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Abstract

Deep Learning with noisy labels is a practically chal-

lenging problem in weakly supervised learning. The state-

of-the-art approaches “Decoupling" and “Co-teaching+"

claim that the “disagreement" strategy is crucial for alle-

viating the problem of learning with noisy labels. In this

paper, we start from a different perspective and propose a

robust learning paradigm called JoCoR, which aims to re-

duce the diversity of two networks during training. Specif-

ically, we first use two networks to make predictions on

the same mini-batch data and calculate a joint loss with

Co-Regularization for each training example. Then we se-

lect small-loss examples to update the parameters of both

two networks simultaneously. Trained by the joint loss,

these two networks would be more and more similar due

to the effect of Co-Regularization. Extensive experimental

results on corrupted data from benchmark datasets includ-

ing MNIST, CIFAR-10, CIFAR-100 and Clothing1M demon-

strate that JoCoR is superior to many state-of-the-art ap-

proaches for learning with noisy labels.

1. Introduction

Deep Neural Networks (DNNs) achieve remarkable suc-

cess on various tasks, and most of them are trained in a su-

pervised manner, which heavily relies on a large number of

training instances with accurate labels [14]. However, col-

lecting large-scale datasets with fully precise annotations is

expensive and time-consuming. To alleviate this problem,

data annotation companies choose some alternating meth-

ods such as crowdsourcing [39, 43] and online queries [3] to

improve labelling efficiency. Unfortunately, these methods

usually suffer from unavoidable noisy labels, which have

been proven to lead to noticeable decrease in performance

of DNNs [1, 44].

As this problem has severely limited the expansion of

neural network applications, a large number of algorithms
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have been developed for learning with noisy labels, which

belongs to the family of weakly supervised learning frame-

works [2, 5, 6, 7, 8, 9, 11]. Some of them focus on improv-

ing the methods to estimate the latent noisy transition ma-

trix [21, 24, 32]. However, it is challenging to estimate the

noise transition matrix accurately. An alternative approach

is training on selected or weighted samples, e.g., Men-

tornet [16], gradient-based reweight [30] and Co-teaching

[12]. Furthermore, the state-of-the-art methods including

Co-teaching+ [41] and Decoupling [23] have shown excel-

lent performance in learning with noisy labels by introduc-

ing the “Disagreement" strategy, where “when to update"

depends on a disagreement between two different networks.

However, there are only a part of training examples that can

be selected by the “Disagreement" strategy, and these exam-

ples cannot be guaranteed to have ground-truth labels [12].

Therefore, there arises a question to be answered: Is “Dis-

agreement" necessary for training two networks to deal with

noisy labels?

Motivated by Co-training for multi-view learning and

semi-supervised learning that aims to maximize the agree-

ment on multiple distinct views [4, 19, 34, 45], a straight-

forward method for handling noisy labels is to apply the

regularization from peer networks when training each sin-

gle network. However, although the regularization may im-

prove the generalization ability of networks by encourag-

ing agreement between them, it still suffers from memoriza-

tion effects on noisy labels [44]. To address this problem,

we propose a novel approach named JoCoR (Joint Train-

ing with Co-Regularization). Specifically, we train two net-

works with a joint loss, including the conventional super-

vised loss and the Co-Regularization loss. Furthermore, we

use the joint loss to select small-loss examples, thereby en-

suring the error flow from the biased selection would not be

accumulated in a single network.

To show that JoCoR significantly improves the robust-

ness of deep learning on noisy labels, we conduct exten-

sive experiments on both simulated and real-world noisy

datasets, including MNIST, CIFAR-10, CIFAR-100 and

13726



Clothing1M datasets. Empirical results demonstrate that

the robustness of deep models trained by our proposed ap-

proach is superior to many state-of-the-art approaches. Fur-

thermore, the ablation studies clearly demonstrate the effec-

tiveness of Co-Regularization and Joint Training.

2. Related work

In this section, we briefly review existing works on learn-

ing with noisy labels.

Noise rate estimation. The early methods focus on es-

timating the label transition matrix [24, 25, 28, 37]. For ex-

ample, F-correction [28] uses a two-step solution to heuris-

tically estimate the noise transition matrix. An additional

softmax layer is introduced to model the noise transition

matrix [10]. In these approaches, the quality of noise

rate estimation is a critical factor for improving robustness.

However, noise rate estimation is challenging, especially on

datasets with a large number of classes.

Small-loss selection. Recently, a promising method of

handling noisy labels is to train models on small-loss in-

stances [30]. Intuitively, the performance of DNNs will be

better if the training data become less noisy. Previous work

showed that during training, DNNs tend to learn simple pat-

terns first, then gradually memorize all samples [1], which

justifies the widely used small-loss criterion: treating sam-

ples with small training loss as clean ones. In particular,

MentorNet [16] firstly trains a teacher network, then uses it

to select clean instances for guiding the training of the stu-

dent network. As for Co-teaching [12], in each mini-batch

of data, each network chooses its small-loss instances and

exchanges them with its peer network for updating the pa-

rameters. The authors argued that these two networks could

filter different types of errors brought by noisy labels since

they have different learning abilities. When the error from

noisy data flows into the peer network, it will attenuate this

error due to its robustness.

Disagreement. The “Disagreement" strategy is also ap-

plied to this problem. For instance, Decoupling [23] up-

dates the model only using instances on which the pre-

dictions of two different networks are different. The idea

of disagreement-update is similar to hard example mining

[33], which trains model with examples that are misclassi-

fied and expects these examples to help steer the classifier

away from its current mistakes. For the “Disagreement"

strategy, the decision of “when to update" depends on a

disagreement between two networks instead of depending

on the label. As a result, it would help decrease the di-

vergence between these networks. However, as noisy la-

bels are spread across the whole space of examples, there

may be many noisy labels in the disagreement area, where

the Decoupling approach cannot handle noisy labels explic-

itly. Combining the “Disagreement" strategy with cross-

update in Co-teaching, Co-teaching+ [41] achieves excel-

Figure 1. Comparison of error flow among MentorNet (M-Net)

[16], Decoupling [23], Co-teaching+ [41] and JoCoR. Assume

that the error flow comes from the biased selection of training in-

stances, and error flow from network A or B is denoted by red

arrows or green arrows, respectively. First panel: M-Net main-

tains only one network (A). Second panel: Decoupling maintains

two networks (A&B). The parameters of two networks are up-

dated, when the predictions of them disagree (!=). Third panel: In

Co-teaching+, each network teaches its small-loss instances with

prediction disagreement (!=) to its peer network. Fourth panel:

JoCoR also maintains two networks (A&B) but trains them as a

whole with a joint loss, which makes predictions of each network

closer to ground true labels and peer network’s.

lent performance in improving the robustness of DNNs

against noisy labels. In spite of that, Co-teaching+ only

selects small-loss instances with different predictions from

two models so very few examples are utilized for training

in each mini-batch when datasets are with extremely high

noise rate. It would prevent the training process from effi-

cient use of training examples. This phenomenon will be

explicitly shown in our experiments in the symmetric-80%

label noise case.

Other deep learning methods. In addition to the afore-

mentioned approaches, there are some other deep learn-

ing solutions [13, 17] to deal with noisy labels, includ-

ing pseudo-label based [35, 40] and robust loss based ap-

proaches [28, 46]. For pseudo-label based approaches, Joint

optimization [35] learns network parameters and infers the

ground-true labels simultaneously. PENCIL [40] adopts la-

bel probability distributions to supervise network learning

and to update these distributions through back-propagation

end-to-end in each epoch. For robust loss based approaches,

F-correct[28] proposes a robust risk minimization method

to learn neural networks for multi-class classification by es-

timating label corruption probabilities. GCE [46] combines

the advantages of the mean absolute loss and the cross en-

tropy loss to obtain a better loss function and presents a the-

oretical analysis of the proposed loss functions in the con-

text of noisy labels.

Semi-supervised learning. Semi-supervised learning

also belongs to the family of weakly supervised learn-

ing frameworks [15, 18, 22, 26, 27, 31, 47]. There are

some interesting works from semi-supervised learning that

are highly relevant to our approach. In contrast to “Dis-

agreement" strategy, many of them are based on a agree-
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ment maximization algorithm. Co-RLS [34] extends stan-

dard regularization methods like Support Vector Machines

(SVM) and Regularized Least squares (RLS) to multi-view

semi-supervised learning by optimizing measures of agree-

ment and smoothness over labelled and unlabelled exam-

ples. EA++ [19] is a co-regularization based approach for

semi-supervised domain adaptation, which builds on the no-

tion of augmented space and harnesses unlabeled data in

the target domain to further assist the transfer of informa-

tion from source to target. The intuition is that different

models in each view would agree on the labels of most ex-

amples, and it is unlikely for compatible classifiers trained

on independent views to agree on an incorrect label. This

intuition also motivates us to deal with noisy labels based

on the agreement maximization principle.

3. The Proposed Approach

As mentioned before, we suggest to apply the agreement

maximization principle to tackle the problem of noisy la-

bels. In our approach, we encourage two different classi-

fiers to make predictions closer to each other by explicit

regularization method instead of hard sampling employed

by the “Disagreement” strategy. This method could be con-

sidered as a meta-algorithm that trains two base classifiers

by one loss function, which includes a regularization term

to reduce divergence between the two classifiers.

For multi-class classification with M classes, we sup-

pose the dataset with N samples is given as D =
{xi, yi}

N
i=1, where xi is the i-th instance with its ob-

served label as yi ∈ {1, . . . ,M}. Similar to Decoupling

and Co-teaching+, we formulate the proposed JoCoR ap-

proach with two deep neural networks denoted by f(x,Θ1)
and f(x,Θ2), while p1 = [p11, p

2
1, . . . , p

M
1 ] and p2 =

[p12, p
2
2, . . . , p

M
2 ] denote their prediction probabilities of in-

stance xi, respectively. In other words, p1 and p2 are the

outputs of the “softmax" layer in Θ1 and Θ2.

Network. For JoCoR, each network can be used to predict

labels alone, but during the training stage these two net-

works are trained with a pseudo-siamese paradigm, which

means their parameters are different but updated simultane-

ously by a joint loss (see Figure 2). In this work, we call

this paradigm as “Joint Training".

Specifically, our proposed loss function ℓ on xi is con-

structed as follows:

ℓ(xi) = (1− λ) ∗ ℓsup(xi, yi) + λ ∗ ℓcon(xi) (1)

In the loss function, the first part ℓsup is conventional su-

pervised learning loss of the two networks, the second part

ℓcon is the contrastive loss between predictions of the two

networks for achieving Co-Regularization.

Classification loss. For multi-class classification, we use

Cross-Entropy Loss as the supervised part to minimize the

distance between predictions and labels.

Figure 2. JoCoR schematic.

ℓsup(xi, yi) = ℓC1(xi, yi) + ℓC2(xi, yi)

= −
∑N

i=1

∑M

m=1
yi log(p

m
1 (xi))

−
∑N

i=1

∑M

m=1
yi log(p

m
2 (xi))

(2)

Intuitively, two networks can filter different types of er-

rors brought by noisy labels since they have different learn-

ing abilities. In Co-teaching [12], when the two networks

exchange the selected small-loss instances in each mini-

batch data, the error flows can be reduced by peer net-

works mutually. By virtue of the joint-training paradigm,

our JoCoR would consider the classification losses from

both two networks during the “small-loss" selection stage.

In this way, JoCoR can share the same advantage of the

cross-update strategy in Co-teaching. This argument will

be clearly supported by the ablation study in the later sec-

tion.

Contrastive loss. From the view of agreement maximiza-

tion principles [4, 34], different models would agree on la-

bels of most examples, and they are unlikely to agree on in-

correct labels. Based on this observation, we apply the Co-

Regularization method to maximize the agreement between

two classifiers. On one hand, the Co-Regularization term

could help our algorithm select examples with clean labels

since an example with small Co-Regularization loss means

that two networks reach an agreement on its predictions. On

the other hand, the regularization from peer networks helps

the model find a much wider minimum, which is expected

to provide better generalization performance [45].

In JoCoR, we utilize the contrastive term as Co-

Regularization to make the networks guide each other. To

measure the match of the two networks’ predictions p1

and p2, we adopt the Jensen-Shannon (JS) Divergence.

To simplify implementation, we could use the symmetric

Kullback-Leibler(KL) Divergence to surrogate this term.

ℓcon = DKL(p1||p2) +DKL(p2||p1) (3)

where

DKL(p1||p2) =
∑N

i=1

∑M

m=1
pm1 (xi) log

pm1 (xi)

pm2 (xi)

DKL(p2||p1) =
∑N

i=1

∑M

m=1
pm2 (xi) log

pm2 (xi)

pm1 (xi)
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Algorithm 1 JoCoR

Input: Network f with Θ = {Θ1,Θ2}, learning rate η,

fixed τ , epoch Tk and Tmax, iteration Imax;

1: for t = 1,2,. . . ,Tmax do

2: Shuffle training set D;

3: for n = 1, . . . , Imax do

4: Fetch mini-batch Dn from D;

5: p1 = f(x,Θ1), ∀x ∈ Dn;

6: p2 = f(x,Θ2), ∀x ∈ Dn;

7: Calculate the joint loss ℓ by (1) using p1 and p2;

8: Obtain small-loss sets D̃n by (4) from Dn;

9: Obtain L by (5) on D̃n;

10: Update Θ = Θ− η∇L;

11: end for

12: Update R(t) = 1−min
{

t
Tk

τ, τ
}

13: end for

Output: Θ1 and Θ2

Small-loss Selection Before introducing the details, we first

clarify the connection between small losses and clean in-

stances. Intuitively, small-loss examples are likely to be the

ones that are correctly labelled [12, 30]. Thus, if we train

our classifier only using small-loss instances in each mini-

batch data, it would be resistant to noisy labels.

To handle noisy labels, we apply the “small-loss" crite-

rion to select “clean" instances (step 8 in Algorithm 1). Fol-

lowing the setting of Co-teaching+, we update R(t) (step

12), which controls how many small-loss data should be

selected in each training epoch. At the beginning of train-

ing, we keep more small-loss data (with a large R(t)) in

each mini-natch since deep networks would fit clean data

first [1, 44]. With the increase of epochs, we reduce R(t)
gradually until reaching 1 − τ , keeping fewer examples in

each mini-batch. Such operation will prevent deep networks

from over-fitting noisy data [12].

In our algorithm, we use the joint loss (1) to select small-

loss examples. Intuitively, an instance with small joint loss

means that both two networks could be easy to reach a con-

sensus and make correct predictions on it. As two networks

have different learning abilities based on different initial

conditions, the selected small-loss instances are more likely

to be with clean labels than those chosen by a single model.

Specifically, we conduct small-loss selection as follows:

D̃n = argminD′

n
:|D′

n
|≥R(t)|Dn|ℓ (D

′
n) (4)

After obtaining the small-loss instances, we calculate the

average loss on these examples for further backpropagation:

L =
1

|D̃|

∑

x∈D̃
ℓ(x) (5)

Table 1. Comparison of state-of-the-art and related techniques

with our JoCoR approach. In the first column, “small loss": re-

garding small-loss samples as “clean" samples, which is based on

the memorization effects of deep neural networks; “double clas-

sifiers": training two classifiers simultaneously; “cross update":

updating parameters in a cross manner instead of a parallel man-

ner; “joint training": training two classifiers with a joint loss;

“disagreement": updating two classifiers on disagreed examples

during the entire training epochs; “agreement": maximizing the

agreement of two classifiers by regularization during the whole

training epochs.

Decoupling Co-teaching Co-teaching+ JoCoR

small loss ✗ ✓ ✓ ✓

cross update ✗ ✓ ✓ ✗

joint training ✗ ✗ ✗ ✓

disagreement ✓ ✗ ✓ ✗

agreement ✗ ✗ ✗ ✓

Relations to other approaches. We compare JoCoR with

other related approaches in Table 1. Specifically, Decou-

pling applies the “disagreement" strategy to select instances

while Co-teaching use small-loss criterion. Besides, Co-

teaching updates parameters of networks by the “cross-

update" strategy to reduce the accumulated error flow.

Combining the “disagreement" strategy and the “cross-

update" strategy, Co-teaching+ achieves excellent perfor-

mance. As for our JoCoR, we also select small-loss ex-

amples but update the networks by Joint Training. Further-

more, we use the Co-Regularization to maximize agreement

between the two networks. Note that Co-Regularization in

our proposed method and “disagreement” strategy in De-

coupling are both essentially to reduce the divergence be-

tween the two classifiers. The difference between them lies

in that the former uses an explicit regularization methods

with all training examples while the latter employs hard

sampling that reduces the effective number of training ex-

amples. It is especially important in the case of small-loss

selection, because the selection would further decrease the

effective number of training examples.

4. Experiments

In this section we first compare JoCoR with some state-

of-the-art approaches, then analyze the impact of Joint

Training and Co-Regularization by ablation study. We also

analyze the effect of λ in (1) by sensitivity analysis and put

it in supplementary materials.

4.1. Experiment setup

Datasets. We verify the effectiveness of our proposed al-

gorithm on four benchmark datasets: MNIST, CIFAR-10,

CIFAR-100 and Clothing1M [38], and the detailed char-

acteristics of these datasets can be found in supplementary

materials. These datasets are popularly used for the eval-

uation of learning with noisy labels in previous literatures

[10, 18, 29]. Especially, Clothing1M is a large-scale real-
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(a) Symmetry-20%
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(b) Symmetry-50%
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(c) Symmetry-80%
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(d) Asymmetry-40%

Figure 3. Results on MNIST dataset. Top: test accuracy(%) vs. epochs; bottom: label precision(%) vs. epochs.

Table 2. Average test accuracy (%) on MNIST over the last 10 epochs.

Flipping-Rate Standard F-correction Decoupling Co-teaching Co-teaching+ JoCoR

Symmetry-20% 79.56± 0.44 95.38± 0.10 93.16± 0.11 95.10± 0.16 97.81± 0.03 98.06 ± 0.04
Symmetry-50% 52.66± 0.43 92.74± 0.21 69.79± 0.52 89.82± 0.31 95.80± 0.09 96.64 ± 0.12
Symmetry-80% 23.43± 0.31 72.96± 0.90 28.51± 0.65 79.73± 0.35 58.92± 14.73 84.89 ± 4.55

Asymmetry-40% 79.00± 0.28 89.77± 0.96 81.84± 0.38 90.28± 0.27 93.28± 0.43 95.24 ± 0.10

60% 8% 8% 8% 8% 8%

8% 60% 8% 8% 8% 8%

8% 8% 60% 8% 8% 8%

8% 8% 8% 60% 8% 8%

8% 8% 8% 8% 60% 8%

8% 8% 8% 8% 8% 60%

Symmetric Noise 0.4

100% 0% 0% 0% 0% 0%

0% 60% 0% 0% 40% 0%

40% 0% 60% 0% 0% 0%

0% 0% 0% 100% 0% 0%

0% 0% 0% 0% 100% 0%

0% 0% 40% 0% 0% 60%

Asymmetric Noise 0.4

Figure 4. Example of noise transition matrix T (taking 6 classes

and noise ratio 0.4 as an example)

world dataset with noisy labels, which is widely used in the

related works[20, 28, 40, 38].

Since all datasets are clean except Clothing1M, follow-

ing [28, 29], we need to corrupt these datasets manually by

the label transition matrix Q, where Qij = Pr[ỹ = j|y = i]
given that noisy ỹ is flipped from clean y. Assume that the

matrix Q has two representative structures: (1) Symmetry

flipping [36]; (2) Asymmetry flipping [28]: simulation of

fine-grained classification with noisy labels, where labellers

may make mistakes only within very similar classes.

Following F-correction [28], only half of the classes in

the dataset are with noisy labels in the setting of asymmetric

noise, so the actual noise rate in the whole dataset τ is half

of the noisy rate in the noisy classes. Specifically, when the

asymmetric noise rate is 0.4, it means τ = 0.2. Figure 4

shows an example of noise transition matrix.

For experiments on Clothing1M, we use the 1M images

with noisy labels for training, the 14k and 10k clean data

for validation and test, respectively. Note that we do not

use the 50k clean training data in all the experiments be-

cause only noisy labels are required during the training pro-

cess [20, 35]. For preprocessing, we resize the image to

256×256, crop the middle 224×224 as input, and perform

normalization.

Baselines. We compare JoCoR (Algorithm 1) with the fol-

lowing state-of-the-art algorithms, and implement all meth-

ods with default parameters by PyTorch, and conduct all the

experiments on NVIDIA Tesla V100 GPU.

(i) Co-teaching+ [41], which trains two deep neural net-

works and consists of disagreement-update step and

cross-update step.

(ii) Co-teaching [12], which trains two networks simul-

taneously and cross-updates parameters of peer net-

works.

(iii) Decoupling [23], which updates the parameters only

using instances which have different predictions from

two classifiers.

(iv) F-correction [28], which corrects the prediction by the

label transition matrix. As suggested by the authors,

we first train a standard network to estimate the tran-

sition matrix Q.

13730



Standard F-correction Decoupling Co-teaching Co-teaching+ Ours

0 25 50 75 100 125 150 175 200
epoch

45

50

55

60

65

70

75

80

85

90
te

st
 a

cc
ur

ac
y

0 25 50 75 100 125 150 175 200
epoch

30

40

50

60

70

80

90

te
st

 a
cc

ur
ac

y

0 25 50 75 100 125 150 175 200
epoch

10

15

20

25

30

35

40

45

te
st

 a
cc

ur
ac

y

0 25 50 75 100 125 150 175 200
epoch

50

55

60

65

70

75

80

te
st

 a
cc

ur
ac

y

0 25 50 75 100 125 150 175 200
epoch

0

10

20

30

40

50

60

70

80

90

100

La
be

l P
re

cis
io

n

(a) Symmetry-20%
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(b) Symmetry-50%
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(c) Symmetry-80%
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(d) Asymmetry-40%

Figure 5. Results on CIFAR-10 dataset. Top: test accuracy(%) vs. epochs; bottom: label precision(%) vs. epochs.

Table 3. Average test accuracy (%) on CIFAR-10 over the last 10 epochs.

Flipping-Rate Standard F-correction Decoupling Co-teaching Co-teaching+ JoCoR

Symmetry-20% 69.18± 0.52 68.74± 0.20 69.32± 0.40 78.23± 0.27 78.71± 0.34 85.73 ± 0.19
Symmetry-50% 42.71± 0.42 42.19± 0.60 40.22± 0.30 71.30± 0.13 57.05± 0.54 79.41 ± 0.25
Symmetry-80% 16.24± 0.39 15.88± 0.42 15.31± 0.43 26.58± 2.22 24.19± 2.74 27.78 ± 3.06

Asymmetry-40% 69.43± 0.33 70.60± 0.40 68.72± 0.30 73.78± 0.22 68.84± 0.20 76.36 ± 0.49

(v) As a simple baseline, we compare JoCoR with the

standard deep network that directly trains on noisy

datasets (abbreviated as Standard).

Network Structure and Optimizer. We use a 2-layer

MLP for MNIST, a 7-layer CNN network architecture for

CIFAR-10 and CIFAR-100. The detailed information can

be found in supplementary materials. For Clothing1M, we

use ResNet with 18 layers.

For experiments on MNIST, CIFAR-10 and CIFAR-100,

Adam optimizer (momentum=0.9) is used with an initial

learning rate of 0.001, and the batch size is set to 128. We

run 200 epochs in total and linearly decay learning rate to

zero from 80 to 200 epochs.

For experiments on Clothing1M, we also use Adam op-

timizer (momentum=0.9) and set batch size to 64. During

the training stage, we run 15 epochs in total and set learning

rate to 8× 10−4, 5× 10−4 and 5× 10−5 for 5 epochs each.

As for λ in our loss function (1), we search it in [0.05,

0.10, 0.15,. . .,0.95] with a clean validation set for best per-

formance. When validation set is also with noisy labels, we

use the small-loss selection to choose a clean subset for val-

idation. As deep networks are highly nonconvex, even with

the same network and optimization method, different ini-

tializations can lead to different local optimum. Thus, fol-

lowing Decoupling [23], we also take two networks with the

same architecture but different initializations as two classi-

fiers.

Measurement. To measure the performance, we use the

test accuracy, i.e., test accuracy = (# of correct predictions)

/ (# of test). Besides, we also use the label precision in

each mini-batch, i.e., label precision = (# of clean labels)

/ (# of all selected labels). Specifically, we sample R(t) of

small-loss instances in each mini-batch and then calculate

the ratio of clean labels in the small-loss instances. Intu-

itively, higher label precision means less noisy instances in

the mini-batch after sample selection, so the algorithm with

higher label precision is also more robust to the label noise.

All experiments are repeated five times. The error bar for

STD in each figure has been highlighted as a shade.

Selection setting. Following Co-teaching, we assume that

the noise rate τ is known. To conduct a fair comparison

in benchmark datasets, we set the ratio of small-loss sam-

ples R(t) as identical: R(t) = 1 − min
{

t
Tk

τ, τ
}

, where

Tk = 10 for MNIST, CIFAR-10 and CIFAR100, Tk = 5
for Clothing1M. If τ is not known in advance, τ can be in-

ferred using validation sets [21, 42].

4.2. Comparison with the StateoftheArts

Results on MNIST . At the top of Figure 3, it shows test

accuracy vs. epochs on MNIST. In all four plots, we can

see the memorization effect of networks, i.e., test accuracy

of Standard first reaches a very high level and then gradu-
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Figure 6. Results on CIFAR-100 dataset. Top: test accuracy(%) vs. epochs; bottom: label precision(%) vs. epochs.

Table 4. Average test accuracy (%) on CIFAR-100 over the last 10 epochs.

Flipping-Rate Standard F-correction Decoupling Co-teaching Co-teaching+ JoCoR

Symmetry-20% 35.14± 0.44 37.95± 0.10 33.10± 0.12 43.73± 0.16 49.27± 0.03 53.01 ± 0.04
Symmetry-50% 16.97± 0.40 24.98± 1.82 15.25± 0.20 34.96± 0.50 40.04± 0.70 43.49 ± 0.46
Symmetry-80% 4.41± 0.14 2.10± 2.23 3.89± 0.16 15.15± 0.46 13.44± 0.37 15.49 ± 0.98

Asymmetry-40% 27.29± 0.25 25.94± 0.44 26.11± 0.39 28.35± 0.25 33.62 ± 0.39 32.70± 0.35

ally decreases. Thus, a good robust training method should

stop or alleviate the decreasing process. On this point, Jo-

CoR consistently achieves higher accuracy than all the other

baselines in all four cases.

We can compare the test accuracy of different algo-

rithms in detail in Table 2. In the most natural Symmetry-

20% case, all new approaches work better than Standard

obviously, which demonstrates their robustness. Among

them, JoCoR and Co-teaching+ work significantly better

than other methods. When it goes to Symmetry-50% case

and Asymmetry-40% case, Decoupling begins to fail while

other methods still work fine, especially JoCoR and Co-

teaching+. However, Co-teaching+ cannot combat with

the hardest Symmetry-80% case, where it only achieves

58.92%. In this case, JoCoR achieves the best average clas-

sification accuracy (84.89%) again.

To explain such excellent performance, we plot label pre-

cision vs. epochs at the bottom of Figure 3. Only Decou-

pling, Co-teaching, Co-teaching+ and JoCoR are consid-

ered here, as they include example selection during training.

First, we can see both JoCoR and Co-teaching can success-

fully pick clean instances out. Note that JoCoR not only

reaches high label precision in all four cases but also per-

forms better and better with the increase of epochs while

Co-teaching declines gradually after reaching the top. This

shows that our approach is better at finding clean instances.

Then, Decoupling and Co-teaching+ fail in selecting clean

examples. As mentioned in Related Work, very few ex-

amples are utilized by Co-teaching+ in the training process

when noise rate goes to be extremely high. In this way, we

can understand why Co-teaching+ performs poorly on the

hardest case.

Results on CIFAR-10 . Table 3 shows test accuracy on

CIFAR-10. As we can see, JoCoR performs the best in all

four cases again. In the Symmetric-20% case, JoCoR works

much better than all other baselines and Co-teaching+ per-

forms better than Co-teaching and Decoupling. In the other

three cases, JoCoR is still the best and Co-teaching+ cannot

even achieve comparable performance with Co-teaching.

Figure 5 shows test accuracy and label precision vs.

epochs. JoCoR outperforms all the other comparing ap-

proaches on both test accuracy and label precision. On label

precision, while Decoupling and Co-teaching+ fail to find

clean instances, both JoCoR and Co-teaching can do this.

An interesting phenomenon is that in the Asymmetry-40%

case, although Co-teaching can achieve better performance

than JoCoR in the first 100 epochs, JoCoR consistently out-

performs it in all the later epochs. The result shows that

JoCoR has better generalization ability than Co-teaching.

Results on CIFAR-100 . Then, we show our results on

CIFAR-100. The test accuracy is shown in Table 4. Test

accuracy and label precision vs. epochs are shown in Fig-

ure 6. Note that there are only 10 classes in MNIST and

CIFAR-10 datasets. Thus, overall the accuracy is much
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Table 5. Classification accuracy (%) on the Clothing1M test set

Methods best last

Standard 67.22 64.68

F-correction 68.93 65.36

Decoupling 68.48 67.32

Co-teaching 69.21 68.51

Co-teaching+ 59.32 58.79

JoCoR 70.30 69.79

lower than previous ones in Tables 2 and 3. But JoCoR

still achieves high test accuracy on this datasets. In the

easiest Symmetry-20% and Symmetry-50% cases, JoCoR

works significantly better than Co-teaching+, Co-teaching

and other methods. In the hardest Symmetry-80% case,

JoCoR and Co-teaching tie together but JoCoR still gets

higher testing accuracy. When it turns to Asymmetry-40%

case, JoCoR and Co-teaching+ perform much better than

other methods. On label precision, JoCoR keeps the best

performance in all four cases.

Results on Clothing1M . Finally, we demonstrate the effi-

cacy of the proposed method on the real-world noisy labels

using the Clothing1M dataset. As shown in Table 5, best

denotes the scores of the epoch where the validation ac-

curacy is optimal, and last denotes the scores at the end

of training. The proposed JoCoR method gets better re-

sult than state-of-the-art methods on best. After all epochs,

JoCoR achieves a significant improvement in accuracy of

+5.11 over Standard, and an improvement of +1.28 over the

best baseline method.

4.3. Ablation Study

To conduct ablation study for analyzing the effect of Co-

Regularization, we set up the experiments above MNIST

and CIFAR-10 with Symmetry-50% noise. For implement-

ing Joint Training without Co-Regularization (Joint-only),

we set the λ in (1) to 0. Besides, to verify the effect of

the Joint Training paradigm, we introduce Co-teaching and

Standard enhanced by “small-loss" selection (Standard+) to

join the comparison. Recall that the joint-training method

selects examples by the joint loss while Co-teaching uses

cross-update method to reduce the error flow [12], these two

methods should play a similar role during training accord-

ing to the previous analysis.

The test accuracy and label precision vs. epochs on

MNIST are shown in Figure 7. As we can see, JoCoR per-

forms much better than the others on both test accuracy and

label precision. The former keeps almost no decrease while

the latter decline a lot after reaching the top. This observa-

tion indicates that Co-Regularization strongly hinders neu-

ral networks from memorizing noisy labels.

The test accuracy and label precision vs. epochs on

CIFAR-10 are shown in Figure 8. In this figure, JoCoR

still maintains a huge advantage over the other three meth-
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Figure 7. Results of ablation study on MNIST
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Figure 8. Results of ablation study on CIFAR-10

ods on both test accuracy and label precision while Joint-

only, Co-teaching and Standard+ remain the same trend as

these for MNIST, keeping a downward tendency after in-

creasing to the highest point. These results show that Co-

Regularization plays a vital role in handling noisy labels.

Moreover, Joint-only achieves a comparable performance

with Co-teaching on test accuracy and performs better than

Co-teaching and Standard+ on label precision. It shows that

Joint Training is a more efficient paradigm to help select

clean examples than cross-update in Co-teaching.

5. Conclusion

The paper proposes an effective approach called JoCoR

to improve the robustness of deep neural networks with

noisy labels. The key idea of JoCoR is to train two classi-

fiers simultaneously with one joint loss, which is composed

of regular supervised part and Co-Regularized part. Similar

to Co-teaching+, we also select small-loss instances to up-

date networks in each mini-batch data by the joint loss. We

conduct experiments on MNIST, CIFAR-10, CIFAR-100

and Clothing1M to demonstrate that, JoCoR can train deep

models robustly with the slightly and extremely noisy su-

pervision. Furthermore, the ablation studies clearly demon-

strate the effectiveness of Co-Regularization and Joint

Training. In future work, we will explore the theoretical

foundation of JoCoR based on the view of traditional Co-

training algorithms [19, 34].
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