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Abstract

In this paper, we explore synthesizing person images with

multiple conditions for various backgrounds. To this end,

we propose a framework named “MISC” for conditional

image generation and image compositing. For conditional

image generation, we improve the existing condition

injection mechanisms by leveraging the inter-condition

correlations. For the image compositing, we theoretically

prove the weaknesses of the cutting-edge methods, and

make it more robust by removing the spatially-invariance

constraint, and enabling the bounding mechanism and

the spatial adaptability. We show the effectiveness of our

method on the Video Instance-level Parsing dataset, and

demonstrate the robustness through controllability tests.

1. Introduction

Conditional person image synthesis is vital in many ap-

plication scenarios, e.g., augmented reality and data cre-

ation. This problem can be formulated as two phases (Fig-

ure 1): (i) conditional generation phase: on the basis of

a geometry condition, generating the fine-grained textures

for this person following the pattern and color conditions as

precisely as possible; (ii) adaptive compositing phase: ad-

justing the color tone of the generated person adaptively to-

wards different backgrounds, so that the generated textures

not only look realistic by themselves, but also remain real-

istic after being composited with the background.

For conditional image generation, recent works [10, 12,

14, 20] suggest that a proper injection of conditions into

the generation pipeline is crucial to the generation qual-

ity. However, existing methods are designed based on ei-

ther the assumption of a unique condition or the indepen-

dence among multiple conditions, and few of them attempt

to improve the condition injection by leveraging the inter-

condition correlations. Specific to the conditional person

generation phase, it takes three conditions as input, i.e., ge-
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Figure 1. Illustration of the conditional person image synthesis

problem, which includes a generation and a compositing phase.

ometry, pattern (viz., gray-scale textures) and color, which

are instantiated herein as the parsing mask, Gaussian noise,

and multi-valued color attributes, respectively. The geom-

etry condition is visually concrete, while the pattern and

color are abstract and are correlated with the geometry.

Thus, the conditional person generation can be regarded as

a visual concretization of the abstract conditions which is

constrained by the innate concrete conditions.

On the other hand, an image compositing model is neces-

sary for harmonizing the generated person foreground and

the target background. Cutting-edge works, e.g., [1, 24],

perform the compositing by adjusting the global color tone

of the foreground with an inferred spatially-invariant affine

transformation. However, we discover that such a spatially-

invariant transformation at the pixel level could lead to the

over-saturated effects due to the unbounded value range of

the transformed foreground image. Therefore, a more ro-

bust compositing model is desired for handling our task.

In this paper, we present MISC (Multi-condition Injec-

tion and Spatially-adaptive Compositing), an end-to-end

trainable deep neural network to address the above men-

tioned problems for conditional person image synthesis.

MISC includes a conditional person generation model and
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a spatially-adaptive image composition model.

The generation model is a multistage convolutional neu-

ral network where two new modules are introduced for in-

jecting the pattern and color conditions respectively based

on their inferred or inherent correlations with the determi-

nate geometry condition. Regarding the pattern condition,

we format it as Gaussian noise and propose a conditional

normalization layer, namely geometry-guided adaptive in-

stance normalization (GAIN), to modulate the activations

using the Gaussian noise while constraining the steepness

of image gradients through a geometry-guided gate with-

out harming the controllability of the condition. For inject-

ing the color condition, we use a bipartite network projec-

tion method to project the attribute embeddings (encoded

by a multi-valued attribute encoder) to their inherently as-

sociated spatial locations of a person geometry, and a pre-

trained cross-modality similarity model to enhance the se-

mantic meaningfulness of the attribute embeddings.

The compositing model is another convolutional neu-

ral network which takes the generated foreground person

image and a provided background image to infer the per-

pixel color transformation parameters for the foreground

image. Compared to previous spatially-invariant compost-

ing model, it adjusts the color tone of the generated fore-

ground with high robustness and training stability.

We conduct extensive experiments, and perform detailed

ablation study and controllability study on Video Instance-

level Parsing dataset [23]. We show that MISC can achieve

more convincing person synthesis results than baselines

with other related architectures. MISC binds the color con-

dition with the pattern condition for synthesizing the real-

istic non-uniform textures, which distinguishes MISC from

the naive global adjustment for the hue channel of an image.

2. Related Work

There are four main ways of injecting conditions. (i)

Many methods [9, 18] input the condition directly through

the first layer of a feed-forward network, which suffers from

the “condition dilution” problem as indicated in [10, 14].

(ii) Some works [4, 21] tile the input condition uniformly,

and concatenates the tiled condition to the intermediate fea-

ture maps within the generation pipeline. Since not all in-

formation encoded in the condition is useful to every spatial

location, such a uniform fashion causes extra burdens for

the generation model on the information selection. (iii) An

improved module of the uniform injection is the attentive

aggregation, e.g., [11, 20], which estimates the usefulness

of the conditional information, and attentively aggregates

the useful conditional information for each spatial location.

The effectiveness of this module depends on the reliabil-

ity of the usefulness estimation. (iv) The conditional nor-

malization is proposed to alleviate the “condition dilution”

problem by performing an affine transformation after each

normalization operation. The affine parameters, which are

inferred through a network from the input condition, are re-

sponsible for modulating the activations either element-by-

element [14] or channel-by-channel [10]. The element-wise

transformation is tailored for the visually concrete condi-

tion with spatial dimensions, e.g., parsing mask, while the

channel-wise one is much more general and not limited to

spatial-explicit condition, and thus should be more suitable

for our abstract pattern condition, i.e., Gaussian noise.

There are five main methodologies for adjusting the

color tone of images for the compositing purpose. (i) Some

methods [17, 19] investigate the matching between the low-

level handcrafted features of the foreground and those of the

background. Their limitation lies in the generalization be-

cause of the assumption that the contents or color tones of

foreground and background are highly correlated. (ii) Tsai

et al. [16] explore the color tone adjustment together with

the semantic segmentation as a dual task, which causes the

extra computational burdens. (iii) Cun and Pan [3] assume

the availability of the ground-truth realistic composited im-

ages, so they can apply the reconstruction loss for training.

(iv) Chen and Kae [1] aim to infer the spatially-invariant

color-tone affine parameters using a feed-forward network.

(v) Some other methods [1, 6, 15] use a lightweight segmen-

tation based adversarial discriminator which plays against

the compositing model by identifying the composited fore-

ground area. Considering the above issues, we design

our compositing model by improving the fourth and fifth

methodologies to be more robust in our task.

3. Conditional Person Image Synthesis

The conditional person image synthesis is formulated as

a generation-compositing setting, under which a person im-

age y is formulated as a composition of a foreground yf and

the remaining regions as the provided background yb:

y = m⊙ yf + (1−m)⊙ yb. (1)

Our generation model FG aims at mapping a combina-

tion of conditions x to a raw person foreground ŷf of which

the semantic information corresponds to x. The generation

phase is formulated as ŷ = FG(x). Following Eq. (1), ŷ

can be decomposed into ŷf and ŷb. Our compositing model

FC estimates the contrast and brightness parameters, (ρ, τ),
based on ŷf and a desirable background yb:

(ρ, τ) = FC(ŷf, yb). (2)

The color tone of ŷf can thus be adjusted towards yb through

an affine transformation with (ρ, τ). Then, we can synthe-

size a complete person image ys by blending the adjusted yf

with yb as in Eq. (1).

3.1. Conditional generation

The input conditions x to FG include the geometry xg,

pattern xp and color xc. The definitions are as follows:
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Figure 2. (a) The multistage conditional generator FG takes as in-

put three conditions, i.e., pattern x
p, color xc, and geometry x

g
i

for

the (i + 1)-th stage. x
p and x

c are encoded by Encp and Encc to

form e
p and e

c for condition injection. x
g
0 is encoded by Encg to

form the initial feature maps h0. The red and blue arrows indi-

cate that ep and e
c are injected into F

G under the guidance (green

arrows) of x
g
i
. e

gc
i

is the spatially-specific color condition and

e
gc
i
= e

c ⊗x
g
i
, where ⊗ denotes a bipartite network projection. (b)

A ResBlk with GAIN for injecting e
p. (c) In GAIN, the injection

of ep is performed by a geometry-guided affine transformation.

(i) xg ∈ L
Ng×H×W is a body part parsing mask, where

L ∈ {0, 1}, and Ng, H and W represent the number of body

parts, image height and width, respectively. Entry xg[k, i, j]
indicates the coverage of the k-th body part for the location

(i, j) on the image plain. Let m ∈ L
H×W be an overall

mask which is formed by a max-pooling along dimension

Ng of xg. (ii) xp ∼ N (0, 1) is a Gaussian noise vector,

which has two unique properties. First, it is free of annota-

tion. Second, latent space of the Gaussian noise is continu-

ous, so it should provide high variety in generating clothing

textures and decorative design. (iii) xc ∈ L
Nc×Nv denotes

the multi-valued attributes, where L ∈ {0, 1}, Nc and Nv

represent the number of attributes, e.g., coat color, and the

number of values, e.g., blue, respectively. Entry xc[i, j] = 1
indicates the existence of the j-th value of the i-th attribute.

Multiple values are allowed to co-exist for an attribute.

Among the three conditions, xg is visually concrete,

while xp and xc are abstract. Therefore, the mapping of

these conditions to a person foreground can be regarded as

a visual concretization process of the abstract conditions.

As shown in Figure 2 (a), we design our conditional gen-

eration model FG to be multistage, in which every stage

shares the architecture of the stacking of two residual blocks

as shown in Figure 2 (b). Let FG
i+1 denote the architec-

ture of the (i + 1)-th stage of FG, then we have hi+1 =
FG
i+1(hi, x

g
i , e

p, ec), where hi represents the intermediate

features from the previous stage. x
g
i denotes the geome-

try condition with the corresponding spatial resolution to

the i-th stage, ep = Encp(xp) represents the pattern embed-

ding output by a pattern encoder Encp, and ec = Encc(xc)
represents the color attribute embedding output by a color

encoder Encp. The output of each stage, hi+1, can be fed

into a conv-tanh block (omitted in Figure 2) to generate an

image yf
i+1. The resolution of yf

i+1 and x
g
i increases with i.

The goal of FG is to facilitate the visual conretization of

the abstract conditions xp and xc. To achieve this goal, it

is necessary to have proper condition injection mechanisms

for xp and xc. To this end, we propose novel network archi-

tectures and training mechanisms for injecting xp (§3.1.1)

and xc (§3.1.2) via leveraging their inferred or inherent cor-

relations with the visually concrete condition xg.

3.1.1 Pattern injection

AdaIN. Our pattern condition xp is defined as a Gaussian

noise vector. The adaptive instance normalization (AdaIN)

[10, 7, 8] is well-known for injecting the Gaussian noise

through denormalizing the normalized activations with the

inferred affine parameters in a channel-wise fashion. Given

a pattern embedding ep = Encp(xp), AdaIN extracts the

affine parameters by chunking ep ∈ R
2K into two halves:

the slope γ ∈ R
K and the bias β ∈ R

K . Let h̃ ∈ R
K×H̃×W̃

denote the input feature maps to AdaIN, h̃[k] denote the k-

th feature map of h̃, and γ[k] and β[k] denote their k-th

entry, respectively. The AdaIN operation is formulated as:

AdaIN(h̃[k], γ[k], β[k]) = γ[k] h̃[k]−µ(h̃[k])

σ(h̃[k])
+ β[k], where

µ(·) and σ(·) denote functions for computing mean and std,

respectively. AdaIN has been proved effective in varying

the appearance of the rigid geometry such as human faces

[10]. Unlike the rigid geometry, the structure of the person

geometry is much more diverse in poses. We observe that

AdaIN frequently fails in handling the person geometry by

yielding mistaken non-uniform textures (see Figure 3). We

argue that such mistaken non-uniform textures derive from

the pose diversity which causes the scattering of activations

for a body part onto multiple feature maps. Because of the

channel-wise modulation fashion, it is hard for AdaIN to

unify the textures for some body parts, e.g., arms. At the

same time, the non-uniform textures are sometimes desir-

able to other body parts, e.g., coat. This poses a problem on

how to control the texture uniformity under the guidance of

the body part parsing mask xg.

SPADE. Denormalizing the normalized activations with the

inferred affine parameters in an element-wise fashion can

be achieved by using spatially-adaptive denormalization
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(SPADE) [14]. SPADE is tailored for the input conditions

with spatial dimensions. Taking our geometry condition

xg ∈ L
Ng×H×W as an example input, SPADE projects xg

via a shallow conv block to the affine parameters γ, β ∈

R
K×H̃×W̃ , which can be applied to the normalized acti-

vations for the element-wise transformation. Compared to

AdaIN, the advantage of SPADE is its spatial adaptability

which can potentially help control the texture uniformity of

different body parts, while its disadvantage lies in the in-

capability of producing the non-uniform textures due to the

uniformity within each part of the conditional parsing mask.

GAIN. By combining the advantages of AdaIN and SPADE,

we propose the Geometry-guided Adaptive Instance Nor-

malization (GAIN) for injecting the pattern condition xp.

The intuition behind GAIN is to adaptively control the tex-

ture uniformity for different body parts under the guid-

ance of xg. Assume that the activations of two locations

are respectively scattered on the k1-th and k2-th feature

maps of h̃ ∈ R
K×H̃×W̃ , which are controlled by the two

corresponding entries of affine parameters in AdaIN, i.e.,

γ[k1] vs. γ[k2], and β[k1] vs. β[k2]. If these two lo-

cations belong to the same body part which desires uni-

form textures, we would better have a similarity constraint:

(γ[k1] ∼ γ[k2]) ∧ (β[k1] ∼ β[k2]). Note that this sim-

ilarity constraint should not affect the activations of body

parts of no interest, so the constraint should be applied

on each channel in a spatially-adaptive fashion. Thus, we

introduce two spatially-adaptive gates gγ ∈ M
K×H̃×W̃

and gβ ∈ M
K×H̃×W̃ for γ ∈ R

K and β ∈ R
K , where

M ∈ [0, 1]. We tile γ and β are to be γ̄ ∈ R
K×H̃×W̃

and β̄ ∈ R
K×H̃×W̃ . The similarity constraint for location

(k1, i1, j1) and (k2, i2, j2) can be written as:

gγ [k1, i1, j1] · γ̄[k1, i1, j1] ∼ gγ [k2, i2, j2] · γ̄[k2, i2, j2],
gβ [k1, i1, j1] · β̄[k1, i1, j1] ∼ gβ [k2, i2, j2] · β̄[k2, i2, j2].
Obviously, gγ and gβ need to be zeroed out to satisfy the

constraint irrespective of the values of γ̄ and β̄. We adopt

SPADE to infer gγ and gβ conditioned on xg.

Remark 3.1. With gγ and gβ , the visually concrete xg

guides the injection of the abstract xp. The values of gγ

and gβ , in turn, reflect the correlations between xp and xg.

We show the architecture and operation of GAIN in

Figure 2 (c). The GAIN operation is formulated as:

GAIN(h̃, γ̄, β̄, gγ , gβ) = (gγ ⊙ γ̄) ⊙ IN(h̃) ⊕ (gβ ⊙ β̄),
where IN(·) represents the instance normalization.

3.1.2 Color injection

We use a series of binary attributes, e.g., blue coat, as our

color condition. The binary attributes are widely used in

the face editing task, e.g., [2, 12, 20]. These methods in-

ject the color condition by concatenating a multi-hot binary

attribute vector uniformly onto the image plain, and expect

the generation model to automatically select the useful color

information for each location. In these works, the super-

vision for color comes from an auxiliary attribute classi-

fier which is trained together with the image discriminator.

Compared to the common facial attributes (fewer than 20

used in [2, 20, 12]), there are significantly more attributes

for the whole body (over 100 in this work). Such a distinc-

tion highlights the limitations of the conventional color in-

jection mechanism from two aspects. (i) Learning burdens:

it brings extra burdens for the generation model in identi-

fying useful information for each region. (ii) Class number

curse: the auxiliary classifier is known for suffering from

handling a large number of classes.

To resolve the “learning burdens” issue caused by the

uniform injection, we need to prepare and inject a spatially-

specific attribute condition egc ∈ R
K×H×W , which re-

quires two things: (i) a dedicated attribute embedding

for each body part, i.e., ec ∈ R
K×Ng , where K and

Ng represent the embedding dimension and the number

of body parts, respectively; (ii) our geometry condition

xg ∈ L
Ng×H×W which indicates the association between

body parts and spatial locations. Then, egc can be obtained

through a bipartie network projection egc = ec ⊗ xg. As

shown in Figure 2 (a), the color injection can be achieved

by concatenating egc to the input feature maps of each stage.

Next, we introduce how to prepare ec, which is a knob of

the color injection: (i) Organizing the binary color attributes

to be the multi-valued attributes xc ∈ L
Nc×Nv (see §3.1 for

definition) according to the inherent associations between

binary attributes, e.g., blue coat, and body parts, e.g., coat.

(ii) Using an attribute encoder Encc to encode each multi-

valued attribute into a continuous embedding vector, which

as a whole are denoted as êc ∈ R
K×Nc . (iii) Specifying the

association matrix between the body parts and attributes as

A ∈ L
Ng×Nc s.t. ∀ i, j A[i, j] ≥ 0, ∀ i

∑

j A[i, j] = 1, we

have ec = êcA.

To guarantee the meaningfulness of the attribute embed-

dings, we adopt a cross-modality similarity model (CMSM)

to pretrain Encc, in which an image encoder and Encc are

trained to project the image regions of a body part and its

associative attribute(s) to a joint embedding.

The CMSM can also be used to resolve the “class num-

ber curse” by replacing the auxilary attribute classifier.

Specifically, let êc ∈ R
K×Nc and em ∈ R

K×H·W denote

the color attribute embedding and image embedding pro-

duced by CMSM, respectively. We can compute a cross-

modality ranking loss similarly to computing the DAMSM

loss in [20]. Such a CMSM loss can provide the supervi-

sion signals for whether the generated images are aligned

with the input color conditions.

3.2. Spatially-adaptive compositing

For compositing, we follow the recently proposed pixel

transformation method [1] which uses a neural network to
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estimate the contrast and brightness transformation param-

eters given both the foreground and the background im-

ages. In [1], they made the spatially-invariant assumption

so that the output of the neural network is a set of shared

transformation parameters for all pixels in the foreground

(i.e., the same transformation is applied for each pixel).

Specifically, the compositing model FC is a convolutional

neural network which takes a composited image (Eq. (1))

of the foreground image ŷf and the background image yb

as input, and output the contrast and brightness transfor-

mation parameters defined w.r.t. the RGB color space as

ρ, τ ∈ R
3. By tiling ρ and τ spatially to ρ̄ ∈ R

3×H×W

and τ̄ ∈ R
3×H×W , the color tone adjustment is achieved

via a spatially-invariant transformation at the pixel level as:

yf = ρ̄⊙ ŷf ⊕ τ̄ , (3)

where ⊙ and ⊕ indicate the element-wise operations. The

spatially-invariance constraint is posed as:

∀k, (i, j), ρ̄[k, i, j] = ρ[k], τ̄ [k, i, j] = τ [k], (4)

As in Eq. (2), (ρ, τ) are inferred by FC conditioned on

both ŷf and yb. The supervision comes from two losses:

L(FC) = LGAN + LR. LGAN is a GAN loss driving FC

to learn inferring (ρ, τ) which makes ŷf indistinguishable

from yb, and LR is defined as a L1 loss for the regulariza-

tion purpose to discourage dramatic changes from the input

foreground. LR can be simply written as:

LR(F
C) = |yf − ŷf|. (5)

Over-saturated problem. We observe that it sometimes

brings the over-saturated effects by directly applying the

pixel transformation as in Eq. (3). We argue that this is

because such a transformation for the foreground image is

unbounded, while the values of the background image are

normalized in the range of [−1, 1].
To address the over-saturation problem, we can use a

non-linear activation function tanh to confine the value

range of transformed foreground image:

yf = tanh(ρ̄⊙ ŷf ⊕ τ̄). (6)

Pitfall of gradient vanishing. By adding tanh, however, we

observe that such a spatially-invariant transformation leads

the optimizer to the pitfall of gradient vanishing, in which

DI and DS become much more powerful than FC, and the

regularization loss LR totally fails to assist the optimizer in

escaping the pitfall. See Infer-SpInv-B in Figure 5 for the

failure cases.

Remark 3.2. If the regularization loss LR is effective, it

should be able to assist the optimizer in escaping the pit-

fall. This, in turn, demonstrates that the migration to the

introduction of tanh weakens the effectiveness of LR.

Proof. We study the effectiveness of LR by checking the

gradients deriving from it. By substituting yf in Eq. (5) with

Eq. (6), we have LR(F
C) = | tanh(ρ̄⊙ ŷf ⊕ τ̄)− ŷf|. Then,

the partial derivative of LR w.r.t. ρ̄ can be written as: ∂LR

∂ρ
=

ℓ(yf − ŷf) · (1 − tanh2(ρ̄ ⊙ ŷf ⊕ τ̄)) · ŷf, where ℓ(·) is an

indicator function that ℓ(·) = 1 if yf > ŷf, and otherwise

ℓ(·) = −1. When |ρ̄| → ∞ or |τ̄ | → ∞, (1 − tanh2(ρ̄ ⊙
ŷf ⊕ τ̄)) → 0 and ∂LR

∂ρ
→ 0. The absolute values of ρ̄ and τ̄

can be very large under the circumstance of lacking a good

initialization for FC. In this case, the gradients from LR can

be unstable and tiny, making it significantly less effective.

Corollary 3.3. The bounded version of spatially-invariant

transformation requires a good initialization for FC. Other-

wise, the adversarial discriminators become too strong and

can easily identify the synthesized fake images. This causes

the gradient vanishing for the GAN losses. At this moment

when LR should eagerly push FC to improve, the effective-

ness of LR will be significantly restricted by its unstable and

tiny gradients due to the lack of a good initialization for FC.

Spatially-adaptive compositing. Inspired by a Verse in

Bible, “A threefold cord is not quickly broken”, we solve

the gradient vanishing problem in Eq. (6) by removing the

spatially-invariant constraint in Eq. (4). To be specific, in-

stead of predicting a single set of shared transformation pa-

rameters, our spatially-adaptive model outputs a separate

set of transformation parameters for each foreground pixel,

i.e., ρ, τ ∈ R
3×H×W . The insight here is: the probability

that the majority of the learned transformation parameters

are too large is small, and thus it greatly reduces the risk of

the gradient vanishing pitfall. Our experimental results ver-

ify the effectiveness of this adaptive composting method.

3.3. Learning

We train the proposed MISC framework by solving a

minimax optimization problem given by

min
DI,DC

max
FG,F C

LGAN-I(D
I, FG, FC) + λCMLCM(FG)+

λGAN-CLGAN-C(D
C, FC) + λRLR(F

C).
(7)

where LGAN-I, LCM, LGAN-C and LR are the GAN loss for

the overall image quality, CMSM loss for the color con-

dition, segmentation-based GAN loss and a regularization

loss for the compositing performance, respectively.

In Eq. (7), DI = {DI
1, . . . , D

I
i, . . . , D

I
n} is a set of

joint-conditional-unconditional patch discriminators [11]

for each stage of FG. Given a pair of image and spatially-

specific color condition, i.e., (y, egc), DI
i can be written as:

pu[y]i = DI
i(y), pc[y, ec]i = DI

i(y, e
gc), where the su-

perscript u and c indicate the “unconditional” and “condi-

tional”. p = {p1, . . . , pj , . . . , pN pat} is a set of probabilities

with each indicating the realness of a patch. The input to

DI
i is indicated within the square brackets.

LGAN-I helps both FG and FC to produce realistic im-

ages, which is defined as follows:
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LGAN-I(F
G, FC,DI) =

−
n
∑

i=1

1

2N pat
i

N
pat

i
∑

j=1

(

λu log pu

j [ŷi]i + log pc

j [ŷi, e
gc
i ]i

)

−
1

2N pat
n

N pat
n

∑

j=1

(

λu log pu

j [y
s]n + log pc

j [y
s, egc

n ]n
)

,

(8)

where ŷi is the generated image at the i-th stage of FG, and

ys is an image composited by ŷf
n and a background image.

e
gc
i (defined in §3.1.2) is a spatial-specific color condition

with both the geometry and color information encoded. λu

is a balancing hyperparameter.

As mentioned in §3.1.2, LCM is a cross-modality ranking

loss for the image modality and the color one, which further

enforces the obedience to the color condition with the help

of negative examples.

In Eq. (7), DC is a discriminator that learns to sep-

arate the composited foreground, which is proposed in

[1]. Given a composited image ys, DC can be written

as ps[ys] = DC(ys), where ps = {ps
1, . . . , p

s
j , . . . , p

s
N pix}

is a set of probabilities with each indicating how likely a

pixel belongs to the composited foreground regions. Thus,

LGAN-C is defined as a segmentation loss, which drives FC

to learn inferring reasonable contrast and brightness param-

eters: LGAN-C(F
C, DC) = − 1

N pix

∑N pix

j=1 log(1− ps
j [y

s]).
LR is a pixel-wise L1 loss to regularize the training so as

to anchor the transformed foreground regions yf to the orig-

inal ŷf which is generated by FG. LR is defined as follows:

LR(F
C) = 1

N fpix

∑N fpix

j=1

∣

∣yf[j]− ŷf[j]
∣

∣, where N fpix denotes

the number of foreground pixels. yf[j] and ŷf[j] are the j-th

pixel of an image.

Based on the experiments on a held-out validation set,

we set the hyperparameters in this section as: λCM = 20,

λGAN-C = 0.03, λR = 1.0 and λu = 4.0. Note that our

discriminators and losses are not new to image generation.

Our contribution is in extending their use to a challenging

and novel generation-compositing setting.

4. Experiments

Dataset. We process the VIP person parsing dataset [23] for

evaluation. We annotate persons in VIP with 120 attribute

classes, and crop the images in VIP to keep one major per-

son in each image. We create the training and test splits,

with 42K and 6K images, respectively.

Quantitative Evaluation metrics. Three evaluation met-

rics are used: (i) We use the Fréchet inception distance

(FID) [5] score to evaluate the general image quality. (ii)

Inspired by [20], we use R-precision, a common evaluation

metric for ranking retrieval results, to evaluate whether the

generated image is well conditioned on the given color at-

tribute set. More specifically, given generated image y con-

Table 1. The quantitative experiments. ↑ (↓) means the higher

(lower), the better. The best performances are highlighted in bold.

The compared baselines are divided into three categories: pattern,

color and compositing.

Category Methods FID ↓ R-prcn (%) ↑ M-score ↓

Pattern
AdaIN 18.03 90.78 12.54
UniPat 16.72 92.73 7.87

Color

w/o LCM 15.03 83.89 5.55
UniColor 17.24 76.71 12.38
UniColor w/ AC 41.59 64.23 119.29

Compositing

No-Comp 22.09 93.22 151.39
varBg 16.86 93.11 7.87
Infer-SpInv-UB 24.11 87.95 161.07
Infer-SpInv-B 52.23 36.72 169.93
Infer-SpAda-UB 17.27 89.30 33.64

Ours MISC 16.09 93.59 3.86

ditioned on the attribute set xc and 5 randomly sampled at-

tribute sets, we rank these 6 attribute sets by the pre-trained

image-to-attribute retrieval model (CMSM). If the ground

truth attribute set xc is ranked the highest, we count this

a success retrieval. We perform this retrieval task on all

generated images and calculate the percentage of success

retrievals as the R-precision score. (iii) For measuring the

compositing quality, we follow [15] to use the manipulation

score (M-score) which is the output by a manipulation de-

tection model [22]. The higher M-score, the higher possibil-

ity that an image has been manipulated. For each compared

method, we randomly pick 100 generated images as inputs

to the detection model and calculate the average M-score.

The ablation study is performed to evaluate the three ma-

jor components in MISC, i.e., the pattern injection, color

injection, and compositing. Since our problem is new, so

no off-the-shelf methods can be directly used for compari-

son. Thus, we implement 10 baseline methods by disabling

modules in MISC or replacing modules with other well-

known architectures or training mechanisms. The quantita-

tive comparisons are reported in Table 1, and the qualitative

ones are presented in Figure 3 and 5, in which green boxes

highlight some noticeable differences. Note that the face

generation is not our focus, so we directly copy and paste

external faces onto the generated images.

4.1. Pattern injection

Compared methods. For pattern injection, we compare

MISC with two baselines implemented with AdaIN [10]

and SPADE [14], respectively: (i) We create AdaIN by dis-

abling gates (gγ , gβ) for the affine parameters in GAIN.

(ii) We create UniPat by replacing GAIN with SPADE,

and tiling the pattern conditions uniformly onto the parsing

mask as the input to SPADE.

Texture uniformity. In §3.1.1, we introduce two spatially-

adaptive gates gγ and gβ conditioning on the body part pars-

ing mask. These two gates can be applied onto the affine pa-

rameters of AdaIN, so as to control the texture uniformity

under the guidance of the body part parsing mask. By com-

paring AdaIN and MISC in Figure 3, we can see that with-
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Figure 3. Qualitative comparison for conditional generation.

Green boxes highlight some noticeable differences between oth-

ers and MISC. Please zoom in for details.

out the control of the proposed gating mechanism, AdaIN

frequently yields the mistaken non-uniform textures, e.g.,

arms in Column 2 and legs in Column 9. The comparison

between MISC and AdaIN in Table 1 also confirms the ne-

cessity and effectiveness of the proposed gating mechanism.

Uniform injection. To compare the proposed GAIN with

SPADE, we adapt SPADE to our task as described above.

The adaptation makes SPADE a uniform injection mecha-

nism (named UniPat) for the pattern condition. As shown in

Figure 3, such a uniform injection causes obvious artifacts

in multiple occasions, e.g., legs in Column 1 and arms in

Column 4. The negative influences of the uniform injection

are also reflected in Table 1. Both quantitative and qualita-

tive results echo the justification in §3.1.2 regarding the uni-

form injection: “it brings extra burdens for the generation

model in identifying useful information for each region”.

4.2. Color injection

Compared methods. The design of our color injection

module is centered on an attribute encoder which enables

both the spatially-specific color condition and the cross-

modality ranking loss (LCM in Eq. (7)). Thus, we create

three baselines to study the effectiveness of our color injec-

tion module. (i) We first create a baseline by removing LCM.

Geometry ManipulationColor Attribute Interpolation

Figure 4. Controllability of color and geometry conditions. Please

zoom in for details.

(ii) Then, based on (i), we create UniColor by replacing the

injection of spatially-specific color condition with the injec-

tion of multihot binary attribute vector as in [2, 4, 12]. (iii)

We create another baseline by incorporating UniColor with

an auxiliary classifier [13] for attributes.

Cross-modality ranking loss LCM is designed to supervise

the color condition injection module. By removing LCM,

the color condition injection will only be implicitly super-

vised by the joint-conditional-unconditional discriminators

DI defined in §3.3. In Figure 3, we show that the removal

of LCM leads to wrong colors, e.g., leg color in Column

7 and 9. An interesting phenomenon is shown in Table 1,

compared to MISC, the removal of LCM leads to signifi-

cant downgrade on the color metric (R-precision) and slight

downgrade on the compositing metric (M-score), while it

leads to a saturation of the the image quality metric (FID).

This demonstrates the necessity of a comprehensive evalu-

ation with multiple metrics.

Spatially-specific color condition. We evaluate the im-

portance of spatially-specific color condition by compar-

ing UniColor against MISC w/o LCM. Figure 3 shows that

the uniform injection (UniColor) frequently leads to dras-

tic failures in manifesting the color conditions, e.g., wrong

color of the up-clothes in Column 4 and 6. The quantita-

tive comparison in Table 1 shows the obvious downgrade

from MISC w/o LCM to UniColor. These all demonstrate

the importance of the spatially-specific color condition.

Auxiliary attribute classifier. As mentioned in §3.1.2, the

conventional supervision for colors usually comes from an

auxiliary attribute classifier [2, 12, 20] which is trained to-

gether with the image discriminator. Therefore, we intro-

duce such a classifier to the UniColor baseline to see what

influences it will bring. As shown in Figure 3 and Table 1,

such a classifier causes the further performance downgrade

(compared to UniColor and MISC) both qualitatively and

quantitatively. As mentioned in §3.1.2, the auxiliary classi-

fier suffers from handling a large number of classes, which

may explain such a downgrade.

Qualitative controllability study. We demonstrate the

robustness of MISC in synthesizing interpolated color at-

tributes and manipulated geometries. The synthesis results

are visualized in In Figure 4.
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4.3. Compositing

As introduced in §3.2, our compositing model achieves

the image compositing by adjusting the color tone of the

foreground within the framework of alpha blending. We in-

troduce the bounding mechanism using tanh to address the

over-saturation problem, and we enable the spatial adapt-

ability to help model avoid the pitfall of gradient vanishing.

Thus, we study the effectiveness of our compositing model

from three aspects: (i) the necessity of compositing through

alpha blending, (ii) the bounding mechanism with tanh, and

(iii) the spatial adaptability.

Compared methods. We study the necessity of composit-

ing or the necessity compositing within the framework of

alpha blending. We create a baseline named No-Comp by

directly removing the compositing model, and create an

another baseline named varBg which is beyond the scope

of alpha blending, and adjusts the color tone of the fore-

ground together with the background in a black-box image-

to-image translation fashion. We also study the impacts of

the bounding mechanism (using tanh) and the spatial adapt-

ability. To this end, we implement three more baselines with

or without the bounding mechanism or the spatial adapt-

ability (abbreviated as “SpAda”), including Infer-SpInv-B,

Infer-SpInv-UB and Infer-SpAda-UB, where “Infer” means

that the affine parameters for adjusting the color tone are

inferred by our compositing model. “SpInv” indicates the

spatial-invariance constraint defined in Eq. 4, which means

no spatial adaptability. “B” and “UB” represent “with” and

“without” the bounding mechanism, respectively. In this

context, our MISC can be represented as Infer-SpAda-B.

Note that by Infer-SpInv-UB, we attempt to implement the

compositing model proposed in [1].

Necessity of compositing through alpha blending. By

comparing the quantitative and qualitative results of No-

comp and MISC, it shows that the compositing model

of MISC indeed significantly improves the image quality.

Specifically, without the compositing model, the color tone

of the generated textures look artificial, e.g., persons in

Column 1 and 5 of Figure 5. varBg as a naive composit-

ing approach can achieve generally good results (slightly

worse than MISC in all three metrics as shown in Table 1).

However, as shown in Figure 5, it is hard for varBg to

achieve fine-grained pleasing textures, especially within a

small part, e.g., arms in Column 4 and 9. We argue that

this is because multiple Conv layers pollute the intermedi-

ate feature maps with much contextual information.

Bounding with tanh & spatial adaptability. As shown

in Figure 5, Infer-SpInv-UB frequently generates over-

saturated effects, e.g., Column 2 and 9. This demonstrates

the necessity of the bounding mechanism. However, as jus-

tified in §3.2 simply adding the bounding mechanism to

Infer-SpInv-UB (i.e., Infer-SpInv-B) does not overcome the

over-saturated problem but introduces the pitfall of gradient
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Figure 5. Qualitative comparison for compositing. Green boxes

highlight some noticeable differences between others and MISC.

vanishing, which are reflected in the total failure results in

Figure 5. In §3.2, we propose that by enabling the spatial

adaptability of Infer-SpInv-B (i.e., Infer-SpAda-B, the com-

positing model of MISC) can resolve the pitfall of gradi-

ent vanishing, which can be proved both quantitatively and

qualitatively in Table 1 and Figure 3. For readers’ inter-

ests, we also compare Infer-SpAda-UB with our composit-

ing model. Table 1 shows that the removal of the bounding

mechanism impacts the compositing metric (M-score) sig-

nificantly, and Figure 5 also shows the frequent and slight

over-saturated effects which are highlighted using small red

boxes in Column 2 and 4.

5. Conclusions

We present the MISC framework for conditional person

image synthesis. Our contributions include injecting mul-

tiple correlated conditions in the person image generation,

the spatially-adaptive image compositing method, as well

as the complete pipeline for generating photo-realistic im-

ages. In experiments, we show the superior performance

with both the qualitative and quantitative results.
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