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Abstract

3D Multi-object tracking (MOT) is crucial to au-

tonomous systems. Recent work uses a standard tracking-

by-detection pipeline, where feature extraction is first per-

formed independently for each object in order to compute

an affinity matrix. Then the affinity matrix is passed to the

Hungarian algorithm for data association. A key process of

this standard pipeline is to learn discriminative features for

different objects in order to reduce confusion during data

association. In this work, we propose two techniques to im-

prove the discriminative feature learning for MOT: (1) in-

stead of obtaining features for each object independently,

we propose a novel feature interaction mechanism by intro-

ducing the Graph Neural Network. As a result, the feature

of one object is informed of the features of other objects so

that the object feature can lean towards the object with sim-

ilar feature (i.e., object probably with a same ID) and devi-

ate from objects with dissimilar features (i.e., object prob-

ably with different IDs), leading to a more discriminative

feature for each object; (2) instead of obtaining the feature

from either 2D or 3D space in prior work, we propose a

novel joint feature extractor to learn appearance and mo-

tion features from 2D and 3D space simultaneously. As fea-

tures from different modalities often have complementary

information, the joint feature can be more discriminate than

feature from each individual modality. To ensure that the

joint feature extractor does not heavily rely on one modality,

we also propose an ensemble training paradigm. Through

extensive evaluation, our proposed method achieves state-

of-the-art performance on KITTI and nuScenes 3D MOT

benchmarks. Our code will be made available at https:

//github.com/xinshuoweng/GNN3DMOT

1. Introduction

Multi-object tracking (MOT) is an indispensable com-

ponent of many applications such as autonomous driving
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Figure 1. (Top): Prior work often employs a 2D or 3D feature

extractor and obtain the feature independently from each object.

(Bottom): Our work proposes a joint 2D and 3D feature extractor

and a feature interaction mechanism to improve the discriminative

feature learning for data association in MOT.

[21, 41, 49, 47]. Recent work approaches MOT in an online

manner with a tracking-by-detection [4, 45] pipeline, where

an object detector [32, 46, 28, 48] is applied to all frames

and feature is extracted independently from each detected

object. Then the pairwise feature similarity is computed be-

tween objects and used to solve the MOT with a Hungarian

algorithm [40]. The key process of this pipeline is to learn

discriminative features for objects with different identities.

Our observation is that the feature extraction in prior

work is always independent for each object as shown in

Figure 1 (Top) and there is no interaction. For example, an

object’s 2D appearance feature is computed only from its

own image patch, not involving with features of other ob-

jects. We found that this independent feature extraction is

sub-optimal for discriminative feature learning. This is rea-

sonable as the feature similarity of different objects should

be dependent in MOT, given the fact that an object in cur-

rent frame can be matched to at most one object in previous
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frame. In other words, if the pairwise feature similarity of

two objects is increased, then the pairwise feature similarity

of any one of these two objects with all other different ob-

jects should be decreased to avoid confusion for matching.

Based on the observation, we propose a novel feature

interaction mechanism for MOT as shown in Figure 1 (Bot-

tom). We achieve this by introducing the Graph Neural Net-

works (GNNs). To the best of our knowledge, our work

is the first applying the GNNs to MOT. Specifically, we

construct a graph with each node being the object feature.

Then, at every layer of the GNNs, each node can update

its feature by aggregating features from other nodes. This

node feature aggregation process is useful because each ob-

ject feature is now not isolated and can be adapted with re-

spect to other object features. We observe that, after a few

GNN layers, the computed affinity matrix becomes more

and more discriminative than the affinity matrix obtained

without feature interaction.

In addition to the feature interaction, another primary

question for discriminative feature learning in MOT is about

feature selection, i.e., “what type of feature should we

learn?”. Among different features, motion and appearance

are proved to be the most useful features. Although prior

works [50, 20, 53, 2] have explored using both appearance

and motion features, they only focus on either 2D or 3D

space as shown in Figure 1 (top). That means, prior works

use only 2D feature when approaching the 2D MOT or use

only 3D feature when approaching the 3D MOT. However,

this is not optimal as we know that 2D and 3D information

are complementary. For example, two objects can be very

close in the image but actually at a distance in 3D space

because of depth discrepancy. As a result, the 3D motion

feature is more discriminative in this case. On the other

hand, 3D detection might not be very accurate for objects

at a large distance to the camera and thus 3D motion can

be very noisy. In this case, the 2D motion feature might be

more discriminative.

To this end, we also propose a novel feature extractor

that jointly learns motion and appearance features from both

2D and 3D space as shown in Figure 1 (bottom). Specifi-

cally, the joint feature extractor has four branches with each

branch being responsible for 2D appearance, 2D motion,

3D appearance and 3D motion feature, respectively. Fea-

tures from all four branches are fused before feeding into

the GNNs for feature interaction. To ensure that the net-

work does not heavily rely on one branch, we follow the

concept of Dropout [34] and propose an ensemble train-

ing paradigm, allowing the network randomly turning off

branches during training. As a result, our network can learn

discriminative features on all branches.

Our entire network shown in Figure 2 is end-to-end train-

able. We summarize our contributions as follows: (1) We

propose a novel feature interaction mechanism for MOT by

introducing the GNNs; (2) We propose a novel feature ex-

tractor along with an ensemble training paradigm to learns

discriminative motion and appearance features from both

2D and 3D; (3) We achieve state-of-the-art performance on

two standard 3D MOT benchmarks and also a competitive

performance on the corresponding 2D MOT benchmarks.

2. Related Work

Online Multi-Object Tracking. Recent work approaches

online MOT using a tracking-by-detection pipeline, where

the performance is mostly affected by two factors: object

detection quality and discriminative feature learning. After

the affinity matrix is computed based on the pairwise simi-

larity of learned discriminative feature, online MOT can be

solved as a bipartite matching problem using the Hungar-

ian algorithm [40]. For a fair comparison with others, prior

work often uses the same detection results so that the factor

of the object detection quality can be eliminated.

To obtain discriminative feature, prior work mostly fo-

cuses on the feature selection. Among different features, it

turns out that motion and appearance are the most discrim-

inative features. Early work employs hand-crafted features

such as spatial distance [25] and Intersection of Union (IoU)

[5, 20] as the motion feature, and use color histograms [55]

as the appearance feature. Recent works [35, 2, 53, 9, 50]

often employ the Convolutional Neural Networks (CNNs)

to extract the appearance feature. For the motion feature,

many filter-based methods [45, 4] and deep learning based

methods [53, 2] have been proposed. Although prior works

[50, 20, 53, 2] have explored using both motion and appear-

ance features, they have been only focusing on either 2D

or 3D space, which might lead to failure of tracking if the

feature from 2D or 3D is not robust at certain frames. In

contrast to prior work, we propose a novel feature extractor

with four branches that jointly learns motion and appear-

ance features from both 2D and 3D space. As a result, our

method can compensate for the inaccuracy of the feature in

one branch with features from other branches.

Perhaps [56] is the closest to our work in terms of the

feature selection as [56] also proposes to jointly learn the

2D and 3D features. However, our work differs from [56]

as follows: (1) [56] only uses the appearance feature with-

out leveraging any motion cue. We observe that, when us-

ing both motion and appearance features, performance can

be improved significantly; (2) With our proposed ensemble

training paradigm, the network can be enhanced to extract

high-quality features for all four branches. However, [56]

simply learns 2D and 3D appearance features simultane-

ously, which might lead to one feature dominating the other,

which violates the purpose of multi-feature learning; (3)

The last but most important is that our work also proposes

a feature interaction mechanism for discriminative feature

learning by introducing the GNNs while [56] does not.
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Graph Neural Networks. In addition to the feature se-

lection, we also propose a novel feature interaction mech-

anism for discriminative feature learning in MOT, which is

achieved by introducing the GNNs. GNNs was first pro-

posed by [12] to directly process graph-structured data us-

ing neural networks. The major component of the GNNs

is the node feature aggregation technique, with which node

can update its feature by interacting with other nodes. With

this technique, significant success has been achieved in

many fields using GNNs such as semantic segmentation

[7, 54], action recognition [19, 31, 57, 42], single object

tracking [10], person re-identification [51], point cloud clas-

sification and segmentation [44].

Although GNNs have shown promising performance in

many fields, there is no existing work that applies GNNs to

MOT. To the best of our knowledge, our work is the first

attempt using GNNs for online MOT. With the node aggre-

gation technique of the GNNs, our proposed method can it-

eratively evolve the object features so that the feature of dif-

ferent objects can more discriminative. Our work is signifi-

cantly different from prior work in which object features are

isolated and independent of other objects. Perhaps the rela-

tion network proposed in [15] is the closest to our work in

terms of modeling the feature interaction. However, the fea-

ture interaction in [15] only exists in the spatial domain to

encode context information for object detection. Although a

temporal relation network is proposed in the follow-up work

[52], the feature of a tracked object is only aggregating from

its past trajectory and no interaction with other object fea-

tures exist. In contrast, our work proposes a generic feature

interaction framework that can model any kind of interac-

tion in both spatial and temporal domains and is applicable

for features from different modalities.

3. Approach

The goal of online MOT is to associate existing tracked

objects from previous frame with new detected objects in

current frame. Given M tracked objects oi ∈ O at frame t

where i ∈ {1,2, · · · ,M} and also N detected objects dj ∈ D

in frame t+1 where j ∈ {1,2, · · · ,N}, we want to learn dis-

criminative feature from O and D and then find the correct

matching based on the pairwise feature similarity.

In Figure 2, our entire network consists of: (a) a 3D ap-

pearance and motion feature extractor; (b) a 2D appearance

and motion feature extractor. Both 2D and 3D feature ex-

tractors are applied to all objects in O and D and then the

extracted features are fused together, (c) a graph neural net-

work that takes the fused object feature as input and con-

structs a graph with node being the object feature in frame t

and t+1. Then, the graph neural network iteratively aggre-

gates the node feature from the neighborhood and computes

the affinity matrix for matching using edge regression.

To apply the online MOT to an entire video at inference

time, an object detector must be applied to all frames in

advance. As our 2D and 3D feature extractors need ob-

ject detection correspondences in 2D and 3D space, it is

nontrivial to obtain the 2D detections and 3D detections

separately and then obtain the detection correspondences.

Instead, we only use a 3D object detector to obtain 3D

detections and then 2D detections are projected from the

3D detections given the camera projection matrix. Fol-

lowing [32, 46], we parameterize the 3D detection as a

tuple of d3D={x, y, z, l,w, h, θ} where (x, y, z) denotes the

object center in 3D space, (l,w, h) denotes the object size

and θ is the heading angle. For 2D detection, we param-

eterize it as a tuple of d2D={xc, yc,w, h} where (xc, yc) is

object center in 2D space and (w, h) denotes width and

height. For tracked objects O, we use the same parameter-

ization except for having an additional assigned ID I, i.e.,

o3D={x, y, z, l,w, h, θ, I} and o2D={xc, yc,w, h, I}.

3.1. Joint 2D and 3D Feature Extractor

To utilize the information for different modalities and

learn discriminative feature, our proposed joint feature ex-

tractor with four branches leverages appearance and motion

features from both 2D and 3D space, where two branches

perform the 3D appearance and motion feature extraction

and other two branches perform the 2D feature extraction.

3D Appearance/Motion Feature Extraction. As shown in

Figure 2 (a), given a detected object d3D
j

in frame t+1 or a

tracked object o3D
i

in frame t, we want to obtain the corre-

sponding 3D feature f3D
t
i and f3D

t+1
j including both appear-

ance and motion information. For appearance branch, we

use the LiDAR point cloud as the appearance cue. We first

extract the point cloud enclosed by the 3D detection box

and then apply the PointNet [8, 26] to obtain the feature.

For motion branch, we directly use the 3D detection box

as the motion cue. Note that we use different 3D motion

feature extractor for tracked and detected objects as tracked

objects have associated trajectory in past frames while de-

tected objects do not have. For tracked object o3D
i

, we apply

the LSTMs that take into the object’s 3D detections in past

T frames to obtain the feature. For detected object d3D
j

, we

use a 2-layer MLP (Multi-Layer Perceptron) that takes the

detection in frame t+1 as input to extract the feature. The

final 3D feature f3D
t
i and f3D

t+1
j for tracked and detected

objects is obtained by concatenating the 3D motion and ap-

pearance features. To balance the contribution of the motion

and appearance features, we force the final motion and ap-

pearance feature vectors to have the same dimensionality.

2D Appearance/Motion Feature Extraction. As in Figure

2 (b), the structure of 2D feature extractor is very similar to

the 3D feature extractor explained above except for two as-

pects: (1) objects o2D
i

or d2D
j

are parameterized as 2D box

(xc, yc,w, h) in instead of the 3D box. Therefore, the input
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Figure 2. Proposed Network. (a)(b) Our proposed joint feature extractor obtains the feature for tracked objects oi in frame t and detected

objects dj in frame t+1 by utilizing the appearance and motion information from both 2D and 3D space; (c) We fuse the object features

from different branches and construct a graph with the node being the object feature. Then, in every layer of the GNN, the node features

are iteratively updated with the node feature aggregation technique and the affinity matrix is computed via the edge regression module. To

train the entire network, we employ batch triplet loss on the node feature and affinity loss on the predicted affinity matrix in all layers.

to motion branch is different; (2) for appearance branch, we

use image patch as the appearance cue, which is cropped

from the entire image based on the 2D detections. To pro-

cess the image patch and obtain the 2D appearance feature,

we use CNNs (e.g., VGGNet [33] or ResNet [14]). The fi-

nal 2D feature f2D
t
i and f2D

t+1
j is obtained by concatenating

the 2D motion and appearance features.

Feature Fusion. Before feeding the object feature into the

graph neural network, we need to fuse the feature obtained

from the 2D and 3D feature extractors. We have tried two

different fusion operators: (1) concatenate the 2D and 3D

features; (2) add the 2D and 3D features together. Using the

“add” fusion operator is feasible because we also force the

2D and 3D features (e.g., f2D
t
i and f3D

t
i ) to have the same

dimensionality. We will show how different fusion opera-

tor affects the performance in the experiments. We use the

concatenation as the fusion operator in our final network.

Ensemble Training Paradigm. As our network has four

branches of feature extractor and one branch may domi-

nate the others, which violates the purpose of multi-feature

learning. To avoid such cases, we propose an ensemble

training paradigm. Similar to the concept of the Dropout

[34], we randomly drop one to three branches (i.e., keep at

least one) during every iteration of the training. Specifically,

we create two random generators. The first random gener-

ator produces 0 (“not drop”) or 1 (“drop”) with a ratio r of

producing “drop”, where r is a scalar between 0 and 1. In

the case of “drop”, the second random generator produces a

random integer between 1 to 14, which controls which com-

bination of branches should be dropped. For example, the

dropped branches can be a combination of 2D motion and

3D appearance branches.

3.2. Graph Neural Network for Data Association

Graph Construction. After feature fusion, we should have

M features for tracked objects in frame t and also N fea-

tures for detected objects in frame t+1. We then construct

a graph with each node being the object feature. In total,

we have M+N nodes in the graph as shown in Figure 2 (c).

We then define the neighborhood of the node (i.e., edges

in the graph). One simple way is to have an edge between

each pair of nodes, which results in a fully-connected graph

and can be computationally expensive. Instead of using this

simple edge construction, we utilize prior knowledge about

online MOT, where the matching should only happen across

frames (i.e., not within the same frame). Specifically, we

construct the edge only between the pair of nodes in differ-

ent frames. Also, for any tracked object oi in frame t, the
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possible matched detection dj in frame t+1 is most likely

located in the nearby location. Therefore, we construct the

edge only if two nodes’ detection centers have distance less

than Dist3D
max meters in 3D space and Dist2D

max pixels in the

image. As a result, we have a sparse edge connection across

frames in our final network as shown in Figure 2 (c).

Edge Regression. To solve the online MOT, we need to

compute the M × N affinity matrix A based on the pairwise

similarity of the features extracted from M tracked objects

in frame t and N detected objects in frame t+1. In the con-

text of GNN, we call this process as edge regression. We

have tried three metrics for measuring the feature similarity.

The first two are cosine similarity and negative L2 distance,

which are conventional metrics used in the MOT commu-

nity. The third one is to employ a two-layer MLP that takes

the difference of two node features as input and outputs a

scalar value between 0 to 1 as the pairwise similarity score:

Ai j = Sigmoid(σ2(ReLU(σ1(n
t
i − nt+1

j )))), (1)

where σ1 and σ2 are two different linear layers. In addition,

nt
i

and nt+1
j

are two node features in different frames where

i ∈ {1,2, · · · ,M}, j ∈ {1,2, · · · ,N}, In our final network,

we use the MLP as the metric for edge regression and we

will show how performance is affected by different metrics

in the experiments.

Node Feature Aggregation. To model feature interaction

in GNN, we iteratively update the node feature by aggregat-

ing features from the neighborhood (i.e., nodes connected

by the edge) in every layer of the GNN as shown in Figure

2 (c). To comprehensively analyze how different types of

node aggregation rules affects the performance of the MOT,

we study four rules used in modern GNNs (e.g., GraphConv

[22], GATConv [37], EdgeConv [44], etc) as below:

(Type 1) nti
′
=

∑
j∈N (i)

σ3(n
t+1
j ), (2)

(Type 2) nti
′
= σ4(n

t
i ) +

∑
j∈N (i)

σ3(n
t+1
j ), (3)

(Type 3) nti
′
= σ4(n

t
i ) +

∑
j∈N (i)

σ3(n
t+1
j − nti ), (4)

(Type 4) nti
′
= σ4(n

t
i ) +

∑
j∈N (i)

σ3(Ai j(n
t+1
j − nti )), (5)

where N (i) denotes a set of neighborhood nodes in frame

t+1 with respect to the node i in frame t, given the fact that

edge is only defined across frames in our sparse graph con-

struction. Also, σ3, σ4 are linear layers which have differ-

ent weights across layers of the GNN. The weight Ai j is ob-

tained from the affinity matrix in the current layer. Note that

before the node feature aggregation in each layer, a nonlin-

ear ReLU operator is applied to the node features.

In type 1 rule of Eq. 2, node feature is updated by aggre-

gating features from only the neighborhood nodes, which is

limited for MOT because the feature of the node itself is for-

gotten after aggregation. In type 2 rule, we compensate for

this limitation by adding feature of the node itself as shown

in the first term of Eq. 3 in addition to the features aggrega-

tion from the neighborhood. In type 3 rule of Eq. 4, feature

from the neighborhood node in the second term is replaced

with the difference of the features between the node itself

and the neighborhood node. In type 4 rule of Eq. 5, we add

an attention weight obtained from the affinity matrix to the

feature aggregation in the second term so that the network

can focus on the neighborhood node with a higher affinity

score, i.e., possibly the object with the same ID. We will

evaluate all four node feature aggregation rules and also the

number of graph layers (i.e., number of times performing

the node feature aggregation) in the experiments.

3.3. Losses

Our proposed network employs two losses in all K layers

during training: (1) batch triple loss Ltri; (2) affinity loss

Laff . We can summarize the entire loss function L as below:

L =
∑K−1

k=0
(Lk

tri + Lk
aff). (6)

Batch Triplet Loss. In order to learn discriminative fea-

tures for matching, we first apply a batch triplet loss to node

feature in every layer of the GNN. For node nt
i

that has a

matched node nt+1
j

(i.e., the object oi has the same ID with

dj), the batch triplet loss in each layer is defined as:

Ltri = max( | |nti − nt+1
j | | − min

ds ∈D
idi,ids

| |nti − nt+1
s | |

− min
or ∈O
idr,id j

| |ntr − nt+1
j | | + α, 0),

(7)

where α is the margin of the triplet loss. nt+1
s is a node

in frame t+1 that has a different ID from node nt+1
j

and nt
i
.

Similarly, ntr is a node in frame t that has a different ID from

node nt
i

and nt+1
j

. Note that the above batch triplet loss is

slightly different from the original definition as in [39, 1].

First, we only have one positive pair of node that has the

same ID as shown in the first term | |nt
i
− nt+1

j
| | so that there

is no need to apply the max operation over a batch. For

the negative pair of node, we have two symmetric terms,

where the first negative term forces the node feature nt
i

to be

different from any node that has a different ID in frame t+1

and the second negative term forces the node feature nt+1
j

to

be different from any node that has a different ID in frame

t. In the case that nt
i

does not have a matched node in frame

t+1 with the same ID, we delete the first term | |nt
i
− nt+1

j
| |

for the positive pair of node in Eq. 7 and only minimize the

remaining two negative terms in the loss Ltri.

Affinity Loss. In addition to the batch triplet loss applied

to the node feature, we also employ an affinity loss Laff to

directly supervise the final output of the network, i.e., the

predicted affinity matrix A. Our affinity loss consists of two

individual losses. First, as we know that the ground truth

affinity matrix Ag can only have integer 0 or 1 on all the en-

tries, we can formulate the prediction of the affinity matrix
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as a binary classification problem. Therefore, our first loss

is the binary cross entropy loss Lbce that is applied on each

entry of our predicted affinity matrix A as shown below:

Lbce =
−1

MN

M∑

i

N∑

j

A
g

ij
log Ai j + (1− A

g

ij
) log(1− Ai j). (8)

Also, we know that each tracked object ot
i

in frame t can

only have either one matched detection dt+1
j

or no match at

all. In other words, each row and column of the Ag can only

be a one-hot vector (i.e., a vector with 1 in a single entry and

0 in all other entries) or an all-zero vector. This motivates

our second loss for the affinity matrix. For all rows and

columns that have a one-hot vector in Ag, we apply the cross

entropy loss Lce to the corresponding rows and columns of

A. As an example shown below, the column A
g

· j
in ground

truth affinity matrix is a one-hot vector and the loss Lce for

the jth column is defined as:

Lce =
−1

M

M∑

i

A
g

ij
log(

exp Ai j∑M
i exp Ai j

). (9)

We can now summarize the affinity loss Laff as below:

Laff = Lbce + Lce. (10)

3.4. Tracking Management

Although the discriminative feature learning can help

resolve confusion for matching, it is still possible that a

tracked object is matched to a false positive detection. Also,

there might be the case where a tracked object still exists but

cannot find a match due to missing detection (i.e., false neg-

ative). To avoid such cases, a tracking management module

that controls the birth and death of the objects is necessary

in MOT to reduce the false positives and false negatives.

We follow [4, 45] and maintain a death count and a birth

count for each object. If a new object is able to find the

match in Birmin frames continuously, we will then assign an

ID to this object and add it to the set of tracked objects O.

However, if this object stops finding the match before being

assigned an ID, we will reset the birth count to zero. On

the other hand, if a tracked object cannot find the matched

detection in Agemax frames, we believe that this object has

disappeared and will delete it from the set of tracked objects

O. However, if this tracked object can still find a match be-

fore being deleted, we believe that the object still exists and

will reset the death count to zero. In the first frame of the

video, we initialize the tracked objects O as an empty set.

4. Experiments

4.1. Settings

Dataset. To demonstrate the strength of our joint 2D-3D

feature extractor, we evaluate our network on KITTI [11]

and nuScenes [6] datasets, which provide both 2D (images

and 2D boxes) and 3D data (LiDAR point cloud and 3D

boxes). For KITTI, same as most prior works, we report

results on the car subset for comparison. For nuScenes, we

evaluate on all categories and the final performance is the

mean over all categories. As the focus of this paper is 3D

MOT, we report and compare 3D MOT performance on the

KITTI and nuScenes datasets. Since KITTI has an official

2D MOT benchmark, we also report 2D MOT results on

KITTI for reference, which is achieved by projecting our

3D MOT results to the image space.

Evaluation Metrics. We use standard CLEAR metrics [3]

(including MOTA, MOTP, IDS, FRAG and FPS) and also

the new sAMOTA, AMOTA and AMOTP metrics proposed

in [45] for 3D MOT and 2D MOT evaluation. For 3D MOT

evaluation, we use the evaluation tool proposed by [45]. As

KITTI and nuScenes datasets do not release the ground truth

of test set to users, we use the validation set for 3D MOT

evaluation. For KITTI 2D MOT evaluation, we use the of-

ficial KITTI 2D MOT evaluation tool [11]. In terms of the

training, validation and testing split, we use the official one

on nuScenes. As KITTI does not have an official split, we

use the one proposed by [29].

Baselines. For 3D MOT, we compare with recent open-

source 3D MOT systems such as FANTrack [2], mmMOT

[56] and AB3DMOT [45], which also use the 3D LiDAR

data (either directly used in 3D MOT or indirectly used in

order to obtain the 3D detections for 3D MOT) for fair com-

parison with our 3D MOT method. For 2D MOT, we com-

pare with state-of-the-art published 2D MOT systems on the

KITTI MOT leaderboard.

4.2. Implementation Details

3D Object Detection. For fair comparison in KITTI, we

use the same 3D detections from PointRCNN [32] for all

3D MOT methods (including our method and the baselines)

that require 3D detections as inputs. For 3D MOT meth-

ods that also require 2D detections, e.g., the 2D feature ex-

traction branch in our method, we use the 2D projection of

3D detections from [32]. For nuScenes, the same rule also

applies except that the 3D detections obtained by [32] is

replaced with the 3D detections obtained by [58]. For data

augmentation, we perturb the ground truth box during train-

ing with a ratio of 0.1 with respect to the size of the box.

Joint Feature Extractor. We use the feature with same di-

mensionality of 64 for all four branches. For 3D appearance

branch, we use the PointNet with six 1D Convolutional lay-

ers that maps the input point cloud with size of P (number

of points) × 4 (x, y, z, reflectance) to P × 64 (4⇒16⇒32

⇒64⇒128⇒256⇒64). Then, a max pooling operation is

applied along the axis of P to obtain the 3D appearance

feature with the dimensionality of 64. For 2D appearance

branch, we resize the cropped image patch for each object to

56 × 84 and use the ResNet34 to extract the 2D appearance
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Table 1. Quantitative comparison on KITTI-Car val set. The evaluation is conducted in 3D space using [45] 3D MOT evaluation tool.

Method Input Data sAMOTA (%) ↑ AMOTA (%) ↑ AMOTP (%) ↑ MOTA (%) ↑ MOTP (%) ↑ IDS ↓ FRAG ↓

mmMOT [56] (ICCV′19) 2D + 3D 70.61 33.08 72.45 74.07 78.16 10 125

FANTrack [2] (IV′19) 2D + 3D 82.97 40.03 75.01 74.30 75.24 35 202

AB3DMOT[45] (arXiv′19) 3D 91.78 44.26 77.41 83.35 78.43 0 15

Ours 2D + 3D 93.68 45.27 78.10 84.70 79.03 0 10

Table 2. Quantitative comparison on KITTI-Car test set. The evaluation is conducted in 2D space using KITTI 2D MOT evaluation tool.

Method Input Data MOTA (%) ↑ MOTP (%) ↑ MT (%) ↑ ML (%) ↓ IDS ↓ FRAG ↓ FPS ↑

CIWT [24] (ICRA′17) 2D 75.39 79.25 49.85 10.31 165 660 2.8

FANTrack [2] (IV′19) 2D + 3D 77.72 82.32 62.61 8.76 150 812 25.0 (GPU)

AB3DMOT[45] (arXiv′19) 3D 83.84 85.24 66.92 11.38 9 224 214.7

BeyondPixels [30] (ICRA′18) 2D 84.24 85.73 73.23 2.77 468 944 3.33

3DT [16] (ICCV′19) 2D 84.52 85.64 73.38 2.77 377 847 33.3 (GPU)

mmMOT [56] (ICCV′19) 2D + 3D 84.77 85.21 73.23 2.77 284 753 4.8 (GPU)

MASS [17] (IEEE Access′19) 2D 85.04 85.53 74.31 2.77 301 744 100.0

Ours 2D + 3D 80.40 85.05 70.77 11.08 113 265 5.2 (GPU)

Ours + 2D detections from [27] 2D 82.24 84.05 64.92 6.00 142 416 5.1 (GPU)

Table 3. Quantitative comparison on nuScenes validation set. The

evaluation is conducted in 3D space with 3D MOT evaluation tool.
Method sAMOTA (%) ↑ AMOTA (%) ↑ AMOTP (%) ↑ MOTA (%) ↑

FANTrack [2] 19.64 2.36 22.92 18.60

mmMOT [56] 23.93 2.11 21.28 19.82

AB3DMOT[45] 27.90 4.93 23.89 21.46

Ours 29.84 6.21 24.02 23.53

feature. For 2D and 3D motion branches, we use a two-

layer LSTMs with a hidden size of 64 and number of past

frames T=5 for tracked objects. For tracked objects which

only have associated detections in past R (< T) frames, we

repeat the earliest detection T-R times so that the objects

can have T frames of detections. For detected objects, we

employ a two-layer MLP (4⇒16⇒64 in 2D motion branch,

7⇒32 ⇒64 in 3D motion branch).

Feature Fusion and Ensemble Training Paradigm. In

feature fusion, if a branch is dropped, we fill in zeros into

the feature corresponding to the dropped branch before fu-

sion so that the feature fusion module is compatible with the

ensemble training paradigm. For drop ratio, we use r = 0.5.

Graph Neural Network and Miscellaneous. We use the

Dist3D
max=5 and Dist2D

max=200 in our sparse graph construc-

tion. We use three GNN layers (i.e., K=4) with each layer

having feature with same dimensionality. For example,

when we use “concatenate” as the fusion operator, we will

have node feature with dimensionality of 256 in all layers

of GNN. For edge regression, we use a two-layer MLP with

hidden feature dimension of 256⇒64⇒1. For batch triplet

loss, we use the margin α=10. For the tracking manage-

ment, we use Agemax=4 and Birmin=10.

4.3. Experimental Results

Results on KITTI. We summarize the 3D MOT and 2D

MOT results on KITTI-Car dataset in Table 1 and 2. For

3D MOT evaluation in Table 1, our proposed method con-

sistently outperforms other modern 3D MOT systems in all

metrics. For 2D MOT evaluation in Table 2, our network is

behind prior work and only achieves 80.40 2D MOTA. One

Table 4. Effect of Joint Feature Extractor. Results are evaluated

on KITTI-Car val set using 3D MOT evaluation tool. Appearance

and motion features are denoted as “A” and “M” respectively.

Feature Extractor sAMOTA (%) ↑ AMOTA (%) ↑ AMOTP (%) ↑ MOTA (%) ↑

2D A 88.31 41.62 76.22 79.42

2D M 64.24 23.95 61.13 54.88

3D A 88.27 41.55 76.29 77.38

3D M 88.57 41.62 76.22 81.84

2D+3D A 89.39 42.55 76.24 83.02

2D+3D M 91.75 44.75 78.05 84.54

2D M+A 90.56 44.39 78.20 83.15

3D M+A 91.30 44.31 78.16 84.06

2D+3D M+A (Ours) 93.68 45.27 78.10 84.70

possible reason is that the 2D projection of 3D detection re-

sults we use has lower precision and recall than a state-of-

the-art 2D detector [27] used in prior work. For fair com-

parison, we simply replace the input 2D detections with [27]

while keeping all hyper-parameters fixed and show the re-

sults in the last row of Table 2. As a result, the MOTA of our

proposed method is improved about 2% without bells and

whistles. We argue that it is highly possible that our pro-

posed method can achieve higher performance on 2D MOT

after hyper-parameter searching based on 2D MOT evalu-

ation. Currently, all ablation analysis is performed on 3D

MOT evaluation, meaning that the hyper-parameters of our

method are only tuned for 3D MOT and not for 2D MOT.

Results on nuScenes. In Table 3, our method achieves the

state-of-the-art 3D MOT performance on nuScenes. As the

3D detection performance is not yet mature on nuScenes

compared to KITTI, 3D MOT performance on nuScenes is

consistently lower than on KITTI.

Inference Time. Our network runs at a rate of 5.2 FPS on

the KITTI test set with a single 1080Ti GPU.

Qualitative Comparison. We show our qualitative results

on two sequences of the KITTI test set in Figure 4.

4.4. Ablation Study

We conduct the ablation study on KITTI-Car validation

set using 3D MOT evaluation tool proposed by [45].
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Figure 3. (a) Effect of Ensemble Training Paradigm. We vary the drop ratio r from 0 to 1 with an interval of 0.1. Results suggest that

r=0.5 is the best. (b) Effect of Number of GNN Layers. We increase the number of layers from 0 (i.e., deactivate the GNN) to 5 and

use the output from the last layer of GNN for evaluation. The highest accuracy is obtained when using three layers. (c) Effect of Feature

Interaction. For our final network with three GNN layers, we evaluate the output of layer 0 (i.e., deactivate the GNN) to layer 3. Results

suggest that the output from the last layer of the GNN achieve the highest performance.

Figure 4. Qualitative results of our method on sequence 0 (top row) and 3 (bottom row) of the KITTI test set.

Table 5. Effect of Feature Fusion Operators. Results are evalu-

ated on KITTI-Car val set using 3D MOT evaluation tool.
Fusion sAMOTA (%) ↑ AMOTA (%) ↑ AMOTP (%) ↑ MOTA (%) ↑

Add 89.98 42.97 75.96 82.55

Concatenate (Ours) 93.68 45.27 78.10 84.70

Table 6. Effect of Edge Regression Modules. Results are evalu-

ated on KITTI-Car val set using 3D MOT evaluation tool.
Edge Regression sAMOTA (%) ↑ AMOTA (%) ↑ AMOTP (%) ↑ MOTA (%) ↑

Negative L2 Distance 82.26 41.38 72.42 70.71

Cosine Similarity 87.07 43.18 72.17 75.46

MLP (Ours) 93.68 45.27 78.10 84.70

Effect of Joint Feature Extractor. In Table 4, we evaluate

the effect of each individual feature extractor and the com-

bination of them. We show that combining features from

different modalities improves performance, suggesting that

different features are complementary to others.

Effect of Feature Fusion Operators. In Table 5, we show

that using “concatenate” is better than “add” for fusion.

Effect of Edge Regression Modules. In Table 6, the two-

layer MLP used in our final network achieves better perfor-

mance than the conventional similarity metrics.

Effect of Node Aggregation Rules. In Table 7, we show

that type 4 rule performs the best. Also, for different GNNs

with type 2 rule, performance varies significantly.

Effect of Ensemble Training Paradigm. In Figure 3 (a),

we observe that using ensemble training paradigm signifi-

cantly improves the performance with r=0.5 being the best.

Table 7. Effect of Node Aggregation Rules. Results are evaluated

on KITTI-Car val set using 3D MOT evaluation tool.
Node Aggregation sAMOTA (%) ↑ AMOTA (%) ↑ AMOTP (%) ↑ MOTA (%) ↑

Type 1 75.61 32.84 65.81 67.43

Type 2 (SAGEConv [13]) 87.81 41.06 76.29 77.22

Type 2 (GCN [18]) 89.78 43.37 78.06 80.67

Type 2 (GraphConv [23]) 91.15 44.78 77.93 82.31

Type 2 (GATConv [38]) 91.66 44.57 77.99 82.37

Type 2 (AGNNConv [36]) 91.88 44.95 78.00 84.32

Type 3 (EdgeConv [43]) 92.17 44.65 77.98 83.73

Type 4 (Ours) 93.68 45.27 78.10 84.70

Effect of Number of GNN Layers. In Figure 3 (b), in-

creasing the number of GNN layers improves the perfor-

mance with three GNN layers being the best. We did not

experiment with GNN larger than five layers as the GNN

tends to overfit when it becomes very deep.

Effect of Feature Interaction. In Figure 3 (c), we show

that feature interaction in GNNs is effective as the perfor-

mance increases when we use the output from a later layer.

5. Conclusion

We propose a 3D MOT method with a novel joint 2D-3D

feature extractor and a novel feature interaction mechanism

achieved by GNNs in order to improve the discriminative

feature learning in MOT. Through extensive experiments,

we demonstrate the effectiveness of each individual mod-

ule in our proposed method, establishing state-of-the-art 3D

MOT performance on the KITTI and nuScenes datasets.
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