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Abstract

Graph matching (GM), as a longstanding problem in

computer vision and pattern recognition, still suffers from

numerous cluttered outliers in practical applications. To

address this issue, we present the zero-assignment con-

straint (ZAC) for approaching the graph matching prob-

lem in the presence of outliers. The underlying idea is to

suppress the matchings of outliers by assigning zero-valued

vectors to the potential outliers in the obtained optimal

correspondence matrix. We provide elaborate theoretical

analysis to the problem, i.e., GM with ZAC, and figure out

that the GM problem with and without outliers are intrinsi-

cally different, which enables us to put forward a sufficient

condition to construct valid and reasonable objective func-

tion. Consequently, we design an efficient outlier-robust al-

gorithm to significantly reduce the incorrect or redundant

matchings caused by numerous outliers. Extensive experi-

ments demonstrate that our method can achieve the state-

of-the-art performance in terms of accuracy and efficiency,

especially in the presence of numerous outliers.

1. Introduction

In many real applications of computer vision and pat-

tern recognition, the feature sets of interest represented as

graphs are usually cluttered with numerous outliers [3, 42,

38, 30], which often reduce the accuracy of GM. Although

recent works on GM [7, 11, 21, 22, 34, 44] can achieve sat-

isfactory results for simple graphs that consist of only inliers

or a few outliers, they still lack of ability to tolerate numer-

ous outliers arising in complicated graphs. Empirically, the

inliers in one graph are nodes that have highly-similar cor-

responding nodes in the other graph, while the outliers do

not. Based on the empirical criterion, the aforementioned

methods hope to match inliers to inliers correctly and force

outliers to only match outliers. However, due to the com-
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(a) Left: incorrect/redundant matchings (lines in red) caused by outliers.

Right: generated (yellow) v.s. the ideal (red) correspondence matrix.
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(b) Left: our graph matching result. Right: our correspondence matrix

with zero-assignment constraint of outliers.

Figure 1: ZAC for graph matching in the presence of out-

liers. To suppress the undesired matchings of outliers in

(a), we aim to assign the potential outliers with zero-valued

vectors in our optimal correspondence matrix in (b), based

on which we can both establish a theoretical foundation

for graph matching with outliers and put forward an outlier

identification approach that can significantly reduce incor-

rect or redundant matches caused by outliers in practice.

plicated mutual relationships between inliers and outliers,

they usually result in incorrect matchings between inliers or

redundant matchings between outliers (e.g., Fig. 1 (a)).

In this paper, we are motivated to address this challenge

by introducing the zero-assignment constraint for outliers:

unlike the previous methods that hope to match outliers only

to outliers, it’s more reasonable to suppress the matchings

of outliers. Equivalently, we try to assign each potential

outlier with a zero-valued vector (i.e., the zero-assignment

constraint for outliers) in the solution of our objective func-

tion (e.g., the correspondence matrix in Fig. 1 (b)).

To make our idea more reasonable and practical, we

try our efforts in two aspects. First, based on the zero-

assignment constraint, we establish the theoretical bases in-

cluding the formulation of inliers and outliers and the quan-

titative distinguishability between them, and then find out a
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sufficient condition such that the proposed objective func-

tion can only achieve its minimum at the ideal matching.

Moreover, it also helps to demonstrate the intrinsic differ-

ences between GM with and without numerous outliers.

Second, we propose an efficient GM algorithm consisting of

fast optimization and explicit outlier identification. The op-

timization algorithm is modified based on the Frank-Wolfe

method [18] combined with the k-cardinality linear assign-

ment problem [10] and has low space and time complexity.

And then, the zero-assignment vectors in the optimal so-

lution of our objective function can be used to assign the

nodes in two graphs with joint probabilities, which measure

whether the nodes are inliers or outliers and help to identify

and remove the potential outliers in practice.

Our main contributions are summarized as follows:

- We establish the theoretical foundations for GM prob-

lem with outliers based on the zero-assignment con-

straint and elaborate quantitative analyses of inliers

and outliers, on which bases we can theoretically put

forward a sufficient condition to guide us how to con-

struct valid and reasonable objective function.

- We present an efficient GM algorithm with low space

and time complexity by avoiding using the costly affin-

ity matrix and designing fast optimization algorithm.

Combined with our outlier identification approach, we

can achieve state-of-the-art performance for compli-

cated graphs cluttered with numerous outliers.

2. Related Work

Known to be NP-complete [12, 16, 20], the GM problem

can only be solved in polynomial time with approximate so-

lutions. Over the past decades, a myriad of literature have

been extensively studied (see [9, 37] for surveys), we dis-

cuss the most related works in the following aspects.

Robustness to outliers. The dual decomposition ap-

proach [31] constructed a penalty potential in the objective

function for unmatched features. The max-pooling-based

method [8] was proposed to avoid the adverse effect of false

matches of outliers. A domain adaptation-based outlier-

removal strategy proposed in [34] aimed to remove outliers

as a pre-processing step. However, they directly rely on em-

pirical criterions of outliers and can not deal with compli-

cated situations. In our work, we both explain theoretical

analyses of outliers and present an efficient outlier iden-

tification approach, by which we can achieve much better

matching accuracy in complicated applications.

Interpretability for graph matching. The probability-

based works [41, 11] formulated GM from the maximum-

likelihood estimation perspective. A random walk view [7]

was introduced by simulating random walks with re-

weighting jumps for GM. Some machine learning-based

works [6, 25] went further to adjust attributes of graphs or

improve the affinity matrix K (in Eq. (1)) based on priors

learned from real data. A functional representation frame-

work [34] was proposed to give geometric insights for both

general and Euclidean GM. The pioneering works [39, 35]

presented an end-to-end deep learning framework for GM.

Our work aims to establish the mathematical foundation for

GM with outliers and enhance its theoretical rationality.

Computational efficiency. Some existing works aimed

to reduce the costly space complexity caused by K in

Eq. (1). A typical work was the factorized graph match-

ing [44], which factorized K as Kronecker product of sev-

eral smaller matrices. However, it is highly time-consuming

in practice due to the verbose iterations during optimization.

Some methods like the graduated assignment method [13]

and the integer-projected fixed point algorithm [24] pro-

posed specific fast approximations while ended with unsat-

isfactory matching results. As comparison, our method has

low space and time complexity and achieves better trade-off

between time consumption and matching accuracy.

3. Graph matching with outliers

This section revisits the general formulation of GM and

presents the theoretical foundation for GM with outliers.

3.1. General formulation of graph matching

Given two attributed graphs G = {V , E},G′ = {V ′, E ′},

where V = {Vi}
m
i=1 and V ′ = {V ′

a}
n
a=1 represent the node

sets (assume m ≤ n), E ⊆ V × V and E ′ ⊆ V ′ × V ′

denote the edge sets. Generally, for each graph, e.g., G,

the edges are represented by a (weighted) adjacency matrix

E ∈ R
m×m, where Eij > 0 if there is an edge (Vi, Vj), and

Eij = 0 otherwise. In practice, graph G is usually associated

with node attribute vi ∈ R
dv of node Vi and edge attribute

Aij ∈ R
de of edge Eij ; the same to graph G′.

Solving GM problem is to find an optimal binary cor-

respondence P ∈ {0, 1}
m×n

, where Pia = 1 when the

nodes Vi ∈ V and V ′
a ∈ V ′ are matched, and Pia = 0 oth-

erwise. To find such an optimal correspondence, GM meth-

ods generally minimize or maximize an objective function

that measures the mutual (dis-)similarity between graphs.
As a typical Quadratic Assignment Problem (QAP), GM

formulated as Lawler’s QAP [20, 23, 24, 7, 44] has been
favored to maximize the sum of node and edge similarities

max
P∈P

P
T
vKPv =

∑

i,a

PiaKia;ia +

∑

(i,j),(a,b)

PiaKij;abPjb, (1)

where Pv is the columnwise vectorized replica of P. The

affinity matrix K ∈ R
mn×mn has diagonal element Kia;ia

measuring the node affinity calculated with node attributes

(vi,v
′
a) and non-diagonal element Kia;jb measuring the

edge affinity calculated with edge attributes (Aij ,Bab).
Another famous formulation is Koopmans-Beckmann’s

QAP [16, 32, 1, 40], which maximizes a trace-form objec-
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tive function measuring the node and edge similarities

max
P∈P

tr(UT
P) + λtr(EPE ′

P
T), (2)

where {Uia} ∈ R
m×n measures the node similarity be-

tween Vi and V ′
a and λ ≥ 0 is a weight.

Generally, GM methods impose the one-to-(at most)-one

constraint, i.e., the feasible field P can be defined as

P ,

{

P ∈ {0, 1}
m×n

;P1 = 1,PT
1 ≤ 1

}

, (3)

where 1 is a columnwise unit vector. In fact, Eq. (3) means

that both inliers and outliers are equally treated to find their

correspondences. Some methods like [6, 31] replace P1 =
1 by P1 ≤ 1 to relax the one-to-(at most)-one constraint.

However, they still lack of intrinsic theoretical analyses for

the numerous outliers arising in both graphs.

3.2. Zeroassignment constraint for outliers

As stated previously in Sec. 1, we aim to only match

inliers to inliers and suppress the matchings of outliers. To

achieve our goal, we present the zero-assignment constraint

for outliers in this section. Denoting the number of inliers in

G′ and G as k (0 < k ≤ m ≤ n), for better understanding,

we first introduce some basic definitions in the following.

Definition 3.1. Denote A = {1, 2, ...,m} as the index set

of nodes in graph G. The index sets of inliers and outliers

of G are respectively defined as,

AI , {i ∈ {1, 2, ...,m};Vi is an inlier of G}, (4)

AO , {o ∈ {1, 2, ...,m};Vo is an outlier of G}. (5)

The index sets B = {1, 2, ..., n}, BI and BO are similarly

defined for graph G′. Obviously, we have |AI | = |BI | = k.

The inliers and outliers sets are complementary and disjoint.

Proposition 1.

AI ∪ AO = A , AI ∩ AO = ∅, (6)

BI ∪ BO = B, BI ∩ BO = ∅. (7)

where ∅ denotes the empty set.

Next, we derive the zero-assignment constraint for out-

liers. Mathematically, the matching between G and G′ con-

sisting of inliers and outliers can be defined by a partial per-

mutation τ and a partial permutation matrix P as follows.

Definition 3.2. The partial permutation τ between G and

G′ is defined as τ : A → B,

i 7→ a = τ(i) ∈ BI if i ∈ AI ; a = ∅ if i ∈ AO. (8)

And the inverse of τ can also be defined as τ−1 : B → A ,

a 7→ i = τ−1(a) ∈ AI if a ∈ BI ; i = ∅ if a ∈ BO. (9)

Given τ , the matching (or correspondence) between G
and G′ can be equivalently expressed by the partial permu-

tation matrix P ∈ {0, 1}m×n compatible with τ as

Definition 3.3. For P ∈ {0, 1}m×n compatible with τ ,

- One-to-one constraint for inliers: ∀i ∈ AI ,

Pi,a=τ(i) = 1,Pi,a 6=τ(i) = 0, a ∈ BI . (10)

- Zero-assignment constraint for outliers:

Pi,: ≡ 0
T, ∀i ∈ AO and P:,a ≡ 0, ∀a ∈ BO. (11)

where Pi,: (or P:,a) is a row (or column) vector of P, and

0 is a columnwise zero vector.

By this means, the feasible filed Pk can be redefined as

{

P ∈ {0, 1}m×n;P1 ≤ 1,PT
1 ≤ 1,1T

P1 = k
}

. (12)

The explicit equation constraint 1T
P1 = k will be used

to both present a proof for the rationality of our proposed

objective function in Sec. 3.4 and design an efficient opti-

mization algorithm in Sec. 4.1.

3.3. Consistency and distinguishability

Empirically, the GM methods assume that the unary and

pairwise attributes of inlier i ∈ AI and edge (i, j) ∈ AI ×
AI are consistent with those of the ideal matchings a ∈ BI

and (a, b) ∈ BI×BI , while the outliers are on the contrary.

Based on this empirical criterion, we furthermore elaborate

a quantitative consistency of inliers and distinguishability

between inliers and outiers, on which bases the rationality

of our objective function can be guaranteed.

Denote {Dia}ia as the dissimilarity between nodes Vi ∈
V and V ′

a ∈ V ′, {Aij}ij and {Bab}ab are the edge attributes

of edges (Vi, Vj) ∈ E and (V ′
a, V

′
b ) ∈ E ′. Meanwhile, de-

note {τ∗,P∗ ∈ Pk} as the ideal matching between G and

G′. Consequently, beyond the empirical criterion, we can

induce the consistency of inliers and distinguishability be-

tween inliers and outliers by {τ∗,P∗ ∈ Pk} as follows.

Proposition 2. Consistency between inliers.

- Unary consistency: ∀i ∈ AI , ∀a ∈ BI ,

Dia′ = min{Dia, a ∈ B} ⇔ a′ = τ∗(i), (13)

Di′a = min{Dia, i ∈ A } ⇔ i′ = τ∗−1(a). (14)

- Pairwise consistency: ∀i, j ∈ AI , ∀a, b ∈ BI ,

||Aij −Ba′b′ || = min{||Aij −Bab||, a, b ∈ B}

⇔ a′ = τ∗(i), b′ = τ∗(j), (15)

||Bab −Ai′j′ || = min{||Bab −Aij ||, i, j ∈ A }

⇔ i′ = τ∗−1(a), j′ = τ∗−1(b). (16)
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Proposition 3. Distinguishability between inliers and out-

liers.

- Unary distinguishability: ∀(i, a) ∈ AO × B or A ×
BO,

Dia ≥ max{Di′τ∗(i′), i
′ ∈ AI}. (17)

- Pairwise distinguishability: ∀(i, a), (j, b) ∈ AO × B

or A × BO,

||Aij −Bab|| ≥ max{||Ai′j′ −Bτ∗(i′)τ∗(j′)||

, i′, j′ ∈ AI}, (18)

||Bab −Aij || ≥ max{||Ba′b′ −Aτ∗−1(a′)τ∗−1(b′)||

, a′, b′ ∈ BI}. (19)

where || · || is an Euclidean norm.

By this means, we present a quantitative mathematical

criteria of the local characteristics and mutual relationships

of inliers and outliers, which is more concise and clear than

empirical criteria. More importantly, the propositions above

inspires us how to construct a reasonable objective function

and find out a sufficient condition for proving the rationality.

3.4. Objective function with sufficient condition

A reasonable objective function F (P) should satisfy two

main properties: (1) preserve the unary and pairwise consis-

tencies between the matched nodes (or edges) of two graphs

and (2) achieve its optimum only at the ideal matching P
∗.

Overall, our objective function is defined as

min
P∈Pk

F (P) = λ1Fu(P) + λ2Fp(P), (20)

where Fu(P) and Fp(P) are the unary and pairwise poten-

tials. Precisely, we set Fu(P) =
∑

ia

DiaPia and

Fp(P) , Fp1
(P) + Fp2

(P) (21)

,
∑

ij

Eij ||Aij −
∑

a,b

PiaBabPjb||
2

+
∑

ab

E ′
ab||Bab −

∑

i,j

PiaAijPjb||
2 (22)

, ||A−PBP
T||2E + ||B−P

T
AP||2E′ . (23)

The property (1) is guaranteed since the minimization

of F (P) tends to find the minimizer P̂ that matches the

nodes and edges in G (or G′) to the mostly-consistent nodes

and edges in G′ (or G). Next, we should make sure that it

also satisfies the property (2). However, due to the cluttered

outliers arising in both graphs, it may not hold for any ar-

bitrarily given weighted adjacency matrices E , E ′ or edge

attributes A,B. Furthermore, we put forward a sufficient

condition to support it.

Proposition 4. Sufficient condition for objective function.

Assume that the weighted adjacency matrices E , E ′ and

edge attributes A,B satisfy that

Ei∈AI ,j∈AI
≥ Ei∈A ,j∈AO

, Ei∈AO,j∈A , (24)

||Ai∈AI ,j∈AI
|| ≥ ||Ai∈A ,j∈AO

||, ||Ai∈AO,j∈A ||, (25)

and the same to E ′ and B. Then, it’s sufficient to prove that

∀P ∈ Pk, F (P) ≥ F (P∗), (26)

the equation holds if and only if P = P
∗.

Proof. Due to the over-length of the entire proof, we give

the details in our supplementary materials, which also

demonstrate the intrinsic differences between GM on sim-

ple graphs and on complicated graphs.

Note that, the Eq. (24) and (25) tell us how to calculate

proper {Eij}, {Aij} (or {E ′
ab}, {Bab}): we should com-

pute Eij and Aij to measure the similarities between the two

end-nodes in edge (i, j) such that edges linked by two in-

liers have higher similarities than the edges linked by inlier-

outlier or outlier-outlier. It will be followed and validated

in the experiments section Sec. 5.

4. Outlier-robust graph matching algorithm

In this section, we propose an efficient algorithm to solve

Eq. (20) and then design an outlier identification approach.

4.1. Optimization algorithm

Our optimization algorithm is based on the Frank-Wolfe

method [18, 19], which is widely used for convex or non-

convex optimization and achieve at least sub-linear con-

vergence rate. Since it is a continuous line-search-based

method, we should relax the discrete Pk into the continu-

ous P̂k by relaxing Pia ∈ {0, 1} into Pia ∈ [0, 1]. Given

F (P) is differentiable and P̂k is convex, the Frank-Wolfe

method iterates the following steps till it converges:

P̃
(t+1) ∈ argmin

P∈P̂k

, 〈∇F (P(t)),P〉, (27)

P
(t+1) = P

(t) + α(t)(P̃(t+1) −P
(t)), (28)

where ∇F (P(t)) is the gradient of F (P) at P(t) and α(t) is

the step size obtained by exact or inexact line search [14].

Gradient computation. The gradient ∇F (P) can be

efficiently calculated by matrix operations as follows,

W1 , 4||PBP
T −A|| ⊗ sign(PBP

T −A)⊗ E , (29)

W2 , 4||PT
AP−B|| ⊗ sign(PT

AP−B)⊗ E ′, (30)

∇F (P) = λ1D+ λ2[W1PB
T +APW

T
2 ], (31)

where ⊗ is the pointwise multiplication and sign(·) is the

sign function.
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The k-cardinality LAP. Eq. (27) plays a key role of

the optimization. It is a linear programming (LP) prob-

lem that can be solved by LP algorithms like interior point

method [29]. However, such methods have costly time com-

plexity O(m3n3/ln(mn)) [2]. Fortunately, one can prove

that P̃(t+1) is an extreme point [4] of P̂k, thus, P̃(t+1) ∈
Pk. Therefore, Eq. (27) boils down to a k-cardinality lin-

ear assignment problem (kLAP) [10]. We can adopt the

approach [33] by which the kLAP is transformed into a

standard LAP that can be efficiently solved by the Hun-

garian [17] or LAPJV [15] algorithm with much less time

complexity O(n3).
Regularization. Someone may doubt that the explicit

equation constraint 1T
P1 = k in the feasible filed is too

strong. We can replace it with an implicit regularization

term (1T
P1− k)2 and obtain a new objective function as

min
P

Fr(P, k) = F (P) + λ0(1
T
P1− k)2. (32)

We set λ0 = 1 is this paper. To solve Eq. (32), we can adopt

the alternating optimization strategy: alternatively find the

minimizer P̂ of Eq. (32) by Frank-Wolfe method with fixed

k and then update k = 1
T
P̂1. Note that, in this case,

Eq. (27) is solved by LP algorithms (interior point method

in this paper) rather than the kLAP solvers since the con-

straint 1T
P1 = k dose not hold during solving Eq. (27).

Computational complexity. Since we do not use the

affinity matrix K, the space complexity is only O(n2). In

optimization, each iteration takes time complexity O(n3)
to solve the k-LAP or O(m3n3/ln(mn)) to solve the LP,

and O(m2n+mn2) to compute the values and gradients of

objective function. We are advised to adopt the kLAP-based

approach based on the experimental analyses in Sec. 5.

4.2. Outlier identification and removal

After minimizing F (P) or Fr(P, k), we obtain an opti-

mal correspondence matrix P̂ that has two advantages ben-

eficial to outlier identification: (1) P̂ optimally preserves

the structural alignments between the two matched graphs.

(2) The nearly zero-valued vectors P̂i,: ≈ 0
T or P̂:,a ≈ 0

indicate that the node Vi ∈ G or V ′
a ∈ G′ can be identified

as outliers, as an example shown in Fig. 2 (a).

An outlier removal approach is proposed based on this

outlier identification criterion. Given P̂, we first calculate

two vectors as P̂1 = {P̂i,:1}
m
i=1 and 1

T
P̂ = {1T

P̂:,a}
n
a=1,

whose components with smaller values are more likely to be

outliers. Then, P̂1 and 1
T
P̂ form the 2-dimensional coor-

dinates of coupled nodes {(Vi, V
′
a)}i,a in the joint probabil-

ity space, where the inliers and outliers can be significantly

separated and clustered (e.g., by k-means) into two classes,

see an example in Fig. 2 (b). Assume that m′, n′ nodes

of the two graphs are clustered as inliers by the clustering

step, if m′ < k or n′ < k, we pick out k − m′ or k − n′
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Figure 2: An example of the outlier identification and re-

moval w.r.t. Fig. 1 (b). Left: the last row and column show

the sums of column and row vectors of the optimal corre-

spondence matrix P̂. Right: the inliers (green dots) and

outliers (red signs) can be significantly separated and clus-

tered into two classes. Note that, there is one outlier in each

graph clustered as inlier due to its high similarity with the

other inliers (see the matching result in Fig. 1 (b)).

nodes left with higher component values and put them back

into inliers. If m′ > k or n′ > k, the nodes with compo-

nent values less than 0.5 will also be chosen as outliers. We

iteratively execute this outlier removal procedure and then

refine the inliers of two graphs till the enumerations of in-

liers keep unchanged. At last, the optimal solution solved

w.r.t the refined graphs is our final matching result.

5. Experimental analysis

In this section, we evaluate and compare our meth-

ods (denoted as ZAC w.r.t. Eq. (20) and ZACR w.r.t

Eq. (32)) with state-of-the-art graph matching methods in-

cluding GA [13], RRWM [7], MPM [8], FGMD [44],

BPFG [36] and FRGM [34] on widely used complicated

datasets in terms of matching accuracy and time consump-

tion. The codes of the compared methods are down-

loaded from the author’s websites. Our code is available at

https://github.com/wangfudong/ZAC_GM. For

better evaluation of graph matching in the presence of out-

liers, we compute the commonly used indicators called re-

call = #{correct matching}
#{groundtruth matching} , precision = #{correct matching}

#{total matching}

and F-measure= 2
recall·precision

recall+precision
.

5.1. Results on PASCAL dataset

We first conducted experiments on graphs in PASCAL

dataset [25], which consists of 30 and 20 pairs of car and

motorbike images (e.g., Fig. 1), respectively. Each pair con-

tains both inliers with known correspondence and randomly

marked dozens of outliers. To generate graphs with outliers,

we randomly selected 0, 4, ..., 20 outliers to both graphs, re-

spectively. To generate the edges, our methods and FRGM

applied complete graphs, while the others connected edges

by Delaunay Triangulation, on which they achieved better

performance than on complete graphs.

Similar with [44, 34], we set Kia;ia = exp(−d(vi −
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Figure 3: Statistical verification of the minimum values of

our objective function Eq. (20).
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Figure 4: Average F-measure (%) w.r.t. number of outliers.

v
′
a)), and Kia;jb = exp(− 1

2 (|Eij −E
′
ab| + |Θij −Θ′

ab|)),
where vi,v

′
a were shape context [3], d(vi−v

′
a) was the cost

computed as χ2 test statistic [3], Eij ,E
′
ab were distance ma-

trices between nodes, Θij ,Θ
′
ab were the angles between the

edges and the horizontal line. For our methods, we cal-

culated Dia = d(vi − v
′
a) to measure the node dissimi-

larity. For the weighted adjacency matrices E , E ′ and edge

attributes Aij ,Bab, in order to honor the proposition 4, we

set E = 1⊘ E, E ′ = 1⊘ E
′ and A = exp(−E

2/σ2
1),B =

exp(−E
′2/σ2

2) with σ1, σ2 were the standard deviations of

E,E′. The weights in Eq. (20) were λ1 = λ2 = 1.

First, we presented a statistical verification for proposi-

tion 4. For each graph pair with outliers, we randomly dis-

turbed the ideal correspondences between inliers by forcing

0, 1, ..., 20 inliers to be incorrectly matched. Then, we ap-

plied our optimization algorithm to minimize the objective

function Eq. (20) under the mismatching constraints. We re-

ported the series of obtained minimum values of objective

function in Fig. 3. It shows that, with increasing number

of disturbed matchings of inliers, the minimum values of

objective function become higher. Only with no mismatch-

ings (i.e., the ideal ground-truth P
∗), the objective function

achieves the lower limit of the series of minimum values.

Namely, the proposition 4 can be guaranteed with our set-

tings and optimization algorithm in practical cases.

Next, we compared all the methods in terms of match-

ing accuracy and time consumption. For overall compar-

isons, we set a series of numbers k = ⌊ratio ·min{m,n}⌋
(ratio = 0.3, 0.35, ..., 1 such that k ≥ 5 since m,n ∈
[15, 75]) in feasible fields P̂k for our method. And then, we

also ran the compared methods with their soft-assignment
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Figure 5: The average recall (%) and precision (%) w.r.t

varying ratio = 0.3, 0.35, ..., 1 on PASCAL dataset.

Methods

#Outliers 0 4 8 12 16 20

GA [13] 0.31 0.80 1.21 1.74 2.29 2.78

RRWM [7] 0.04 0.07 0.12 0.18 0.24 0.31

MPM [8] 0.35 0.61 0.94 1.40 2.06 3.05

FRGM [34] 0.44 0.61 0.78 0.96 1.14 1.36

BPFG [36] 1.07 23.84 37.79 61.04 83.41 122.59

FGMD [44] 0.68 10.01 12.67 15.44 19.47 24.21

ZAC 0.18 0.25 0.32 0.39 0.47 0.56

ZACR 0.53 0.75 0.89 1.05 1.20 1.36

Table 1: Average running time (s) w.r.t. number of outliers.

matrix and evaluated their matching accuracy with the top

k matchings. Note that, since the methods FGMD [44]

and BPFG [36] only obtain binary correspondences, we

can only compute their matching accuracy with top k =
1 ·min{m,n} matchings.

Fig. 4 shows the highest average F-measure of all meth-

ods w.r.t the numbers of outliers. We can see that our meth-

ods ZAC and ZACR are more robust to outliers. Particu-

larly, as shown in Fig. 5, with a wide range of ratio, our

methods achieve much higher precision, which means that

the proposed outlier identification and removal approach

can efficiently reduce incorrect or redundant matchings.

Tab. 1 reports the average time consumption, our methods

take acceptable and intermediate time. Since the regulariza-

tion term in Eq. (32) is more flexible than the equation con-

straint 1T
P1 = k, ZACR has a little higher accuracy than

ZAC. However, as mentioned in Sec. 4.1, since ZAC solves

kLAP while ZACR uses LP solver, ZAC runs much faster

than ZACR. Overall, ZAC achieves better trade-off between

matching accuracy and time consumption than ZACR.

5.2. Results on VGG dataset

As the example shown in Fig. 1, graph pairs in PASCAL

dataset are generated with similar shapes. Thus, the experi-

ments above evaluate the performance of all the methods in

terms of shape consistency. Furthermore, we conducted ex-

periments on more practical dataset to evaluate all the GM

methods with more complicated graphs under varying geo-
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