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Abstract

We present a novel single-view surface normal estima-

tion method that combines traditional line and vanishing

point analysis with a deep learning approach. Starting from

a color image and a Manhattan line map, we use a deep

neural network to regress on a dense normal map, and a

dense Manhattan label map that identifies planar regions

aligned with the Manhattan directions. We fuse the nor-

mal map and label map in a fully differentiable manner to

produce a refined normal map as final output. To do so,

we softly decompose the output into a Manhattan part and

a non-Manhattan part. The Manhattan part is treated by

discrete classification and vanishing points, while the non-

Manhattan part is learned by direct supervision.

Our method achieves state-of-the-art results on standard

single-view normal estimation benchmarks. More impor-

tantly, we show that by using vanishing points and lines,

our method has better generalization ability than existing

works. In addition, we demonstrate how our surface normal

network can improve the performance of depth estimation

networks, both quantitatively and qualitatively, in particu-

lar, in 3D reconstructions of walls and other flat surfaces.

1. Introduction

Single-view surface normal estimation has been exten-

sively studied in the past few decades. A traditional ap-

proach for solving this problem is based on vanishing point

and line estimation [14, 22, 16]. However, this approach

has certain limitations, for example: 1) large textureless sur-

faces, common in indoor scenes, are challenging, 2) due to

degeneracies, it is common to find lines in the image that are

compatible with two distinct vanishing points . Recently, re-

searchers have focused on deep learning methods for tasks

in single-view geometry estimation such as surface normals,

depth, room layout and canonical frames [2, 5, 38, 12].

These methods typically produce dense outputs and work

well for featureless regions, where most traditional methods

Figure 1: Example inputs and outputs of our method. The first row

shows the input image and the Manhattan line map. The second

row shows the output normal and Manhattan label maps. The col-

ors in the Manhattan line and label maps represent the unsigned

Manhattan directions: blue corresponds to vertical, while red and

green correspond to the two orthogonal horizontal directions.

fail. However, deep learning-based methods tend to be data-

hungry and to not generalize well to unseen datasets. In

contrast, traditional geometric methods do not suffer from

the generalization problem. In this paper, we demonstrate

that the benefits of deep learning-based methods and tradi-

tional vision methods are complementary, and that combin-

ing them produces significant improvements.

In this paper, we develop a single-view normal estima-

tion framework that combines line and vanishing point anal-

ysis with a deep neural network in both the training and

prediction phases. We softly decompose the normal map

into a Manhattan part (treated by discrete classification and

vanishing points) and a non-Manhattan part (learned di-

rectly). Our method outperforms the state-of-the-art on typ-

ical benchmarks and generalizes well to unseen datasets.

In more details, we use a line detection and vanishing

point estimation method to compute the dominant vanish-
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Figure 2: The full pipeline of our proposed model. The network takes an RGB image and a Manhattan line map as input, and produces

a Manhattan label map and a raw normal prediction as intermediate output. These intermediate outputs are then combined with the

analytically computed dominant vanishing points to generate a “combined normal map”. This operation is differentiable. Finally, the

combined and raw normal maps are fused through a refinement network to produce the final normal prediction.

ing points and “Manhattan lines”, i.e. lines in the Manhattan

directions, for each image. As shown in Figure 2, we pro-

vide a Manhattan line map and color image together with

vanishing points as input to the network and output a raw

normal estimate, a Manhattan label map, and finally a re-

fined normal map. The ground truth Manhattan label map

is generated using both the ground truth normal map and the

computed vanishing points, which we detail in Section 3.2.

The estimation of the Manhattan label map is equivalent to

normal estimation in the coordinate system aligned to the

Manhattan frame. Since the Manhattan label map only con-

tains normals in the dominant vanishing point directions,

we also perform raw normal estimation, which fills in the

normals for surface points that are not in the dominant di-

rections. The refined normal map is generated by fusing the

Manhattan label map with the raw normal estimation. Fig-

ure 1 shows an example of the inputs and outputs of our pro-

posed method. We use the ScanNet [4] dataset for training

and validation, and we use the NYUD-v2 [23] and Replica

[29] datasets to show the generalization ability of our pro-

posed method.

In summary, our main contributions are:

• We introduce the idea of a Manhattan label map, which

only represents the dominant directions but is easier to

learn than a dense normal map.

• We combine a traditional vision method with a deep

neural network by providing an analytically computed

Manhattan line map and label map as input and as

ground truth training label for the network, respec-

tively, which achieves higher accuracy and better gen-

eralization.

• We use multi-task learning and a refinement network to

jointly predict the Manhattan label map and a raw nor-

mal map and fuse them in a fully differentiable manner.

2. Related Works

Inferring 3D geometry from a single image is a long-

standing task in computer vision. By utilizing the property

of parallel lines in perspective geometry, vanishing point

detection algorithms [3, 1, 28, 26] can be used to estimate

plane normals. However, this typically succeeds only in

regions containing lines that point in two distinct 3D di-

rections. Shape-from-shading algorithms [37, 27] solve the

single view 3D reconstruction as an inverse problem, with a

set of assumptions that often limits their applicability.

Convolutional neural networks (CNNs) have begun to

produce better results than traditional methods on single

view geometry estimation tasks. Not relying on handcrafted

features or heuristic assumptions, they can work on more

complex environments. For tasks such as depth and surface

normal estimation, they produce dense output. Works by

Eigen et al. [6] and Liu et al. [21] proposed supervised

training pipelines for single view depth estimation. Godard

et al. [9] and Garg et al. [8] proposed unsupervised single

view depth estimation pipelines using stereo pairs. Wang et

al. [31] proposed using RNNs to leverage multiple consec-

utive video frames for depth estimation and demonstrated

both supervised and unsupervised training.

It has been shown by Zamir et al. [36] that the surface

normal is the visual representation that has the most direct

connection to the majority of vision tasks in deep learning.

Marr revisited [2] proposed using synthetic data to augment

the normal estimation training. Wang et al. [32] proposed

estimating surface normals, room layout and edges at both

local and global scales, and fusing them together to produce

the final normal estimation. GeoNet [24] and Wang et al.,

[30] proposed estimating depth and normal maps simulta-

neously. Wei et al. [35] recently proposed using ”virtual

normals” to regularize and improve the depth estimation.
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They randomly sample triplets of 3D points from their pre-

dicted geometry; each triplet forms a virtual plane whose

normal is a virtual normal. They showed that the virtual

normal is more robust to noise than the surface normal.

Normal estimation in different coordinate systems has

also been studied. FrameNet [12] proposed jointly estimat-

ing local canonical frames and their projections, together

with the normal map. This joint estimation has been shown

to improve results. Xian et al. [33] estimate the 2DoF cam-

era orientation by computing the alignment between the lo-

cal camera coordinate system, and a global reference co-

ordinate system which is aligned with gravity. The two

coordinate systems are represented by the two surface ge-

ometries estimated from a deep neural network. We also

leverage the normal estimation in different frames to im-

pose more geometric constraints. We provide analytically

computed Manhattan line map as input to help our normal

estimation in Manhattan coordinates. In addition, since the

Manhattan directions (dominant vanishing points) are ana-

lytically computed from lines, we turn the normal estima-

tion in Manhattan coordinates into a classification problem

to further reduce its difficulty.

Besides per-pixel normal estimation, piece-wise planar

surface estimation is another popular way for surface nor-

mal estimation under the assumption that our world is piece-

wise planar. PlaneNet [20] represents each plane as a nor-

mal plus an offset. It uses a CNN to predict a segmenta-

tion into planes as well as the parameters for each plane

segment. Whereas it assumes a fixed number of planes,

PlaneRCNN [19] eliminates that constraint. It uses Mask-

RCNN [11] to segment out an arbitrary number of planes

and then estimates parameters for each plane. Compared to

per-pixel dense estimation, piece-wise planar methods pro-

duce more regularized predictions but have the drawback

that an error in an estimated parameter will result in an ac-

cumulated error in the whole plane.

LayoutNet [38] uses Manhattan lines as input to help the

network predicting room layouts. Li et al. [18] used multi-

view stereo on a large collection of internet photos to create

a large dataset for training CNNs for depth estimation. Both

papers show the usefulness of traditional geometric reason-

ing based methods in deep neural network training. In

our work, in both the training and prediction phases, we

combine the vanishing point and line method with the deep

learning method. Our experiments demonstrate that this

combination leverages the advantage of both methods and

produces better results than the state of the art.

3. Method

In this section, we introduce our single-view normal esti-

mation framework. First, we briefly introduce the vanishing

point and line detection method, and our method for gener-

ating the Manhattan label map. Then, we discuss the overall

Figure 3: Example images of the Manhattan line and label maps.

For better visualization, the parallel planes with opposite direc-

tions are assigned to the same color in the Manhattan label map.

The actual Manhattan label map is a seven-class label map (± 3

Manhattan directions plus one non-Manhattan direction).

network architecture. Finally, we elaborate on the energy

terms and training details.

3.1. Line and vanishing point detection

Under a pinhole camera model, parallel lines in 3D space

project to converging lines in the image plane. The com-

mon point of intersection in the image plane is called the

vanishing point (VP). The steps for detecting VPs are 1)

detect line segments, 2) cluster the lines into groups with

the assumption that a cluster will share a common vanish-

ing point, 3) find the three dominant pair-wise orthogonal

vanishing points.

Line segments are detected using the LSD line detector

[10]. We use the Expectation-Maximization approach of

[13] to fit vanishing points. Before running EM, the vanish-

ing points are initialized as follows: in our training data, the

vertical vanishing point is initialized from a gravity-aligned

camera pose. We then form the corresponding horizon line

in the projective image plane, and divide it into equal-angle

bins. To initialize horizontal vanishing points, we intersect

image line segments with the horizon line, and consider

peaks in the resulting histogram. Between EM iterations,

we purge candidate vanishing points with low evidence, and

merge vanishing points that become sufficiently close.

3.2. Manhattan line and label map

After the dominant vanishing points have been detected,

we classify the corresponding line segments to form a color-

coded Manhattan line map. We use blue for line segments

in the vertical vanishing point direction, and green and red

for line segments in the two orthogonal horizontal vanish-

ing point directions. We always render the lines in a fixed

order based on the Manhattan directions. Row 2 of Figure 3

shows an example of the Manhattan line map, which is used

as an input to our normal estimation network.

Given the classified line segments, one can determine

the plane normals near the intersection of two groups of

lines. However, it is non-trivial to determine whether the
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Figure 4: The process of ground truth (GT) Manhattan label map

generation. Middle: a GT normal map in which the coordinates in

the lower right corner correspond to the three dominant vanishing

points. Right: the GT Manhattan label map generated by classi-

fying each surface normal in the GT normal map into one of the

dominant vanishing point directions based on a threshold. For bet-

ter visualization, the parallel planes with opposite directions are

assigned to the same color in the Manhattan label map.

two groups are coplanar and to select the appropriate re-

gion near the line intersections where normals can be es-

timated. Therefore, we introduce a discrete classification

problem where each pixel is classified into seven classes:

six classes for surfaces aligned to the signed Manhattan di-

rections, and one extra class for non-Manhattan surfaces.

For each training image we create a seven-class one-hot en-

coded Manhattan label map Mgt, using the given dominant

vanishing points v and ground truth normal map ngt.

Figure 4 shows an example of generating Mgt given ngt

and v. The third row in Figure 3 shows more examples of

the Manhattan label maps. In the visualizations, we ignore

sign differences in the label map. As above, the Manhat-

tan label map is a seven-class label map with each label

specifying a dominant vanishing point direction, or a non-

Manhattan direction. Given the ground truth normal map

and dominant vanishing points, we classify each normal di-

rection into one of the dominant vanishing point directions

if it is within a certain angle; otherwise it is classified as an

unknown (non-Manhattan) direction. The one-hot encoding

of the labels if given by:

Mgt
c (i) =

{

1 if ∠(ngt(i),vc) < T

0 otherwise

Mgt
u (i) = 1−

C
∑

c=1

Mgt
c (i), i = 1 . . . N ,

(1)

where C = 6 is the number of signed Manhattan direc-

tions, c runs over these directions, vc is the signed Manhat-

tan direction associated to label c, u = 7 corresponds to an

unknown (non-Manhattan) direction, ∠(·, ·) is the angle be-

tween two vectors, T is a selected angle threshold, N is the

number of pixels in the image, and i runs over all pixels. We

are using consistent labeling of the directions, e.g. c = 0 is

always corresponding to the up direction.

The advantages of converting the normal map represen-

tation into the Manhattan label map representation are that

1) the problem of regressing arbitrary normal direction is

converted to a classification problem; 2) the color coding

Figure 5: The UperNet (our baseline) architecture. It combines a

Feature Pyramid Network (FPN) with a Pyramid Pooling Module

(PPM) attached at the last layer of the encoder of the FPN.

of the Manhattan label map is complementary to the Man-

hattan line map and thus can directly take advantage of the

input Manhattan line map, for example, Manhattan normal

directions should be orthogonal to nearby Manhattan line

directions. In the next subsection, we introduce our net-

work architecture for the Manhattan label map and normal

map estimation, given the analytically computed dominant

vanishing points and Manhattan line map.

3.3. Manhattan Label Map and Normal Estimation

As mentioned in Section 3.2, the Manhattan label map

is a seven-class label map. It is natural to adopt a seman-

tic segmentation network architecture for the task of learn-

ing this labeling. We adopt the UPerNet [34] architecture,

which combines a Feature Pyramid Network (FPN) and

a Pyramid Pooling Module (PPM). It has large receptive

fields while remaining efficient compared to the UNet [25]

or DORN [7] architectures. A more detailed architecture

is shown in Figure 5. The encoder is a ResNet101 back-

bone, and the decoder is a FPN. Between the encoder and

decoder is a PPM that further increases the receptive field

of the network. Please refer to [34] for more details.

Baseline model. We first trained a baseline model that

takes a single image as input and outputs a dense normal

map. We initialize all the weights in our baseline model,

except the last layer, using the pretrained UPerNet weights

from a semantic segmentation task. Then all layers are fine-

tuned (except for the last layer, which is freshly trained)

on the normal prediction task. From our experiments, our

baseline model already outperforms FrameNet.

vp-line model. Our full model is shown in Figure 2; we

name it the vp-line model. The input to the vp-line model is

an RGB image together with analytically computed vanish-

ing points and Manhattan line map. The 3-channel Manhat-

tan line map contains color-coded lines, where blue corre-

sponds to the vertical direction and the other two colors cor-

respond to two orthogonal horizontal dominant vanishing

point directions. The Manhattan line map provides useful

information for the Manhattan label map estimation. The

RGB image and the Manhattan line map are processed sepa-

rately using two convolutional blocks and then concatenated

for use in the third convolutional block. The decoder of the
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vp-line model is the same as the baseline model except for

the last convolutional layer, where the vp-line model has a

ten-channel output layer instead of three. The seven addi-

tional channels correspond to the predicted Manhattan label

map: after the decoder, for each pixel i, we have a raw pre-

dicted surface normal nraw(i), and a set of softmax prob-

abilities p(i) = (p1(i), . . . , p7(i)) for the labels described

above. The Manhattan label map is similar to a dense ver-

sion of the Manhattan line map. The Manhattan label map

estimation can be interpreted as semantic segmentation; it

is also equivalent to normal estimation in an aligned coor-

dinate system since it classifies surface normals into Man-

hattan directions.

Next, we convert the Manhattan label map into a surface

normal map in camera coordinates. As above, the predicted

Manhattan label map contains probabilities for each of the

six Manhattan directions, and a non-Manhattan direction.

An easy way to convert the Manhattan label map to a normal

map is to directly assign a Manhattan direction to each pixel

in the label map based on the highest probability. However,

such an assignment is non-differentiable and thus cannot be

integrated into the network training process. Therefore, in-

stead of direct assignment, we make full use of the softmax

probabilities and the raw predicted normals, to produce a

“combined normal” n
comb(i) at each pixel i by taking:

n
comb(i) = 〈

6
∑

c=1

pc(i)vc + p7(i)n
raw(i)〉, i = 1 . . . N ,

(2)

where each vc is the (constant) signed Manhattan direction

corresponding to label c, and 〈·〉 is a normalization opera-

tion. For pixels strongly associated to a Manhattan direc-

tion c, the network can leverage the provided direction vc

by increasing the weight pc(i). Many object surfaces are

irregularly shaped, so we cannot expect only the dominant

Manhattan directions to represent the whole scene. For pix-

els not lying on a Manhattan aligned surface, the weight

p7(i) should be large, and thus nraw(i) should dominate in

the sum.

At this point, our vp-line model has two normal map pre-

dictions: nraw and n
comb. To produce a final output normal

map n
out, we follow the idea in GeoNet [24] of using a re-

finement network, as shown in Figure 2. The refinement

network we use is a three-layer residual network with a 6-

channel input obtained by concatenating (nraw,ncomb), and

whose output is our final prediction n
out.

3.4. Loss Functions

As mentioned in the previous subsection, there are three

intermediate outputs, and one final output in the vp-line

model: 1) the softmax output p(i) for Manhattan label clas-

sification, 2) the raw normal map n
raw(i), which is the

other output of the decoder, 3) the combined normal map

n
comb(i), defined by (2), and 4) the final output normal map

n
out(i) from the refinement network. We use a negative log

likelihood for the Manhattan label map estimation:

Llabel = −

N
∑

i=1

7
∑

c=1

Mgt
c (i) log(pc(i)), (3)

where Mgt
c (i) are the ground truth one-hot labels from (1).

We use angular distance between predicted normals and

ground truth normals as the loss for all normal predictions:

Lnorm =
∑

∗

N
∑

i=1

ω∗ arccos(n
∗(i) · ngt(i)), (4)

where ∗ runs over {raw, comb, out}, and ω∗ controls the

importance of each normal prediction; in this work we

weigh them equally. The overall loss is defined as:

L = Lnorm + λLlabel, (5)

4. Experiments

In this section, we show quantitative and qualitative eval-

uation results of our proposed vp-line model. We perform

comparisons with state-of-the-art normal estimation meth-

ods using the ScanNet dataset, showing the superiority of

our method. We also demonstrate the generalization ability

of our method using the Replica and NYUD-v2 datasets.

Through our experiments, we conclude that the combina-

tion of vanishing points and axis-aligned lines with a deep

neural network, and our decomposition of the normal into

the Manhattan part (learned by discrete classification) and

non-Manhattan part (learned by regression) not only im-

proves the normal estimation accuracy but also improves

generalization ability.

4.1. Implementation Details

To generate the ground truth Manhattan label map, we

used a hard threshold T = 15 degrees for classifying a nor-

mal direction into one of the Manhattan directions. We set

the weights ω∗ = 1.0 (in Eq. 4) and the weight λ = 0.2
(in Eq. 5). We used the Adam optimizer with β1 = 0.5 and

β2 = 0.999. We set the initial learning rate to be 0.0001,

with 0.95 exponential decay rate. The input image size was

640×480, and the prediction size was 320×240. The batch

size we used was 6 on an Nvidia V100 GPU. For data aug-

mentation, we used random center cropping.

4.2. Datasets

We used the ScanNet dataset [4], which contains more

than 2.5 million images, to train our models. Similar to

FrameNet, we used 2/3 of the dataset for training and the

rest for validation and testing. We also generated all the
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(a) Image (b) GT (c) Baseline (d) vp-line model

Figure 6: Visual comparison of the results on ScanNet [4] dataset.

By incorporating the vanishing points and lines, our vp-line

method improves the baseline method.

Manhattan line maps during data preparation using the van-

ishing point and line method described in Section 3.1.

NYUD-v2 [23] is another large benchmark dataset; we

directly applied our ScanNet pretrained model on its offi-

cial test set to demonstrate the generalization ability of our

model, and also compared with the state-of-the-art methods.

In addition to NYUD-v2, we also demonstrate the gen-

eralization ability of our method using the Replica dataset

[29]. Replica has the highest ground truth normals quality

compared to the other datasets, but it has a lot fewer scenes.

4.3. Normal estimation

To evaluate the performance of our vp-line model, we

compare to the state-of-the-art deep learning-based normal

estimation methods. We use mean and median angle error

as well as the percentage of normals within certain angles as

the evaluation metrics. As shown in Table 1, our baseline

model, based on UPerNet architecture, already outperforms

the state-of-the-art. The proposed vp-line model achieves

the best result, demonstrating the effectiveness of incorpo-

rating Manhattan lines and vanishing points into normal es-

timation as well as the joint estimation of normals in both

Manhattan frame aligned coordinates and camera coordi-

nates. Figure 6 shows the qualitative results; as can be seen,

the vp-line model produces more correct results.

Methods
Error metric Accuracy metric

mean median 11.25
◦

22.5
◦

30
◦

GeoNet [24] 19.77 11.34 49.7 70.4 77.7

FrameNet [12] 15.28 8.14 60.6 78.6 84.7

Our baseline 14.23 7.03 64.8 81.2 86.5

vp-line model 13.76 6.68 66.3 81.8 87.0

Table 1: Normal prediction on the ScanNet [4] dataset. Our base-

line model outperforms the state-of-the-art, and our vp-line model

achieves the best results.

Generalization to unseen datasets. One advantage of

combining analytically computed Manhattan lines and van-

ishing points into a deep learning-based normal estima-

tion framework is the improved generalization ability. To

demonstrate this, we directly applied our vp-line model,

which is trained on the ScanNet dataset, to other datasets.

Table 2 shows the quantitative results on the NYUD-v2

dataset. It can be seen that our vp-line model performs

even better than methods trained on the NYUD-v2 dataset,

demonstrating its good generalization ability. We also di-

rectly ran FrameNet, trained on ScanNet, on the NYUD-v2

dataset; it can be seen that the degradation of its perfor-

mance when applied to an unseen dataset is much larger

than our vp-line model. Figure ?? shows a qualitative com-

parison with the-state-of-the-art methods. It can be seen that

our predicted normal maps capture many more details than

other methods.

Methods Training
Error metric Accuracy metric

mean median 11.25
◦

22.5
◦

30
◦

Eigen et al. [5] NYUD-v2 23.7 15.5 39.2 62.0 71.1

GeoNet [24] NYUD-v2 19.0 11.80 48.4 71.5 79.5

FrameNet [12] ScanNet 21.60 13.52 43.7 65.7 74.2

vp-line model ScanNet 17.98 9.83 54.3 73.8 80.7

Table 2: Normal prediction on the NYUD-v2 [23] dataset. Both

FrameNet and our vp-line model are trained on ScanNet. Our vp-

line model achieves the best results, demonstrating its good gener-

alization ability.

To further show the generalization ability of our pro-

posed vp-line model, we used the Replica dataset that

has much larger scene variation compared to the ScanNet

dataset. Table 3 and Figure 8 show the comparison results of

FrameNet, our baseline model, and our vp-line model. All

three models were trained on the ScanNet dataset and di-

rectly applied to the Replica dataset. Compared to the eval-

uation result on the ScanNet dataset, the performance degra-

dation of the FrameNet and our baseline model is larger than

that of the vp-line model, demonstrating that the incorpo-

ration of the vanishing points and the Manhattan line map

improves the generalization ability of the model.

Methods
Error metric Accuracy metric

mean median 11.25
◦

22.5
◦

30
◦

FrameNet [12] 19.51 13.60 39.1 72.7 82.0

Our baseline 18.23 12.77 44.5 76.2 84.6

vp-line model 17.08 10.50 51.9 77.5 85.2

Table 3: Normal prediction on the Replica [29] dataset. All meth-

ods are trained on ScanNet to compare the generalization ability.

Our vp-line model achieves best results and lowest performance

degradation, demonstrating its good generalization ability.

4.4. Ablation Study

To investigate our architecture choices, we conduct a se-

ries of ablation studies. To explore the impact of the input

Manhattan line map, we trained a model with only an RGB
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(a) image (b) GT (c) Eigen et al. [6] (d) GeoNet [24] (e) FrameNet [12] (f) vp-line model

Figure 7: Visual comparison with the state-of-the-art on NYUv2 [23]. Our vp-line model produces more detailed results, such as the box

on the wall in the first image and the sink in the second image.

(a) Image (b) GT (c) Baseline (d) vp-line model

Figure 8: Visual comparison on the Replica [29] dataset. Our vp-

line model can handle difficult cases such as shadow and low light

conditions.

image and vanishing points as input; the output remains the

same as from the vp-line model (vp-line model (no line)).

Similarly, to show the impact of the Manhattan label map,

we trained a model with an RGB image and a Manhattan

line map as input and only a normal map as output(vp-line

model (no label)): in other words our decoder produces a 3-

channel output nraw(i), which we take as the final output.

Table 4 shows the quantitative results of the ablation studies.

It can be seen that only the combination of the Manhattan

line and label map can produce significantly better normal

estimation results than the baseline model. One explanation

is that the input Manhattan lines are helpful for the Man-

hattan label map estimation but not directly for the normal

estimation.

As mentioned in Section 3.3, our vp-line model outputs

multiple normal estimates. The accuracy of the normals

Methods
Error metric Accuracy metric

mean median 11.25
◦

22.5
◦

30
◦

vp-line model (no line) 13.93 6.79 65.5 81.6 86.8

vp-line model (no label) 14.14 7.08 64.7 81.2 86.5

Our baseline 14.23 7.03 64.8 81.2 86.5

vp-line model 13.76 6.68 66.3 81.8 87.0

Table 4: Evaluation of the impact of different components in vp-

line model. Only the combination of the Manhattan line and label

map can improve the performance over our baseline.

Outputs
Error metric Accuracy metric

mean median 11.25
◦

22.5
◦

30
◦

n
comb 14.08 7.01 65.1 81.6 86.8

n
raw 13.92 6.97 65.8 81.8 86.9

n
out 13.76 6.68 66.3 81.8 87.0

Table 5: Evaluation of different normal predictions in the vp-line

model. The final fused result nout has the best result.

from the Manhattan label map n
comb, the direct normal pre-

diction n
raw and the fused final normal prediction n

out is

shown in Table 5. The fused normal map n
out takes ad-

vantage of both n
comb and n

raw and thus has the best re-

sult. The network converges after twenty epochs of training.

During the first ten epochs, the accuracy of ncomb is higher

than n
raw, which suggests the Manhattan label map is eas-

ier to learn than to the direct normal map. However, after

ten epochs, nraw starts to achieve better results, possibly be-

cause the accuracy of ncomb is bounded by the analytically

computed vanishing points.

We observed that inheriting weights from a network pre-

trained on semantic segmentation makes a significant dif-

ference. We suspect this is because normal estimation is

closely related to semantic segmentation; for example, if a

region is identified as a ground plane, the normal is very

likely to be pointing upward. That was also our motivation
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Methods
Error metric Accuracy metric

mean median 11.25
◦

22.5
◦

30
◦

Baseline (no init) 16.90 8.69 58.7 76.4 82.5

Baseline 14.23 7.03 64.8 81.2 86.5

vp-line model (no init) 15.33 7.59 62.4 78.9 84.5

vp-line model 13.76 6.68 66.3 81.8 87.0

Table 6: Evaluation of normal estimation with and without weights

pretrained from semantic segmentation tasks.

Figure 9: Visual comparison of depth estimation with and without

our predicted normal map as input. The left image is with pre-

dicted normal map as input. It can be seen that the wall and the

sofa are flatter and the corner is sharper.

for choosing a semantic segmentation network as the back-

bone for our normal estimation model. Table 6 shows the

quantitative results of our proposed model with and without

pretrained semantic segmentation weights as initialization.

4.5. Depth estimation

In recent years, single-view depth estimation has re-

ceived even more interest than normal estimation. How-

ever, most current deep learning-based depth estimation

methods suffer from large scale surface irregularities, as

shown in Figure 9. It can be seen that the estimated ge-

ometry from an ordinary single-view depth prediction net-

work tends not to be smooth, even in flat regions. Since

surface normals are closely related to depth, they can pro-

vide large scale regularization for depth estimation. In or-

der to prove that the predicted normal map is helpful for

depth estimation, we conducted a series of depth estimation

experiments. We evaluate the performance of depth predic-

tion based on the following metrics: mean absolute rela-

tive error (ARD), root mean squared error (RMSE) , root

mean squared log error (RMSE (log)) and the accuracy un-

der threshold (δi < 1.25i, i = 1, 2, 3).

Methods RMSE RMSE (log) ARD

model-d 0.342 0.087 0.120

model-nd 0.280 0.057 0.104

model-pd 0.267 0.053 0.098

Table 7: Depth prediction on ScanNet [4] dataset. The numbers

are lower the better. Both model-nd and model-pd perform

significantly better than model-d, demonstrating the usefulness of

the normal map in depth prediction.

As shown in Table 7, we trained three networks using

the ScanNet dataset, with the same training and test split as

in the normal estimation evaluation: 1) a baseline depth es-

timation network (model-d), which takes a single image as

input and outputs a depth map, 2) a joint depth and normal

estimation network (model-nd), which predicts both depth

and normal maps simultaneously, and 3) a depth estimation

network (model-pd) that takes a color image together with a

normal map from our pretrained normal estimation network

as inputs. It can be seen that both model-nd and model-pd

perform significantly better than model-d, which supports

our idea that normals are helpful for depth estimation. Fig-

ure 9 shows that with an additional normal map as input, the

predicted depth map is more regularized.

We further ran model-pd on the NYUD-v2 dataset with-

out retraining or fine-tuning. As shown in Table 8, it has

comparable performance with the state-of-the-art models

trained on NYUD-v2.

Methods
Error metric Accuracy metric

RMSE RMSE (log) ARD δ < 1.25 δ < 1.25
2

δ < 1.25
3

Laina et al. [15] 0.584 0.164 0.136 82.2 95.6 98.9

DORN [7] 0.547 0.158 0.116 85.6 96.1 98.6

Lee et al. [17] 0.538 0.148 0.131 83.7 97.1 99.4

Yin et al. [35] 0.416 - 0.108 87.5 97.6 99.4

model-d 0.508 0.162 0.132 83.0 96.1 99.0

model-pd 0.438 0.136 0.103 88.4 97.0 99.2

Table 8: Depth prediction on NYUD-v2 [23] dataset. With a

pretrained normal map as input, our proposed model-pd, trained

on ScanNet, has comparable performance with the state-of-the-art

trained on NYUD-v2.

5. Conclusion

In this paper, we have presented a novel single-view nor-

mal estimation method that combines a robust vanishing

point and line detection method with a deep convolutional

neural network. We introduced the Manhattan label map

that can serve as a bridge to connect the Manhattan lines

and vanishing points with the direct normal prediction in

a fully differentiable manner. We demonstrated that such

a combination not only allows our model to produce supe-

rior results over the state of the art but also leads to better

generalization ability . Furthermore, by providing the nor-

mal map from our pretrained model as input to a depth es-

timation network, the performance of the depth estimation

network can be significantly improved.
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