
Video Modeling with Correlation Networks

Heng Wang Du Tran Lorenzo Torresani Matt Feiszli

Facebook AI

{hengwang,trandu,torresani,mdf}@fb.com

Abstract

Motion is a salient cue to recognize actions in video.

Modern action recognition models leverage motion infor-

mation either explicitly by using optical flow as input or im-

plicitly by means of 3D convolutional filters that simultane-

ously capture appearance and motion information. This pa-

per proposes an alternative approach based on a learnable

correlation operator that can be used to establish frame-to-

frame matches over convolutional feature maps in the dif-

ferent layers of the network. The proposed architecture en-

ables the fusion of this explicit temporal matching informa-

tion with traditional appearance cues captured by 2D con-

volution. Our correlation network compares favorably with

widely-used 3D CNNs for video modeling, and achieves

competitive results over the prominent two-stream network

while being much faster to train. We empirically demon-

strate that correlation networks produce strong results on a

variety of video datasets, and outperform the state of the art

on four popular benchmarks for action recognition: Kinet-

ics, Something-Something, Diving48 and Sports1M.

1. Introduction

After the breakthrough of AlexNet [29] on ImageNet [7],

convolutional neural networks (CNNs) have become the

dominant model for still-image classification [32, 46, 51,

20]. In the video domain, CNNs were initially adopted as

image-based feature extractor on individual frames of the

video [26]. More recently, CNNs for video analysis have

been extended with the capability of capturing not only

appearance information contained in individual frames but

also motion information extracted from the temporal dimen-

sion of the image sequence. This is usually achieved by one

of two possible mechanisms. One strategy involves the use

of a two-stream network [45, 56, 15, 57, 41, 5] where one

stream operates on RGB frames to model appearance infor-

mation and the other stream extracts motion features from

optical flow provided as input. The representations obtained

from these two distinct inputs are then fused, typically in a

late layer of the network. An alternative strategy is to use

3D convolutions [1, 24, 52, 49, 54, 40, 62, 9] which couple

appearance and temporal modeling by means of spatiotem-

poral kernels.

In this paper we propose a new scheme based on a

novel correlation operator inspired by the correlation layer

in FlowNet [11]. While in FlowNet the correlation layer

is only applied once to convert the video information from

the RGB pixel space to the motion displacement space, we

propose a learnable correlation operator to establish frame-

to-frame matches over convolutional feature maps to cap-

ture different notions of similarity in different layers of the

network. Similarly to two-stream models, our model en-

ables the fusion of explicit motion cues with appearance in-

formation. However, while in two-stream models the mo-

tion and appearance subnets are disjointly learned and fused

only in a late layer of the model, our network enables the

efficient integration of appearance and motion information

throughout the network. Compared to 3D CNNs, which ex-

tract spatiotemporal features, our model factorizes the com-

putation of appearance and motion, and learns distinct fil-

ters capturing different measures of patch similarity. The

learned filters can match pixels moving in different direc-

tions. Through our extensive experiments on four action

recognition datasets (Kinetics, Something-Something, Div-

ing48 and Sports1M), we demonstrate that our correlation

network compares favorably with widely-used 3D CNNs

for video modeling, and achieves competitive results over

the prominent two-stream network while being much faster

to train. We summarize our contributions as follows:

• A new correlation operator with learnable filters. By

making use of dilation and grouping, the operator is

highly efficient to compute. Compared to 3D convolution

or optical flow, it provides an alternative way to model

temporal information in video.

• A new correlation network which is designed to integrate

motion and appearance information in every block. A

rigorous study of the new architecture and comparisons

with strong baselines provide insights for the different

design choices.

• Our correlation network outperforms the state-of-the-art

on four different video datasets without using optical
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Figure 1: An illustration of the proposed correlation operator. (a) Correlation operator used for optical flow and geometric

matching. (b) The introduction of filters renders the operator “learnable.” (c) Groupwise correlation increases the number of

output channels without adding computational cost. (d) Extending the correlation operator to work on a sequence of video

frames.

flow.

In the rest of the paper, we introduce related work in

Section 2, and detail the proposed correlation operator in

Section 3. We present the correlation network in Section 4.

Experimental setups are in Section 5. We discuss the ex-

perimental results in Section 6 and conclude the paper in

Section 7.

2. Related Work

Architectures for video classification. Among the popular

video models, there are two major categories: two-stream

networks [45, 56, 15, 57, 41, 5] and 3D CNNs [1, 24, 52,

49, 54, 40, 62, 9]. Since the introduction of two-stream net-

works [45], further improvements have been achieved by

adding connections between the two streams [15], or in-

flating a 2D model to 3D [4]. 3D CNNs [1, 24, 52] learn

appearance and motion information simultaneously by con-

volving 3D filters in space and time. Successful image ar-

chitectures [46, 51, 20] have been extended to video using

3D convolution [4, 52, 62]. Recent research [49, 54, 40, 41]

shows that decomposing 3D convolution into 2D spatial

convolution and 1D temporal convolution leads to better

performance. Our correlation network goes beyond two-

stream networks and 3D convolution, and we propose a

new operator that can better learn the temporal dynamics

of video sequences.

Motion information for action recognition. Before the

popularity of deep learning, various video features [31, 44,

28, 10, 55] were hand-designed to encode motion informa-

tion in video. Besides two-stream networks and 3D CNNs,

ActionFlowNet [38] proposes to jointly estimate optical

flow and recognize actions in one network. Fan et al. [12]

and Piergiovanni et al. [39] also introduced networks to

learn optical flow end-to-end for action recognition.

There is also work [50, 33, 21] seeking alternatives to

optical flow. Sun et al. [50] extracted features guided by

optical flow to capture the transformation between adjacent

frames. Lee et al. [33] designed motion filters by comput-

ing the difference of adjacent frames. Hommos et al. [21]

proposed to use phase instead of optical flow as the motion

representation for action recognition. Our paper is along

the line of designing architectures to directly learn motion

information from raw RGB pixels.

Applications of correlation operation. Deep match-

ing [60] computes the correlation of image patches to find

dense correspondence to improve optical flow. Unlike deep

matching using hand-crafted features, FlowNet [11] is a

network, where a correlation layer performs multiplicative

patch comparisons. Correlation layers were also used in

other CNN-based optical flow algorithms [48, 23]. Besides

optical flow, Rocco et al. [43] used it to estimate the ge-

ometric transformation of two images, whereas Feichten-

hofer et al. [16] applied it to object tracking.

In the context of action recognition, Zhao et al. [66]

utilize the correlation layer to compute a cost volume to

estimate the displacement map as in optical flow. The

Spatio-Temporal Channel Correlation Network [8] adapts

the Squeeze-and-Excitation block [22] to a ResNeXt [61]

backbone. The notion of correlation in [8] refers to the rela-

tionship among the spatial and temporal dimensions of the

feature maps, which is different from the matching of ad-
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Operator Correlation 3D convolution

Input Cin × L×H ×W Cin × L×H ×W
Filter L× Cin ×K ×K Cout × Cin ×Kt ×Ky ×Kx

Output (G ∗K ∗K)× L×H ×W Cout × L×H ×W
# params L ∗ Cin ∗K ∗K Cout ∗ Cin ∗Kt ∗Ky ∗Kx

FLOPs Cin ∗K ∗K ∗ L ∗H ∗W Cout ∗ Cin ∗Kt ∗Ky ∗Kx ∗ L ∗H ∗W

Table 1: A comparison of the correlation operator with 3D convolution. When the size K of the filter is similar (i.e.,

K ∗K ≈ Kt ∗Ky ∗Kx), the parameters of 3D convolution is about Cout/L times more than the correlation operator, and

its FLOPs is about Cout times higher.

jacent frames studied in our work. We compare our results

with [8] in Section 6.3.

Our paper extends this line of ideas by introducing a

learnable operator based on correlation. Instead of trying to

explicitly or implicitly estimate optical flow, the correlation

operator is used repeatedly in combination with other oper-

ators to build a new architecture that can learn appearance

and motion information simultaneously and that achieves

state of the art accuracy on various video datasets.

3. Correlation Operator

This section describes the proposed correlation opera-

tor. We start by reviewing the existing correlation opera-

tor over image pairs used in optical flow [11, 48] and geo-

metric matching [60, 43]. We then propose to inject filters

into the operator to make it learnable. We discuss how to

increase the number of output channels while retaining effi-

ciency and low number of parameters by means of a group-

wise variant. We finally generalize the operator to work on

sequences of video frames.

Correlation operator for matching. As shown in Fig-

ure 1 (a), each image is represented by a 3D tensor of size

C×H×W , where C is the number of channels and H×W
is the spatial resolution. Given a feature patch PB(i, j) in

image B, we compute the similarity of this patch with an-

other patch PA(i
′

, j
′

) in image A, where (i, j) is the spa-

tial location of the patch. To make the computation more

tractable, the size of the feature patch can be reduced to

a single pixel, thus PA(i
′

, j
′

) and PB(i, j) becomes C-

dimensional vectors. The similarity is defined as the dot

product of the two vectors:

S(i, j, i
′

, j
′

) = 1/C ∗

C
∑

c=1

(PB
c (i, j) ∗ PA

c (i
′

, j
′

)), (1)

where 1/C is for normalization. (i
′

, j
′

) is often limited to

be within a K×K neighborhood of (i, j). K is the maximal

displacement for patch matching. Considering all possible

locations of (i, j) and (i
′

, j
′

) in Eq. 1, the output S is a

tensor of size K × K × H × W , where K × K can be

flattened to play the role of channel to generate a 3D feature

tensor (K2 ×H ×W ) like the input image.

Learnable correlation operator. Computer vision has

achieved impressive results by moving from hand-crafted

features [36, 6] to learnable deep neural networks [29, 20].

The original correlation operator [11, 48, 60, 43] does not

include learnable parameters and thus it is quite limited in

terms of the types of representations it can generate. We

propose to endow the operator with a learnable filter as

shown in Figure 1 (b). Our motivation is to learn to select

informative channels during matching. To achieve this goal

we introduce a weight vector Wc to Eq. 1 in the dot product

computation: Wc ∗ P
B
c (i, j) ∗ PA

c (i
′

, j
′

). The similarity of

two feature patches (i.e., PB(i, j) and PA(i
′

, j
′

)) is often

related to how close their spatial location is. We thus ap-

ply different weight vectors Wc to different locations in the

K × K neighbor to take into account the spatial distribu-

tion of the matching disparity. Thus, the size of each filter

is C ×K ×K as summarized in Table 1.

K indicates the maximal displacement when matching

two patches. Larger valued K can cover larger regions and

encode more information. The downside is that the compu-

tational cost grows quadratically w.r.t. K. Inspired by the

dilated convolution [63], we propose to perform dilated cor-

relation to handle large displacement without increasing the

computational cost. We enlarge the matching region in im-

age A by a dilation factor D. In practice, we set K = 7 with

a dilation factor of D = 2 to cover a region of 13× 13 pix-

els. Besides dilation, we also apply the operator at different

spatial scales (as discussed in Section 4), which is a popular

strategy to handle large displacements in optical flow [42].

From Figure 4, filters do learn to select discriminative chan-

nels as filters from certain channels are more active than the

other. Having different weights in the K×K neighborhood

also enables the filter to learn pixel movements in different

directions.

Groupwise correlation operator. The correlation operator

converts a feature map from C ×H ×W to K2 ×H ×W .

In popular CNNs, C can be one to two orders of magni-

tude larger than K2. This means that the correlation opera-

tor may cause a great reduction in the number of channels.
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This is not a problem for applications such as optical flow or

geometric matching, where the correlation operator is only

applied once. If we want to design a network based on the

correlation operator and apply it repeatedly, it will reduce

the dimension of the channels dramatically, and degrade the

representation power of the learned features, as shown by

the results in Section 6.2.

Similar to [19], we propose a groupwise version of the

correlation operator that avoids shrinking the number of

channels while maintaining efficiency. Groupwise convo-

lution [29, 61] was introduced to reduce the computational

cost of convolution by constraining each kernel to span a

subset of feature channels. Here we utilize this idea to in-

crease the number of output channels without increasing the

computational cost. For the groupwise correlation operator,

all C channels are split into G groups for both input images

and filters, and the correlation operation is computed within

each group. The outputs of all groups are stacked together

as shown in Figure 1 (c). This increases the number of out-

put channels by a factor of G, to a total of K2G channels.

The size of each group is g = C/G. By choosing the group

size properly, we can control the number of channels with-

out additional cost.

From two images to a video clip. The original correlation

operator is designed for matching a pair of images. In this

paper, we apply it for video classification where the input

is a sequence of L video frames. We extend the operator

to video by computing correlation for every pair of adjacent

frames of the input sequence. As the number of adjacent

frame pairs is L − 1 (i.e., one fewer than the number of

frames), we propose to compute self-correlation for the first

frame in addition to the cross-correlation of adjacent frame

pairs, shown in Figure 1 (d). It can keep the length L of the

output feature map consistent with the input, and make the

correlation operator easier to use when designing new archi-

tectures. The gradual change of filters within each column

of Figure 4 shows filters learn to follow the motion of pixels

across frames when extending the correlation operator to a

video clip.

Table 1 summarizes our final proposed correlation op-

erator and compares it with the standard 3D convolution.

Intuitively, 3D convolution seeks to learn both spatial and

temporal representation by convolving a 3D filter in space

and time. The correlation operator however, is intention-

ally designed to capture matching information between ad-

jacent frames. The correlation operator provides an alterna-

tive way to model temporal information for video classifi-

cation, and it has much fewer parameters and FLOPs than

the popular 3D convolution.

4. Correlation Network

The correlation operator is designed to learn temporal in-

formation, and needs to be combined with other operators

Layers R(2+1)D-26 Output size

conv1 1×7×7, 64, stride 1,2,2 L×112×112

res2









1×1×1, 64

3×1×1, 64

1×3×3, 64

1×1×1, 256









×2 L×56×56

res3









1×1×1, 128

3×1×1, 128

1×3×3, 128

1×1×1, 512









×2 L×28×28

res4









1×1×1, 256

3×1×1, 256

1×3×3, 256

1×1×1, 1024









×2 L
2
×14×14

res5









1×1×1, 512

3×1×1, 512

1×3×3, 512

1×1×1, 2048









×2 L
4
×7×7

global average pool, fc # classes

Table 2: The R(2+1)D backbone for building correlation

network.

capturing appearance information in order to yield a com-

prehensive set of features for video classification. We first

briefly introduce the backbone architecture adapted from

R(2+1)D [54], then discuss how to build the correlation net-

work to leverage the matching information by incorporating

the correlation operator into the backbone.

R(2+1)D backbone. The R(2+1)D network [54] was re-

cently introduced and shown to yield state-of-the-art action

recognition results on several video datasets. R(2+1)D fac-

torizes the traditional 3D convolution (i.e., 3× 3× 3) into a

2D spatial convolution (i.e., 1× 3× 3) and an 1D temporal

convolution (i.e., 3 × 1 × 1). Decoupling the spatial and

temporal filtering is beneficial for both hand-crafted fea-

tures [55, 10] and 3D CNNs [54, 49, 40]. Compared with

the original R(2+1)D [54], we make a few changes to fur-

ther simplify and improve its efficiency, e.g., using bottle-

neck layers, supporting higher input resolution, keeping the

number of channels consistent, less temporal striding, etc.

Table 2 provides the details of the R(2+1)D backbone used

in this paper.

Correlation network. To incorporate the correlation oper-

ator into the backbone network, we propose the two types

of correlation blocks shown in Figure 2. The design of these

blocks is similar in spirit to that of the bottleneck block [20].

Figure 2 (a) illustrates the correlation-sum block. It first

uses an 1×1×1 convolution to reduce the number of chan-

nels, then applies a correlation operator for feature match-

ing. Finally another 1× 1× 1 is used to restore the original

number of channels. A shortcut connection [20] is applied
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Figure 2: Two types of correlation blocks. We mark the

number of channels for each operator.

for residual learning. The correlation-concat block in Fig-

ure 2 (b) has two branches within the block: one branch

with a correlation operator and another branch passing the

input feature maps through an 1× 1× 1. The output of the

two branches are combined together by concatenation in the

channel dimension. We compare the two different designs

in Section 6.2.

We obtain the final correlation network by inserting the

correlation block into the R(2+1)D backbone architecture.

In this paper, we insert one correlation block after res2, res3
and res4 in Table 2. We omit res5 as its spatial resolution is

low (i.e., 7× 7). Note that the number of FLOPs of the cor-

relation operator is much lower than 3D convolution. The

correlation network only adds a small overhead to the com-

putational cost of the backbone network. Section 6.1 pro-

vides a more quantitative analysis.

5. Experimental Setups

Video Datasets. We evaluate our model on four video

datasets that have rather different properties, emphasizing

distinct aspects of action recognition. Kinetics [27] is

among the most popular datasets for video classification. It

consists of about 300K YouTube videos covering 400 cat-

egories. Something-Something [18] is created by crowd-

sourcing. This dataset focuses on humans performing pre-

defined basic actions with everyday objects. The same ac-

tion is performed with different objects (“something”) so

that models are forced to understand the basic actions in-

stead of recognizing the objects. It includes about 100K

videos covering 174 classes. We note this dataset as Some-

thing for short. Diving48 [34] was recently introduced and

includes videos from diving competitions. The dataset is

designed to reduce the bias of scene and object context in

action recognition, and force the model to focus on under-

standing temporal dynamics of video data. It has a fine-

grained taxonomy covering 48 different types of diving with

18K videos in total. The annotations of Sports1M [26]

are produced automatically by analyzing the text metadata

surrounding the videos. As there are many long videos in

Sports1M, we cut them into shorter clips to better utilize

the data and end up with a training set of about 5M sam-

ples. For Kinetics and Something, annotations on the test-

ing set are not public available, so we report accuracy on

the validation set like others. For Diving48 and Sports1M,

we report accuracy on the testing set following the setup by

the authors [34, 26].

Training and Testing. To train the correlation network, we

sample a clip of L (16 or 32) frames with a resolution of

224 × 224 from a given video. Some videos in Something

do not have enough frames. We simply repeat each frame

twice for those videos. For data augmentation, we resize the

input video to have shorter side randomly sampled in [256,

320] pixels, following [58, 46], and apply temporal jittering

when sampling clips for training. For the default configu-

ration of our correlation network, we use the correlation-

sum block, and set the filter size to K = 7 and group size

to g = 32. Training is done with synchronous distributed

SGD on GPU clusters using Caffe2 [3] with a cosine learn-

ing rate schedule [35]. We train the model for 250 epochs

in total with the first 40 epochs for warm-up [17] on Kinet-

ics. As Something and Diving48 are smaller datasets, we

reduce the training epochs from 250 to 150 on them. For

Sports1M, we train 500 epochs since it is the largest dataset.

For testing, we sample 10 clips uniformly spaced out in the

video and average the clip-level predictions to generate the

video-level results. Except in Section 6.3, all reported re-

sults are obtained by training from scratch without pretrain-

ing on ImageNet [7] or other large-scale video datasets. We

only use RGB as the input to our model, unlike two-stream

networks [45, 56, 15, 57] which use both RGB and optical

flow.

6. Experimental Evaluation

To demonstrate the advantages of the proposed correla-

tion network, we first compare the correlation operator with

temporal convolution in Section 6.1. We evaluate the corre-

lation network under different settings to justify our design

choices and compare with the two-stream network in Sec-

tion 6.2. We show that our correlation network outperforms

the state of the art on all four datasets in Section 6.3. Fi-

nally, we visualize the learned filters in Section 6.4.

6.1. Correlation network vs baseline backbones

Table 3 compares the correlation network with different

baselines. We denote the backbone architecture from Ta-

ble 2 as R(2+1)D-26. To demonstrate the importance of

temporal learning on different datasets, we create R2D-26,

which is obtained by removing all 1D temporal convolu-
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Top-1 accuracy (%)

Model Length GFLOPs Kinetics Something Diving

R2D-26 16 27.5 67.8 15.8 17.5

R(2+1)D-26 16 36.0 69.9 35.4 22.7

CorrNet-26 16 37.4 73.4 38.5 27.0

R2D-26 32 55.0 70.1 28.1 29.2

R(2+1)D-26 32 71.9 72.3 45.0 32.2

CorrNet-26 32 74.8 75.1 47.4 35.5

Table 3: Correlation networks vs baselines. Our CorrNet

significantly outperforms the two baseline architectures on

three datasets, at a very small increase in FLOPs compared

to R(2+1)D. Using longer clip length L leads to better ac-

curacy on all three datasets.

Figure 3: Effect of filter size K on classification accuracy.

tions (i.e., 3 × 1 × 1), and adding a 3 × 1 × 1 max pool-

ing when we need to do temporal striding. CorrNet-26 is

obtained by inserting one correlation-sum block after res2,

res3 and res4 of R(2+1)D-26 as described in Section 4. As

the correlation block adds a small overhead to the FLOPs,

we further reduce the number of filters for conv1 from 64 to

32, and remove the 3 × 1 × 1 temporal convolutions from

res2 for CorrNet. This reduces the accuracy of CorrNet only

slightly (less than 0.5%). The resulting CorrNet-26 has sim-

ilar FLOPs as R(2+1)D-26, as shown in Table 3.

R2D vs R(2+1)D. The gap between R2D and R(2+1)D

varies dramatically on different datasets. On Kinetics and

Diving48, R(2+1)D is only 2-5% better than R2D, but the

gap widens up to 20% on Something. This is consistent with

findings in [62] and is due to the design of Something where

objects are not predictive of the action label. This also high-

lights the challenges of designing new architectures that can

generalize well to different types of datasets.

R(2+1)D vs CorrNet. We observe a consistent improve-

ment of over 3% on three datasets when comparing CorrNet

with R(2+1)D in Table 3. We achieve the most significant

gain on Diving48, i.e., 4.3%, using 16 frames. Note that

our improved R(2+1)D is a very strong baseline and its per-

formance is already on par with the best results (listed in

Datasets Kinetics Something

CorrNet-26 75.1 47.4

w/o filter 73.9 46.5

w/o grouping 74.2 46.1

correlation-concat 73.2 45.9

Table 4: Action recognition accuracy (%) for different con-

figurations of CorrNet.

Datasets Kinetics Something

CorrNet-26 75.1 47.4

R(2+1)D-26 (RGB) 72.3 45.0

R(2+1)D-26 (OF) 66.5 42.5

R(2+1)D-26 (Two-stream) 74.4 47.9

Table 5: Action recognition accuracy (%) of CorrNet vs

two-stream network.

Table 6 and 7) reported. A significant 3% improvement on

three datasets shows the power of the information learned

from pixel matching and the general applicability of the cor-

relation network to model video of different characteristics.

Moreover, CorrNet only increases the GFLOPs of the net-

work by a very small margin, from 71.9 to 74.8, comparing

with R(2+1)D.

Input clip length. Table 3 also compares different models

using different input length L. As expected, increasing L
from 16 to 32 frames can boost the performance across all

datasets. Something and Diving48 benefit more from using

longer inputs. It is noteworthy that the improvements of

CorrNet over R(2+1)D are largely carried over when using

32 frames. To simplify, we use L = 32 frames in all the

following experiments.

6.2. Evaluating design choices and comparison to
twostream network

To justify our design choices, we experimentally com-

pare different configurations of CorrNet-26 in Table 4. We

consider the following modifications: 1) remove filters in

the correlation operator; 2) remove grouping to reduce the

number of channels from C to K2; 3) swap the correlation-

sum block with correlation-concat. Note that we only

change one thing at a time.

Removing filters results in an accuracy drop of 1% on

both datasets, as it significantly reduces the power of the

learned representations. Similarly, the aggressive channel

reduction introduced by removing grouping also causes an

accuracy drop of about 1%. The correlation-concat block

performs worse than correlation-sum, which leverages the

shortcut connection to ease optimization.

Figure 3 shows the performance of CorrNet-26 for K ∈
{3, 5, 7, 9}. As expected, a larger K can cover a larger
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Methods Pretrain
Two GFLOPs

Kinetics
stream × crops

STC-ResNext-101 [8] ✗ ✗ N/A 68.7

R(2+1)D [54] ✗ ✗ 152×115 72.0

MARS+RGB [5] ✗ ✗ N/A 74.8

ip-CSN-152 [53] ✗ ✗ 109×30 77.8

DynamoNet [9] ✗ ✗ N/A 77.9

SlowFast-101 [14] ✗ ✗ 213×30 78.9

SlowFast-101+NL [14] ✗ ✗ 234×30 79.8

I3D [4] ImageNet ✗ 108×N/A 72.1

R(2+1)D [54] Sports1M ✗ 152×115 74.3

NL I3D-101 [58] ImageNet ✗ 359×30 77.7

ip-CSN-152 [53] Sports1M ✗ 109×30 79.2

LGD-3D-101 [41] ImageNet ✗ N/A 79.4

R(2+1)D [54] Sports1M ✓ 304×115 75.4

I3D [4] ImageNet ✓ 216×N/A 75.7

S3D-G [62] ImageNet ✓ 142.8×N/A 77.2

LGD-3D-101 [41] ImageNet ✓ N/A 81.2

CorrNet-50 ✗ ✗ 115×10 77.2

CorrNet-101 ✗ ✗ 187×10 78.5

CorrNet-101 ✗ ✗ 224×30 79.2

CorrNet-101 Sports1M ✗ 224×30 81.0

Table 6: Compare with the state-of-the-art on Kinetics-400.

neighborhood while matching pixels, thus yields a higher

accuracy. But the improvements become marginal beyond

K = 7, possibly due to the low resolution of the feature

maps.

We compare CorrNet-26 with the two-stream network

using the R(2+1)D backbone in Table 5. We use the

Farneback [13] algorithm for computing optical flow. The

two-stream network of R(2+1)D is implemented by con-

catenating the features after global average pooling. For

R(2+1)D, the accuracy gap between RGB and optical flow

is smaller on Something, as Kinetics is arguably more

biased towards appearance information. Our CorrNet-26

alone is on par with R(2+1)D-26 using two streams. Note

that two-stream network effectively doubles the FLOPs of

the backbone and the cost of computing optical flow (not

considered here) can be very high as well. This shows that

our correlation network is more efficient by learning motion

information from RGB pixels directly.

6.3. Comparison to the state of the art

The correlation network discussed in the previous sec-

tions is based on R(2+1)D-26 with a block configuration of

[2, 2, 2, 2] for res2, res3, res4 and res5. To compare with

the state-of-the-art, we simply add more layers to the back-

bone. Following the design of ResNet [20], CorrNet-50

uses a block configuration of [3, 4, 6, 3], whereas CorrNet-

101 uses [3, 4, 23, 3]. Like in CorrNet-26, a correlation

block is inserted after res2, res3 and res4 for CorrNet-50.

For CorrNet-101, we insert an additional correlation block

in the middle of res4, so there are 4 correlation blocks in

total. Table 6, 7 and 8 compare the accuracy of CorrNet-

50 and CorrNet-101 with several recently published results

under different settings. For CorrNet-101 (the last two rows

Methods Pretrain
Two

Something Diving
stream

R(2+1)D [54] ✗ ✗ 21.4

TRN [67] ✗ ✗ 34.4

MFNet-C101 [33] ✗ ✗ 43.9

NL I3D-50 [58] ImageNet ✗ 44.4

R(2+1)D [54] Sports1M ✗ 45.7 28.9

NL I3D-50+GCN [59] ImageNet ✗ 46.1

DiMoFs [2] Kinetics ✗ 31.4

Attention-LSTM [25] ImageNet ✗ 35.6

GST-50 [37] ImageNet ✗ 48.6 38.8

MARS+RGB [5] Kinetics ✗ 51.7

S3D-G [62] ImageNet ✓ 48.2

TRN [67] ImageNet ✓ 42.0 22.8

MARS+RGB+Flow [5] Kinetics ✓ 53.0

CorrNet-50 ✗ ✗ 49.3 37.9

CorrNet-101 ✗ ✗ 50.9 38.2

CorrNet-101 ✗ ✗ 51.7 38.6

CorrNet-101 Sports1M ✗ 53.3 44.7

Table 7: Compare with the state-of-the-art on Something-

Something v1 and Diving48.

of Table 6 and 7) at test time, we sample more clips (30

instead of 10), as done in [58, 59] .

As expected, using deeper models or sampling more

clips can further improve the accuracy. Comparing with

CorrNet-26 in Table 3, CorrNet-101 is 4.1%, 4.3% and

3.1% better on Kinetics, Something and Diving48, respec-

tively. As Diving48 is the smallest dataset among the four,

increasing model capacity may lead to overfitting, thus the

improvement is less significant. We also experiment with

pre-training CorrNet-101 using the Sports1M dataset [26].

This time we achieve the most significant improvement on

Diving48, i.e., 6.1%. Smaller datasets are likely to bene-

fit more from pre-training, as we have seen in the case of

UCF101 [47] and HMDB51 [30]. On both Kinetics and

Something, we observe a modest improvement of 1-2% by

pre-training on Sports1M.

On Kinetics, CorrNet-101 significantly outperforms the

previous models using the same setup (i.e., no pretraining

and only using RGB) except for the recently introduced

SlowFast network [14] augmented with non-local network

(NL) [58]. In fact, compared to SlowFast-101, CorrNet-101

achieves slightly higher accuracy (79.2% vs 78.9%), and it

is only 0.6% lower in accuracy when SlowFast-101 is com-

bined with NL. Comparing with results using pre-training,

CorrNet-101 is 1.6% better than LGD-3D [41], i.e., 81.0%

vs 79.4%. The two-stream LGD-3D improves the accuracy

to 81.2% by extracting the computationally expensive TV-

L1 optical flow [65].

Comparing CorrNet-101 with other approaches trained

from scratch in Table 7, we observe a significant improve-

ment of 7.8% on Something (51.7% for CorrNet-101 vs.

43.9% for MFNet-C101 [33]). On Diving48 [34], the im-

provement is even more substantial, i.e., over 17% (38.6%

from CorrNet-101 vs. 21.4% from R(2+1)D). With pre-
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Methods Pretrain Two stream Sports1M

C3D [52] ✗ ✗ 61.1

P3D [40] ✗ ✗ 66.4

R(2+1)D [54] ✗ ✗ 73.0

ip-CSN-152 [53] ✗ ✗ 75.5

Conv Pool [64] ✗ ✓ 71.7

R(2+1)D [54] ✗ ✓ 73.3

CorrNet-101 ✗ ✗ 77.1

Table 8: Comparison with the state-of-the-art on Sports1M.

training, CorrNet-101 is still 1.6% and 5.9% better on

Something and Diving48. CorrNet-101 even slightly out-

performs MARS [5] augmented with RGB and optical flow

streams on Something, i.e., 53.3 vs 53.0.

Table 8 provides a comparison with the state of the art

on Sports1M. We only evaluate our best model CorrNet-

101 to limit the training time. All the methods in Table 8

are trained from scratch since Sports1M is already a very

large scale video dataset. Our CorrNet-101 established a

new state of the art, i.e. 77.1%, outperforming the very re-

cent ip-CSN-152 [53] by 1.6%. CorrNet-101 also signifi-

cantly outperforms R(2+1)D [54] by 3.8% which uses both

RGB and optical flow.

To sum up, CorrNet is a new versatile backbone that

outperforms the state-of-the-art on a wide variety of video

datasets. Thanks to the efficient design of the correlation

operator and our improved R(2+1)D backbone, the FLOPs

of CorrNet is also lower than those of previous models, such

as NL I3D [58]. FLOPs can further be significantly reduced

(i.e., 3x decrease) by sampling fewer clips during testing

with only a small drop in accuracy, as shown in the third

last row of Table 6 and 7.

6.4. Visualizing Correlation Filters

In this section, we visualize the filters (i.e., the yellow

tensor in Fig. 1) from the correlation operator to better un-

derstand the model. We choose the CorrNet-101 trained

from scratch on Kinetics from Table 6, and the correla-

tion operator with the highest output resolution, i.e., from

the correlation block after res2. The size of the filter is

L×C×K×K as listed in Table 1, which is 32×64×7×7
in this case. We visualize filters for l = 0, . . . , 7 and

c = 0, . . . , 7 in Figure 4. The color coding indicates the

weights in the learned filters, and the white arrows point to

the directions with largest weights.

Zooming into filters in Figure 4, we observe that each

filter learns a specific motion pattern (i.e., the 7 × 7 grid)

for matching. The filters in each column are sorted in time

and exhibit similar patterns. The white arrows often point

to similar directions for the filters in the same column. This

suggests that our network learns the temporal consistency

+1

-1

0

correlation filters

L

C

Figure 4: Visualization of CorrNet-101 trained on Kinetics.

We visualize the correlation filters, which is a 4D tensor of

shape L×C×K×K. Filters in each column are aligned in

time, and each column represents a different channel dimen-

sion. White arrows point to locations with highest weights,

showing that different filters learn to match pixels moving

in different directions.

of motion, i.e., pixels usually move in the same direction

across frames. Comparing filters in different columns, we

observe that some columns are more active than others,

which indicates that our filters learns which channels are

more discriminative for matching. Filter weights for these

channels can be larger than channels that are less informa-

tive for matching.

7. Conclusions

This paper explores a novel way to learn motion informa-

tion from video data. Unlike previous approaches based on

optical flow or 3D convolution, we propose a learnable cor-

relation operator which establishes frame-to-frame matches

over convolutional feature maps in the different layers of the

network. Differently from the standard 3D convolution, the

correlation operator makes the computation of motion in-

formation explicit. We design the correlation network based

on this novel operator and demonstrate its superior perfor-

mance on various video datasets for action recognition. Po-

tential future work includes the application of the learnable

correlation operator to other tasks, such as action localiza-

tion, optical flow, and geometry matching.
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