicates using detected

boxes with predicted identity labels only, “Mixed” indicates

using our constructed mixed train set.

The results are reported in Tab. 4. We observe that “De-

tected” achieves a lower search performance than “Hand-

drawn”. Though the detected boxes make the training and

testing of the re-ID model consistent, the uneven qual-

ity problem has more significant influences on the perfor-

mance. We also observe that “Hand-drawn” also outper-

forms “Mixed”. It shows that using the mixed set can not

directly bring performance improvement, and it even in-

fluences the convergence of the model. In the last row of

the table, we show that adopting the DRA-ER algorithm on

the mixed set can achieve better performance than “Hand-

a) Epoch=20 b) Epoch=80

weights: 1.06 1.07

weights: 0.37 0.70 0.03 0.04

1.19 1.15

c) Epoch=160

0.03 0.51

1.0 1.01

Figure 6. The illustration of up-weighted and down-weighted ex-

amples in different training stages.

drawn”. In the early stage of training, hand-drawn and accu-

rate detected boxes are up-weighted due to the high quality

factor. In the later stage of training, DRA-ER balances the

importance between easy examples and some hard detected

boxes. Besides, the low quality detected boxes have almost

no effect on the training.

In Fig.6, we illustrate the weights changing by visualiz-

ing some typical examples and their weights. The first row

is the down-weighted examples, and the section row is the

up-weighted examples. We observe that the low-quality de-

tected examples with part missing or false alarm problems

are down-weighted throughout the training. The attention

of DRA-ER changes from accurate boxes to the hard de-

tected boxes. In the epoch 160, these two kinds of boxes

finally have similar weights. It demonstrates that the DRA

model is adapted to the detected boxes.

5. Conclusion

In this work, we point out the consistency problem in ex-

ists two-step person search framework. To address that, we

propose a TCTS framework that has an IDGQ detector and

a DRA re-ID stage. The IDGQ detector can effectively pro-

duce query-like bounding boxes, which achieves a higher

query recall and reduces the number of bounding boxes.

The DRA achieves a better performance on detected results,

which is attributed to the detected train data and the DRA-

ER algorithm. TCTS achieves the state of the art perfor-

mance on two person search benchmark datasets, CUHK-

SYSU and PRW.
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