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Abstract

We present a novel unsupervised feature representation

learning method, Visual Commonsense Region-based Con-

volutional Neural Network (VC R-CNN), to serve as an im-

proved visual region encoder for high-level tasks such as

captioning and VQA. Given a set of detected object regions

in an image (e.g., using Faster R-CNN), like any other un-

supervised feature learning methods (e.g., word2vec), the

proxy training objective of VC R-CNN is to predict the con-

textual objects of a region. However, they are fundamentally

different: the prediction of VC R-CNN is by using causal

intervention: P (Y |do(X)), while others are by using the

conventional likelihood: P (Y |X). This is also the core

reason why VC R-CNN can learn “sense-making” knowl-

edge like chair can be sat — while not just “common”

co-occurrences such as chair is likely to exist if table is

observed. We extensively apply VC R-CNN features in pre-

vailing models of three popular tasks: Image Captioning,

VQA, and VCR, and observe consistent performance boosts

across them, achieving many new state-of-the-arts1.

1. Introduction

“On the contrary, Watson, you can see everything. You fail,

however, to reason from what you see.”

–Sherlock Holmes, The Adventure of the Blue Carbuncle

Today’s computer vision systems are good at telling us

“what” (e.g., classification [23, 31], segmentation [22, 39])

and “where” (e.g., detection [54, 38], tracking [30, 34]), yet

bad at knowing “why”, e.g., why is it dog? Note that the

“why” here does not merely mean by asking for visual rea-

sons — attributes like furry and four-legged — that are al-

ready well-addressed by machines; beyond, it also means

by asking for high-level commonsense reasons — such as

dog barks [17] — that are still elusive, even for us human

philosophers [56, 21, 58], not to mention for machines.

1https://github.com/Wangt-CN/VC-R-CNN
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Figure 1. Examples of “cognitive errors” in image captioning

and VQA due to the dataset bias. The ratio ./. denotes the co-

occurrence% in ground-truth text (captioning: captions, VQA:

questions). By comparing with the Faster R-CNN [54] based fea-

tures [2], our VC R-CNN features can correct the errors, e.g., more

accurate visual relationships and visual attentions, by being more

commonsense awareness.

It is not hard to spot the “cognitive errors” committed

by machines due to the lack of common sense. As shown

in Figure 1, by using only the visual features, e.g., the pre-

vailing Faster R-CNN [54] based Up-Down [2], machine

usually fails to describe the exact visual relationships (the

captioning example), or, even if the prediction is correct, the

underlying visual attention is not reasonable (the VQA ex-

ample). Previous works blame this for dataset bias without

further justification [24, 44, 53, 7], e.g., the large concept

co-occurrence gap in Figure 1; but here we take a closer

look at it by appreciating the difference between the “vi-

sual” and “commonsense” features. As the “visual” only

tells “what”/“where” about person or leg per se, it is

just a more descriptive symbol than its correspondent En-

glish word; when there is bias, e.g., there are more person

than leg regions co-occur with the word “ski”, the visual

attention is thus more likely to focus on the person region.

On the other hand, if we could use the “commonsense” fea-

tures, the action of “ski” can focuses on the leg region

because of the common sense: we ski with legs.

We are certainly not the first to believe that visual fea-

tures should include more commonsense knowledge, rather
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Figure 2. The illustration of why P (Y |do(X)) learns com-

mon sense while P (Y |X) does not. Thanks to intervention,

P (Y |do(X)) can “borrow” objects from other images and “put”

them into the local image, to perform further justifications if X

truly causes Y regardless of the unobserved confounders, and thus

alleviate the observational bias.

than just visual appearances. There is a trend in our com-

munity towards weakly-supervised learning features from

large-scale vision-language corpus [41, 60, 61]. However,

despite the major challenge in trading off between annota-

tion cost and noisy multimodal pairs, common sense is not

always recorded in text due to the reporting bias [66, 37],

e.g., most may say “people walking on road” but few will

point out “people walking with legs”. In fact, we humans

naturally learn common sense in an unsupervised fashion

by exploring the physical world, and we wish that machines

can also imitate in this way.

A successful example is the unsupervised learning of

word vectors in our sister NLP community [45, 12, 51]:

a word representation X is learned by predicting its con-

textual word Y , i.e., P (Y |X) in a neighborhood window.

However, its counterpart in our own community, such as

learning by predicting surrounding objects or parts [13, 43],

is far from effective in down-stream tasks. The reason is

that the commonsense knowledge, in the form of language

sentences, has already been recorded in discourse; in con-

trast, once an image has been taken, the explicit knowledge

why objects are contextualized will never be observed, so

the true common sense that causes the existence of objects

X and Y might be confounded by the spurious observa-

tional bias, e.g., if keyboard and mouse are more often

observed with table than any other objects, the underly-

ing common sense that keyboard and mouse are parts of

computer will be wrongly attributed to table.

Intrigued, we perform a toy MS-COCO [36] experiment

with ground-truth object labels — by using a mental appara-

tus, intervention, that makes us human [50] — to screen out

the existence of confounders and then eliminate their effect.

We compare the difference between association P (Y |X)
and causal intervention P (Y |do(X)) [49]. Before we for-

mally introduce do in Section 3.1, you can intuitively under-

stand it as the following deliberate experiment illustrated

in Figure 2: 1) “borrow” objects Z from other images, 2)

Y ; X
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Figure 3. The sensible difference between the likelihood before

(i.e.,P (Y |X)) and after intervention (i.e., P (Y |do(X))) in MS-

COCO. The object is represented by the 80 ground-truth class la-

bels. Only 20 pairs are visualized to avoid clutter.

“put” them around X and Y , then 3) test if X still causes

the existence of Y given Z. The “borrow” and “put” is

the spirit of intervention, implying that the chance of Z is

only dependent on us (probably subject to a prior), but in-

dependent on X or Y . By doing so, as shown in Figure 3,

P (sink|do(dryer)) is lower because the most common

restroom context such as towel is forced to be seen as fair

as others. Therefore, by using P (Y |do(X)) as the learning

objective, the bias from the context will be alleviated.

More intrigued, P (person|do(toilet)) is higher. In-

deed, person and toilet co-occur rarely due to privacy.

However, human’s seeing is fundamentally different from

machine’s because our instinct is to seek the causality be-

hind any association [50] — and here comes the common

sense. As opposed to the passive observation P (Y |X):
“How likely I see person if I see toilet”, we keep asking

“Why does seeing toilet eventually cause seeing person?”

by using P (Y |do(X)). Thanks to intervention, we can in-

crease P (Y |do(X)) by “borrowing” non-local context that

might not be even in this image, for the example in Figure 2,

objects usable by person such as chair and handbag

— though less common in the restroom context — will be

still fairly “borrowed” and “put” in the image together with

the common sink. We will revisit this example formally

in Section 3.1.

So far, we are ready to present our unsupervised region

feature learning method: Visual Commonsense R-CNN

(VC R-CNN), as illustrated in Figure 4, which uses Region-

based Convolutional Neural Network (R-CNN) [54] as the

visual backbone, and the causal intervention as the training

objective. Besides its novel learning fashion, we also de-

sign a novel algorithm for the do-operation, which is an ef-

fective approximation for the imaginative intervention (cf.

Section 3.2). The delivery of VC R-CNN is a region fea-

ture extractor for any region proposal, and thus it is fun-

damental and ready-to-use for many high-level vision tasks

such as Image Captioning [68], VQA [3], and VCR [76].

Through extensive experiments in Section 5, VC R-CNN
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Figure 4. The overview of VC R-CNN. Any R-CNN backbone

(e.g., Faster R-CNN [54]) can be used to extract regions of interest

(RoI) on the feature map. Each RoI is then fed into two sibling

branches: a Self Predictor to predict its own class, e.g., xc, and a

Context Predictor to predict its context labels, e.g., yc, with our

Do calculus. The architecture is trained with a multi-task loss.

shows significant and consistent improvements over strong

baselines — the prevailing methods in each task. Unlike

the recent “Bert-like” methods [41, 60] that require huge

GPU computing resource for pre-training features and fine-

tuning tasks, VC R-CNN is light and non-intrusive. By

“light”, we mean that it is just as fast and memory-efficient

as Faster R-CNN [54]; by “non-intrusive”, we mean that

re-writing the task network is not needed, all you need is

numpy.concatenate and then ready to roll.

We apologize humbly to disclaim that VC R-CNN pro-

vides a philosophically correct definition of “visual com-

mon sense”. We only attempt to step towards a computa-

tional definition in two intuitive folds: 1) common: unsu-

pervised learning from the observed objects, and 2) sense-

making: pursuing the causalities hidden in the observed

objects. VC R-CNN not only re-thinks the conventional

likelihood-based learning in our CV community, but also

provides a promising direction — causal inference [50] —

via practical experiments.

2. Related Work

Multimodal Feature Learning. With the recent success

of pre-training language models (LM) [12, 10, 51] in NLP,

several approaches [41, 60, 61, 9] seek weakly-supervised

learning from large, unlabelled multi-modal data to encode

visual-semantic knowledge. However, all these methods

suffer from the reporting bias [66, 37] of language and the

great memory cost for downstream fine-tuning. In contrast,

our VC R-CNN is unsupervised learning only from images

and the learned feature can be simply concatenated to the

original representations.

Un-/Self-supervised Visual Feature Learning [14, 63, 43,

29, 77]. They aim to learn visual features through an elab-

orated proxy task such as denoising autoencoders [6, 67],

context & rotation prediction [13, 18] and data augmenta-

tion [33]. The context prediction is learned from correlation

while image rotation and augmentation can be regarded as

applying the random controlled trial [50], which is active

and non-observational (physical); by contrast, our VC R-

CNN learns from the observational causal inference that is

passive and observational (imaginative).

Visual Common Sense. Previous methods mainly fall into

two folds: 1) learning from images with commonsense

knowledge bases [66, 74, 57, 59, 69, 78] and 2) learning

actions from videos [19]. However, the first one limits the

common sense to the human-annotated knowledge, while

the latter is essentially, again, learning from correlation.

Causality in Vision. There has been a growing amount of

efforts in marrying complementary strengths of deep learn-

ing and causal reasoning [49, 48] and have been explored

in several contexts, including image classification [8, 40],

reinforcement learning [46, 11, 5] and adversarial learn-

ing [28, 26]. Lately, we are aware of some contemporary

works on visual causality such as visual dialog [52], image

captioning [73] and scene graph generation [62]. Different

from their task-specific causal inference, VC R-CNN offers

a generic feature extractor.

3. Sense-making by Intervention

We detail the core technical contribution in VC R-CNN:

causal intervention and its implementation.

3.1. Causal Intervention

Do-expression Figure 5. The causal

intervention P (Y |do(X)).
Nodes denote variables and

arrows denote the direct

causal effects.

As shown in Figure 5 (left), our visual world exists many

confounders z ∈ Z that affects (or causes) either X or Y ,

leading to spurious correlations by only learning from the

likelihood P (Y |X). To see this, by using Bayes rule:

P (Y |X) =
∑

z
P (Y |X, z)P (z|X), (1)

where the confounder Z introduces the observa-

tional bias via P (z|X). For example, as recorded

in Figure 6, when P (z=sink|X=toilet) is large

while P (z=chair|X=toilet) is small, most of

the likelihood sum in Eq. (1) will be credited to

P (Y =person|X=toilet,z=sink), other than

P (Y =person|X=toilet,z=chair), so, the pre-

diction from toilet to person will be eventually

focused on sink rather than toilet itself, e.g., the

learned features of a region toilet are merely its

surrounding sink-like features.

As illustrated in Figure 5 (right), if we intervene X , e.g.,

do(X=toilet), the causal link between Z and X is cut-

off. By applying the Bayes rule on the new graph, we have:
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Figure 6. A case study of the differences between P (z|Toilet
and P (z) from MS-COCO ground-truth object labels. Only 29

labels of Z are shown to avoid clutter.

P (Y |do(X)) =
∑

z
P (Y |X, z)P (z). (2)

Compared to Eq. (1), z is no longer affected by X , and

thus the intervention deliberately forces X to incorporate

every z fairly, subject to its prior P (z), into the predic-

tion of Y . Figure 6 shows the gap between the prior P (z)
and P (z|toilet), z ∈ Z is the set of MS-COCO labels.

We can use this figure to clearly explain the two interest-

ing key results by performing intervention. Please note that

P (Y |X, z) remains the same in both Eq. (1) and Eq. (2),

Please recall Figure 3 for the sensible differ-

ence between P (Y |X) and P (Y |do(X)). First,

P (person|do(toilet))>P (person|toilet) is

probably because the number of classes z such that

P (z|toilet)>P (z) is smaller than those such that of

P (z|toilet) < P (z), i.e., the left grey area is smaller

than the right grey area in Figure 6, making Eq. (1)

smaller than Eq. (2). Second, we can see that z making

P (z) < P (z|X) is mainly from the common restroom

context such as sink, bottle, and toothbrush.

Therefore, by using intervention P (Y |do(X)) as the fea-

ture learning objective, we can adjust between “common”

and “sense-making”, thus alleviate the observational bias.

Figure 7(a) visualizes the features extracted from MS-

COCO images by using the proposed VC R-CNN. Promis-

ingly, compared to P (Y |X) (left), P (Y |do(X)) (right) suc-

cessfully discovers some sensible common sense. For ex-

ample, before intervention, window and leg features in

red box are close due to the street view observational bias,

e.g., people walking on street with window buildings; after

intervention, they are clearly separated. Interestingly, VC

R-CNN leg features are closer to head while window

features are closer to wall. Furthermore, Figure 7(b)

shows the features of ski, snow and leg on same MS-

COCO images via Up-Down (left) and our VC R-CNN

(right). We can see the ski feature of our VC R-CNN is

reasonably closer to leg and snow than Up-Down. In-

terestingly, VC R-CNN merges into sub-clusters (dashed

boxes), implying that the common sense is actually multi-

facet and varies from context to context.

Hair  Shirt  Window  Leg  Table  Man  People

(a) Object features learned by correlation P (Y |X) and interven-

tion P (Y |do(X)) (our VC R-CNN).

leg / legs

ski / skis
snow

leg / legs

snow

ski / skis

Up-Down Feature VC R-CNN Feature

(b) Object features of Up-Down features and our VC R-CNN.

Figure 7. The t-SNE visualization [42] of object features trained

on MS-COCO with Up-Down [2] provided Faster R-CNN labels.

Features out of the label legend are faded out to avoid clutter.

X → Y or Y → X? We want to further clarify that both

two causal directions between X and Y can be meaningful

and indispensable with do calculus. For X → Y , we want to

learn the visual commonsense about X (e.g., toilet) that

causes the existence of Y (e.g., person), and vice versa.

Only objects are confounders? No, some confounders

are unobserved and beyond objects in visual commonsense

learning, e.g., color, attributes, and the nuanced scene con-

texts induced by them; however, in unsupervised learn-

ing, we can only exploit the objects. Fortunately, this

is reasonable: 1) we can consider the objects as the par-

tially observed children of the unobserved confounder [15];

2) we propose the implementation below to approximate

the contexts, e.g., in Figure 8, Stop sign may be the

child of the confounder “transportation”, and Toaster

and Refrigerator may contribute to “kitchen”.

3.2. The Proposed Implementation

To implement the theoretical and imaginative interven-

tion in Eq. (2), we propose the proxy task of predicting

the local context labels of Y ’s RoI. For the confounder

set Z, since we can hardly collect all confounders in real

world, we approximate it to a fixed confounder dictionary

Z = [z1, ..., zN ] in the shape of N × d matrix for practical

use, where N is the category size in dataset (e.g., 80 in MS-

COCO) and d is the feature dimension of RoI. Each entry

zi is the averaged RoI feature of the i-th category samples

in dataset. The feature is pre-trained by Faster R-CNN.

Specifically, given X’s RoI feature x and its contextual

Y ’s RoI whose class label is yc, Eq. (2) can be implemented

as
∑

z P (yc|x, z)P (z). The last layer of the network

for label prediction is the Softmax layer: P (yc|x, z) =
Softmax(fy(x, z)), where fy(·) calculates the logits for N
categories, and the subscript y denotes that f(·) is param-

eterized by Y ’s RoI feature y, motivated by the intuition

that the prediction for yc should be characterized by Y . In
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Figure 8. The visualizations of the top 3 confounders given RoI

feature x (red box) and y (green box), while numbers denote the

attention weight. We can see that our model can recognize reason-

able confounders z, e.g., the common context (yellow boxes).

summary, the implementation is defined as:

P (Y |do(X)) := Ez[Softmax(fy(x, z))]. (3)

Note that Ez requires expensive sampling.

Normalized Weighted Geometric Mean (NWGM). We

apply NWGM [70] to approximate the above expectation.

In a nutshell, NWGM2 effeciently moves the outer expecta-

tion into the Softmax as:

Ez[Softmax(fy(x, z))]
NWGM≈ Softmax(Ez[fy(x, z)]). (4)

In this paper, we use the linear model fy(x, z) = W1x +
W2 · gy(z), where W1,W2 ∈ R

N×d denote the fully con-

nected layer. Then the Eq. (4) can be derived as:

Ez[fy(x, z)] = W1x+W2 · Ez[gy(z)]. (5)

Note that the above approximation is reasonable, because

the effect on Y comes from both X and confounder Z (cf.

the right Figure 5). Next, the key is to compute Ez[gy(z)].
Computing Ez[gy(z)]. We encode gy(·) as the Scaled

Dot-Product Attention [64] to assign weights for different

confounders in dictionary Z with specific y. Specifically,

given the y and confounder dictionary Z, we can have

Ez[gy(z)] =
∑

z[Softmax(qTK/
√
σ) ⊙ Z]P (z), where

q = W3y, K = W4Z
T , P (z) denotes the prior statis-

tic probability and ⊙ is the element-wise product, W3 and

W4 are the embedding matrices that map each vector to the

common subspace for similarity measure, σ denotes the first

dimension of W3,W4 as a constant scaling factor. Figure 8

visualizes the top 3 confounders ranked by the soft attention

weights. Note that they are the cancer in learning “sense-

making” features from P (Y |X).
Neural Causation Coefficient (NCC). Due to the fact that

the causality from the confounders as the category averaged

features are not yet verified, that is, Z may contain collid-

ers (or v-structure) [49] causing spurious correlations when

intervention. To this end, we apply NCC [40] to remove

possible colliders from Z. Given x and z, NCC (x → z)
outputs the relative causality intensity from x to z. Then

we discard the training samples with strong collider causal

intensities above a threshold.

2The detailed derivation about NWGM can be found in the Supp..

4. VC R-CNN

Architecture. Figure 4 illustrates the VC R-CNN archi-

tecture. VC R-CNN takes an image as input and generates

feature map from a CNN backbone (e.g., ResNet101 [23]).

Then, unlike Faster R-CNN [54], we discard the Region

Proposal Network (RPN). The ground-truth bounding boxes

are directly utilized to extract the object level representation

with the RoIAlign layer. Finally, each two RoI features x

and y eventually branch into two sibling predictors: Self

Predictor with a fully connected layer to estimate each ob-

ject class, while Context Predictor with the approximated

do-calculus in Eq. (3) to predict the context label.

Training Objectives. The Self-Predictor outputs a discrete

probability distribution p = (p[1], ..., p[N ]) over N cate-

gories (note that we do not have the “background” class).

The loss can be defined as Lself (p, x
c) = −log(p[xc]),

where xc is the ground-truth class of RoI X . The Context

Predictor loss Lcxt is defined for each two RoI feature vec-

tors. Considering X as the center object while Yi is one of

the K context objects with ground-truth label yci , the loss

is Lcxt(pi, y
c
i ) = −log(pi[y

c
i ]), where pi is calculated by

pi = P (Yi|do(X)) in Eq. (3) and pi = (pi[1], ..., pi[N ])
is the probability over N categories. Finally, the overall

mulit-task loss for each RoI X is:

L (X) = Lself (p, x
c) +

1

K

∑
i
Lcxt(pi, y

c
i ). (6)

Feature Extractor. We consider VC R-CNN as a visual

commonsense feature extractor for any region proposal.

Then the extracted features are directly concatenated to the

original visual feature utilized in any downstream tasks. It

is worth noting that we do NOT recommend early concate-

nations for some models that contain a self-attention archi-

tecture such as AoANet [25]. The reasons are two-fold.

First, as the computation of these models are expensive,

early concatenation significantly slows down the training.

Second, which is more crucial, the self-attention essentially

and implicitly applies P (Y |X), which contradicts to causal

intervention. We will detail this finding in Section 5.4.

5. Experiments

5.1. Datasets

We used the two following datasets for unsupervised

learning VC R-CNN.

MS-COCO Detection [36]. It is a popular benchmark

dataset for classification, detection and segmentation in our

community. It contains 82,783, 40,504 and 40,775 images

for training, validation and testing respectively with 80 an-

notated classes. Since there are 5K images from down-

stream image captioning task which can be also found in

MS-COCO validation split, we removed those in training.

Moreover, recall that our VC R-CNN relies on the context
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Model Feature
MS-COCO Open Images

B4 M R C B4 M R C

U
p
-D

o
w

n

Origin [2] 36.3 27.7 56.9 120.1 36.3 27.7 56.9 120.1

Obj 36.7 27.8 57.5 122.3 36.7 27.8 57.5 122.3

Only VC 34.5 27.1 56.5 115.2 35.1 27.2 56.6 115.7

+Det 37.5 28.0 58.3 125.9 37.4 27.9 58.2 125.7

+Cor 38.1 28.3 58.5 127.5 38.3 28.4 58.8 127.4

+VC 39.5 29.0 59.0 130.5 39.1 28.8 59.0 130.0

A
o
A

N
et

†

Origin3 [25] 38.9 28.9 58.8 128.4 38.9 28.9 58.8 128.4

Obj 38.1 28.4 58.2 126.0 38.1 28.4 58.2 125.9

Only VC 35.8 27.6 56.8 118.1 35.8 27.9 56.7 118.5

+Det 38.8 28.8 58.7 128.0 38.7 28.6 58.7 127.7

+Cor 38.8 28.9 58.7 128.6 38.9 28.8 58.7 128.2

+VC 39.5 29.3 59.3 131.6 39.3 29.1 59.0 131.5

SOTA AoANet [25] 38.9 29.2 58.2 129.8 38.9 29.2 58.2 129.8

Table 1. The image captioning performances of representative two

models with ablative features on Karpathy split. The metrics: B4,

M, R and C denote BLEU@4, METEOR, ROUGE-L and CIDEr-

D respectively. The grey row highlight our features in each model.

AoANet† indicates the AoANet without the refine encoder. Note

that the Origin and Obj share the same results in MS-COCO and

Open Images since they does not contain our new trained features.

prediction task, thus, we discarded images with only one

annotated bounding box.

Open Images [32]. We also used a much larger dataset

called Open Images, a huge collection containing 16M

bounding boxes across 1.9M images, making it the largest

object detection dataset. We chose images with more than

three annotations from the official training set, results in

about 1.07 million images consisting of 500 classes.

5.2. Implementation Details

We trained our VC R-CNN on 4 Nvidia 1080Ti GPUs

with a total batch size of 8 images for 220K iterations (each

mini-batch has 2 images per GPU). The learning rate was

set to 0.0005 which was decreased by 10 at 160K and 200K

iteration. ResNet-101 was set to the image feature extrac-

tion backbone. We used SGD as the optimizer with weight

decay of 0.0001 and momentum of 0.9 following [54]. To

construct the confounder dictionary Z, we first employed

the pre-trained official ResNet-101 model on Faster R-CNN

with ground-truth boxes as the input to extract the RoI fea-

tures for each object. For training on Open Images, we first

trained a vanilla Faster R-CNN model. Then Z is built by

making average on RoIs of the same class and is fixed dur-

ing the whole training stage.

5.3. Comparative Designs

To evaluate the effectiveness of our VC R-CNN feature

(VC), we present three representative vision-and-language

downstream tasks in our experiment. For each task, a

classic model and a state-of-the-art model were both per-

formed for comprehensive comparisons. For each method,

3Since we cannot achieve performances reported in original paper using

the official code even with the help of author, here we show ours as the

baseline. The original results can be found at the bottom row: SOTA.

Model BLEU-4 METEOR ROUGE-L CIDEr-D

Metric c5 c40 c5 c40 c5 c40 c5 c40

Up-Down [2] 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

SGAE [71] 37.8 68.7 28.1 37 58.2 73.1 122.7 125.5

CNM [72] 37.9 68.4 28.1 36.9 58.3 72.9 123.0 125.3

AoANet [25] 37.3 68.1 28.3 37.2 57.9 72.8 124.0 126.2

Up-Down+VC 37.8 69.1 28.5 37.6 58.2 73.3 124.1 126.2

AoANet†+VC 38.4 69.9 28.8 38.0 58.6 73.8 125.5 128.1

Table 2. The performances of various single models on the online

MS-COCO test server. Up-Down+VC and AoANet†+VC are the

short for concatenated on [2] in Up-Down and AoANet†.

Model Feature CHs Chi Model Feature CHs Chi

U
p
-D

o
w

n Obj 12.8 8.1

A
o
A

N
et

† Obj 12.6 8.0

+Det 12.0 7.5 +Det 9.5 6.2

+Cor 11.2 7.1 +Cor 10.4 6.5

+VC 10.3 6.5 +VC 8.8 5.5

Table 3. Hallucination analysis [55] of various models on MS-

COCO Karpathy test split to measure object hallucination for im-

age captioning. The lower, the better.

we used the following five ablative feature settings: 1) Obj:

the features based on Faster R-CNN, we adopted the popu-

lar used bottom-up feature [2]; 2) Only VC: pure VC fea-

tures; 3) +Det: the features from training R-CNN with sin-

gle self detection branch without Context Predictor. “+” de-

notes the extracted features are concatenated with the orig-

inal feature, e.g., bottom-up feature; 4) +Cor: the features

from training R-CNN by predicting all context labels (i.e.,

correlation) without the intervention; 5) +VC: our full fea-

ture with the proposed implemented intervention, concate-

nated to the original feature. For fair comparisons, we re-

tained all the settings and random seeds in the downstream

task models. Moreover, since some downstream models

may have different settings in the original papers, we also

quoted their results for clear comparison. For each down-

stream task, we detail the problem settings, dataset and eval-

uation metrics as below.

Image Captioning. Image captioning aims to generate tex-

tual description of an image. We trained and evaluated

on the most popular “Karpathy” split built on MS-COCO

dataset, where 5K images for validation, 5K for testing,

and the rest for training. The sentences were tokenized and

changed to lowercase. Words appearing less than 5 times

were removed and each caption was trimmed to a maximum

of 16 words. Five standard metrics were applied for evaluat-

ing the performances of the testing models: CIDEr-D [65],

BLEU [47], METROT [4], ROUGE [35] and SPICE [1].

Visual Question Answering (VQA). The VQA task re-

quires answering natural language questions according to

the images. We evaluated the VQA model on VQA2.0 [20].

Compared with VQA1.0 [3], VQA2.0 has more question-

image pairs for training (443,757) and validation (214,354),

and all the question-answer pairs are balanced. Before train-

ing, we performed standard text pre-processing. Questions

were trimed to a maximum of 14 words and candidate an-

swer set was restricted to answers appearing more than 8
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Model Feature
MS-COCO Open Images

Y/N Num Other All Y/N Num Other All

U
p
-D

o
w

n Obj [2] 80.3 42.8 55.8 63.2 80.3 42.8 55.8 63.2

Only VC 77.8 37.9 51.6 59.8 77.9 38.1 51.1 59.9

+Det 81.8 44.5 56.8 64.5 81.9 44.7 56.5 64.6

+Cor 81.5 44.6 57.1 64.7 81.3 44.7 57.0 64.6

+VC 82.5 46.0 57.6 65.4 82.8 45.7 57.4 65.4

M
C

A
N

Obj [75] 84.8 49.4 58.4 67.1 84.8 49.4 58.4 67.1

Only VC 80.8 40.7 48.9 60.1 81.0 40.8 49.1 60.3

+Det 84.8 49.2 58.8 67.2 84.9 49.3 58.4 67.2

+Cor 85.0 49.2 58.9 67.4 85.1 49.1 58.6 67.3

+VC 85.2 49.4 59.1 67.7 85.1 49.1 58.9 67.5

SOTA MCAN 84.8 49.4 58.4 67.1 84.8 49.4 58.4 67.1

Table 4. Accuracy (%) of various ablative features on VQA2.0 val-

idation set. Since the Obj achieves almost equal results with that

in the original paper, here we just merge the two rows.

Model
test-dev test-std

Y/N Num Other All All

Up-Down [2] 81.82 44.21 56.05 65.32 65.67

BAN [27] 85.46 50.66 60.50 69.66 -

DFAF [16] 86.09 53.32 60.49 70.22 70.34

MCAN [75] 86.82 54.04 60.52 70.63 70.90

UP-Down+VC 84.26 48.50 58.86 68.15 68.45

MCAN+VC 87.41 53.28 61.44 71.21 71.49

Table 5. Single model accuracies (%) on VQA2.0 test-dev and

test set, where Up-Down+VC and MCAN+VC are the short for

Object-VC R-CNN feature in Up-Down and MCAN.

times. The evaluation metrics consist of three pre-type ac-

curacies (i.e., “Yes/No”, “Number” and “Other”).

Visual Commonsense Reasoning (VCR). In VCR, given

a challenging question about an image, machines need to

present two sub-tasks: answer correctly (Q→A) and pro-

vide a rationale justifying its answer (QA→R). The VCR

dataset [76] contains over 212K (training), 26K (validation)

and 25K (testing) derived from 110K movie scenes. The

model was evaluated in terms of 4-choice accuracy and the

random guess accuracy on each sub-task is 25%.

5.4. Results and Analysis

Results on Image Captioning. We compared our VC rep-

resentation with ablative features on two representative ap-

proaches: Up-Down [2] and AoANet [25]. For Up-Down

model shown in Table 1, we can observe that with our +VC

trained on MS-COCO, the model can even outperform cur-

rent SOTA method AoANet over most of the metrics. How-

ever, only utilizing the pure VC feature (i.e., Only VC)

would hurt the model performance. The reason can be ob-

vious. Even for human it is insufficient to merely know the

common sense that “apple is edible” for specific tasks, we

also need visual features containing objects and attributes

(e.g., “what color is the apple”) which are encoded by pre-

vious representations. When comparing +VC with the +Det

and +Cor without intervention, results also show absolute

gains over all metrics, which demonstrates the effectiveness

of our proposed causal intervention in representation learn-

ing. AoANet [25] proposed an “Attention on Attention”

module on feature encoder and caption decoder for refining

Model Feature
MS-COCO Open Images

Q→ A QA→ R Q→ A QA→ R

R
2
C

Origin [76] 63.8 67.2 63.8 67.2

Obj 65.9 68.2 65.9 68.2

Only VC 64.1 66.7 64.3 66.8

+Det 66.1 68.5 66.1 68.3

+Cor 66.5 68.9 66.6 69.1

+VC 67.4 69.5 67.2 69.9

V
iL

B
E

R
T
† Obj3 69.1 69.6 69.1 69.6

Only VC 68.8 70.1 68.9 70.1

+Det 69.2 69.8 69.1 69.6

+Cor 69.3 69.9 69.2 70.0

+VC 69.5 70.2 69.5 70.3

SOTA ViLBERT† [41] 69.3 71.0 69.3 71.0

Table 6. Experimental results on VCR with various visual features.

ViLBERT† [41] denotes ViLBERT without pretraining process.

with the self-attention mechanism. In our experiment, we

discarded the AoA refining encoder (i.e., AoANet†) rather

than using full AoANet since the self-attentive operation

on feature can be viewed as an indiscriminate correlation

against our do-expression. From Table 1 we can observe

that our +VC with AoANet† achieves a new SOTA perfor-

mance. We also evaluated our feature on the online COCO

test server in Table 2. We can find our model also achieves

the best single-model scores across all metrics outperform-

ing previous methods significantly.

Moreover, since the existing metrics fall short to the

dataset bias, we also applied a new metric CHAIR [55] to

measure the object hallucination (e.g., “hallucinate” objects

not in image). The lower is better. As shown in Table 3, we

can see that our VC feature performs the best on both stan-

dard and CHAIR metrics, thanks to our proposed interven-

tion that can encode the visual commonsense knowledge.

Results on VQA. In Table 4, we applied our VC feature on

classical Up-Down [2] and recent state-of-the-art method

MCAN [75]. From the results, our proposed +VC outper-

forms all the other ablative representations on three answer

types, achieving the state-of-the-art performance. However,

compared to the image captioning, the gains on VQA with

our VC feature are less significant. The potential reason lies

in the limited ability of the current question understanding,

which cannot be resolved by “visual” common sense. Ta-

ble 5 reports the single model performance of various mod-

els on both test-dev and test-standard sets. Although our VC

feature is limited by the question understanding, we still re-

ceive the absolute gains by just feature concatenation com-

pared to previous methods with complicated module stack,

which only achieves a slight improvement.

Results on VCR. We present two representative methods

R2C [76] and ViLBERT [41] in this emerging task on the

validation set. Note that as the R2C applies the ResNet

backbone for residual feature extraction, here for fair com-

parison we switched it to the uniform bottom-up features.

Moreover, for ViLBERT, since our VC features were not

involved in the pretraining process on Conceptual Captions,

here we utilized the ViLBERT† [41] rather than the full ViL-

BERT model. From the comparison with ablative visual
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Ski:0.21

A man standing on skis 

on a snow covered slope.

A man standing on 

skis in the snow.

Ski pole:0.20

Table:0.19

Plate:0.39

A plate of food with a bowl 

of pasta.

A plate of food on the 

table.

A bowl of soup sitting 

on the table.

A pot of soup with 

broccoli and a spoon.

Pot:0.29
Soup:0.22

Hotdog:0.28

Collar:0.32

Q: Is the girl excited to have a hotdog?

A:Yes A:Yes

Q: Is his collar buttoned?

A:Yes A:Yes

Tie:0.29

Q: What is the man watching?

A:tvA:wii

Controller:0.37

Man:0.4

Q: How many elephants are there?

A:5A:7

Elephants:0.57

Elephant:0.36

Q: What is [person1] thinking right now? A: [person1] is very confused.

Mouth:0.11

Man:0.15

R: His expression is puzzled and he seems to be looking for answers.

Q: What is [person4] doing? A: She is smoking some sort of pipe.

R: The way the pipe is to her lips indicates she is using it.

Women:0.12

Hand:0.16

Q: Where are [person8] and [person2] ? A: They are at wedding.

R: They are surrounded by tables and wedding guests.

Man:0.02

Man:0.06

Person:0.34

A group of benches 

sitting on a bench.

A book sitting on top 

of a wooden bench.

Sidewalk:0.11

Bench:0.13

Figure 9. Qualitative examples of utilizing our VC feature (right) compared with using Obj feature (left). Boxes in images denote the

attention region labeled with name and attention weight. Three rows represent Image Captioning, VQA and VCR task respectively.

Component Setting CIDEr-D Accuracy

Expectation Ez[z] 128.9 67.2

NCC w/o NCC 131.5 67.7

Dictionary

Random Dictionary 127.5 66.9

Context Dictionary Unstable Training

Fixed Dictionary 131.6 67.7

Table 7. Ablation studies of our proposed intervention trained on

MS-COCO and evaluated with CIDEr-D (captioning) and Accu-

racy (VQA) on Karpathy testset and VQA2.0 validation set.

representations in Table 6, our +VC feature still shows the

superior performances similar to the above two tasks.

Results on Open Images. To evaluate the transfer ability

and flexibility of the learned visual commonsense feature,

we also performed our proposed VC R-CNN on a large

image detection collection. The results can be referred to

Table 1&4&6. We can see that the performances are ex-

tremely close to the VC feature trained on MS-COCO, indi-

cating the stability of our learned semantically meaningful

representation. Moreover, while performing VCR with the

dataset of movie clip, which has quite diverse distributions

compared to the captioning and VQA built on MS-COCO,

our VC R-CNN trained on Open Images achieves the rea-

sonable better results.

5.5. Qualitative Analysis

We visualize several examples with our VC feature and

previous Up-Down feature [2] for each task in Figure 9.

Any other settings except for feature kept the same. We can

observe that with our VC, models can choose more precise,

reasonable attention area and explicable better performance.

5.6. Ablation Study

To evaluate our proposed intervention implementation,

we carry out different settings for each module in our VC

R-CNN and report results on captioning and VQA in Ta-

ble 7. Ez[z] denotes utilizing statistical P (z) by counting

from the dataset without attention. Random Dictionary de-

notes initializing the confounder dictionary by randomiza-

tion rather than the average RoI feature, while the Context

Dictionary encodes contexts in each image as a dynamic

dictionary set. The default setting is the fixed confounder

dictionary with our attention module and NCC, which gives

the best results. We can observe that random dictionary and

Ez[z] would hurt the performance, which demonstrates the

effectiveness of our implementation. Moreover, we can find

that NCC refining just brings a little difference to the down-

stream task performance. The potential reason is that NCC

just provides a qualitative prediction and may have devia-

tion when applying on real-world visual feature. We will

continue exploring NCC in the future work.

6. Conclusions

We presented a novel unsupervised feature representa-

tion learning method called VC R-CNN that can be based

on any R-CNN framework, supporting a variety of high-

level tasks by using only feature concatenation. The key

novelty of VC R-CNN is that the learning objective is based

on causal intervention, which is fundamentally different

from the conventional likelihood. Extensive experiments

on benchmarks showed impressive performance boosts on

almost all the strong baselines and metrics. In future, we

intend to study the potential of our VC R-CNN applied in

other modalities such as video and 3D point cloud.
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