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Abstract

Rotation Averaging is a non-convex optimization problem

that determines orientations of a collection of cameras from

their images of a 3D scene. The problem has been studied

using a variety of distances and robustifiers. The intrinsic (or

geodesic) distance on SO(3) is geometrically meaningful;

but while some extrinsic distance-based solvers admit (con-

ditional) guarantees of correctness, no comparable results

have been found under the intrinsic metric.

In this paper, we study the spatial distribution of local

minima. First, we do a novel empirical study to demon-

strate sharp transitions in qualitative behavior: as problems

become noisier, they transition from a single (easy-to-find)

dominant minimum to a cost surface filled with minima. In

the second part of this paper we derive a theoretical bound

for when this transition occurs. This is an extension of the

results of [24], which used local convexity as a proxy to

study the difficulty of problem. By recognizing the underly-

ing quotient manifold geometry of the problem we achieve an

n-fold improvement over prior work. Incidentally, our anal-

ysis also extends the prior l2 work to general lp costs. Our

results suggest using algebraic connectivity as an indicator

of problem difficulty.

1. Introduction

The rotation averaging problem arises in computer vision

as part of estimating the 3-dimensional poses of a set of

cameras. We are given many images of some scene, pro-

duced by cameras at unknown locations and with unknown

orientations. When two images overlap, it is often possible

to estimate the relative orientation of the associated cameras.

By considering many overlapping camera pairs we obtain

many such pairwise measurements.

Essentially, rotation averaging is an optimization problem

on a graph in which vertices represent cameras and edges

represent measurements of relative orientation. The goal is

to pick an absolute orientation for each vertex in a way that

best agrees with the relative orientation measurements. Both

the relative and absolute orientations must be in SO(3), the

group of orientation-preserving rotations of 3D space.

We may choose the cost function used in rotation averag-

ing for convenience of computation, for the existence of theo-

retical guarantees, or for modeling concerns. From a geomet-

ric perspective, costs based on intrinsic metrics—geodesic

distances on SO(3)—are a natural choice. However, no such

method is presently known to have a guarantee of global

convergence. In fact, the l2 geodesic cost is known to yield a

non-convex problem. Formulations based on extrinsic costs—

non-manifold distances within representations—have been

more tractable and sometimes give optimality guarantees.

When solvers fail the junk solutions doom downstream prob-

lems, such as translations averaging and bundle adjustment.

This paper considers cost functions based on the intrinsic,

geodesic distance. Two recent surveys [9, 21] propose a fa-

miliar pattern: use an extrinsic solver to generate a candidate

solution, then refine with with a solver chosen for its mod-

eling properties—even if the latter solver only guarantees

local optimality. This is a common pattern in geometric com-

puter vision, with a well-known exemplar being the “Gold-

Standard” algorithm for estimating homographies [15]. The

extrinsic-intrinsic solver pattern leads to some key questions:

“Is this initial guess good enough for us to discover the best

solution?” and “Why do some problems require much better

initial guesses than others?” In this paper, we seek partial

answers to these questions. (Note that we do not propose a

new solver.) We make two main contributions:

1. We empirically investigate the cost surfaces of intrin-

sic rotation averaging problems. We demonstrate how

properties of the problem instance can lead to challeng-

ing distributions of local minima.

2. We derive bounds on this behavior by improving the lo-

cal convexity analysis in [24]. We show how rotation av-

eraging’s gauge symmetry leads to a quotient-manifold

description of the optimization problem, which leads to

an n-fold improvement in bounds.
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2. Related Work

Relaxed Approaches. The seminal paper introducing

the rotation averaging problem [13] also proposed a solver

based on the unit quaternion representation of 3D rotations.

This is a prototypical relaxed method: by ignoring the length-

1 constraint and minimizing Euclidean distances between

quaternions, the problem becomes linear. The solution may

not satisfy the unit constraint (hence not actually represent

rotations), but it can be normalized easily. Many later meth-

ods follow the same pattern of solving a relaxed problem,

then “rounding” the solution to satisfy the constraints. Most

works in this line use a rotation matrix representation and re-

lax the orthnormality and determinant constraints. Martinec

and Pajdla [17] relaxed to a least-squares problem. Arie-

Nachimson et al. [3] give a spectral solution to a similar cost.

Arrigoni et al. [4] solve their relaxed problem in a low rank

+ sparse framework for greater robustness to outliers. Wang

and Singer [23] seek robustness by solving an l1 relaxed

problem. Unfortunately, even if the unconstrained problem

can be solved exactly, the final rounded solution is generally

not an optimal solution to any particular problem, and the

“relaxation gaps” due to rounding are not well understood.

Manifold Approaches. Manifold methods use the tools

of Riemannian geometry to optimize directly on the rota-

tions manifold. In practice, this involves iteratively solving

a series of Euclidean tangent space problems. Govindu [14]

pioneered this approach, and Hartley et al. [16] and Chat-

terjee and Govindu [10] have proposed robustified methods.

Tron et al. [20] give a distributed consensus solver for a

specific “reshaped” cost. Unfortunately, while such solvers

converge to a local minimum, that local minimum may not be

globally optimal. Two survey papers [9, 21] propose using

an initialize-and-refine pattern, where a globally solveable

relaxed method generates an initial guess which a manifold-

based method then refines.

Verification and Guarantees. More recently, there has

been particular interest in validation and performance guar-

antees for solvers. Fredriksson and Olsson [12] return to

quaternions, and are able to verify—via Lagrangian Duality—

that their solution is optimal (if noise levels are low enough).

Briales and Gonzales-Jimenez [7] give a verifier for cam-

era poses, rather than rotations. Boumal et al. [5, 6] take

a statistical approach and study the efficiency of maximum

likelihood estimators via Cramér-Rao bounds. They develop

visualizations to show how the problem’s graph topology

affects the uncertainty in the output. In contrast, this paper

visualizes how topology affects the macro-scale shape of the

cost surface, independent of a choice of solution.

Most recently, Ericsson et al. [11] propose a new solver

based on Lagrangian duality. Unusually, this method uses

an extrinsic cost but makes no relaxations (and hence suffers

no rounding gap). When strong duality holds, this method

gives a global solution. For complete graphs, they show that

it is sufficient that residuals are less than 42.9◦. We find it

interesting that two very different approaches (theirs: chordal

distance and Lagrangian duality and ours: geodesic distance

and local convexity) lead to statements with similar form.

Briales and Gonzales-Jimenez [8] and Rosen et al.’s [18]

fast relaxation methods also give verifiers.

This present paper is most closely related to Wilson et

al. [24] which studied l2 intrinsic costs via a local convexity

analysis. It concluded that some rotation averaging problem

instances exhibit large areas of convex behavior, but their

extent is related to problem size, noisiness, and connectiv-

ity. However, the local convexity is not apparent until an

underlying gauge ambiguity is removed. This paper returns

to the analysis in [24] with a more geometrically natural

description of gauge which yields greatly improved bounds.

The present analysis is also more general, as it considers an

lp cost rather than the l2 cost of [24]. Also, unlike [11] and

[24], we empirically investigate what happens outside the

optimality bounds.

Outline of Remaining Sections. The remainder of this

paper proceeds as follows: Section 3 gives notation and

background on representations of rotations. It also states the

rotation averaging problem in the form we will use. Sec-

tion 4 is an empirical investigation into the shape of the cost

surfaces of our problems. We use a spectral embedding to

visualize the locations and strengths of local minima. These

experiments clearly demonstrate transitions from easy prob-

lems dominated by a single minimum to difficult problems

with a preponderance of bad local minima. In Section 5

we bound this behavior by improving the local convexity

analysis from [24], and finally we suggest applications and

conclude in Section 6.

3. Preliminaries

In this section we introduce notation and formally define

the rotation averaging problem. We will also note some

properties which are readily apparent.

3.1. 3D Rotations and Their Representations

The special orthogonal group in 3 dimensions—SO(3)—
is the group of rotations of R

3. SO(3) is a smooth 3-

dimensional manifold, so it is in fact a Lie group—a notion

of continuous symmetry. While this suffices as a geometric

definition, for computational purposes we require coordina-

tized representations. Euler’s rotation theorem states that

every rotation can be decomposed (not uniquely) into an

angle θ and an axis v̂. Alternately, every element of SO(3)
is uniquely represented by a 3×3 orthogonal matrix with de-

terminant 1. As orthogonal matrices, rotation matrices have

the property that R−1 = R
⊤. The angle-axis representation

θv̂ is closely related to the tangent space to SO(3), which is

3-by-3 skew symmetric matrices. We write a tangent space
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element:

[θv̂]× =




0 −θvz θvy
θvz 0 −θvx
−θvy θvx 0


 , where v̂ =




vx
vy
vz


 .

Rotation matrices form a 3-dimensional submanifold em-

bedded in R
3×3, giving rise to at least two common metrics:

dintrinsic(R, S) = ∠(R⊤S) (1)

dextrinsic(R, S) = ‖R− S‖F . (2)

where ∠(·) is the angle of a given rotation (a la Euler’s

rotation theorem) and ‖ · ‖F denotes the Frobenius matrix

norm. The intrinsic metric can be shown to be a geodesic

distance—that is, the length of the shortest path that follows

the curvature of the rotation manifold. The extrinsic metric

cuts through non-manifold space: it is a distance in R
3×3,

and so is generally shorter than the dintrinsic. The two are

related by dextrinsic = 2
√
2 sin

(
dintrinsic

2

)
. This paper is

about rotation averaging under the intrinsic metric, so we

will omit the subscripts and simply write dintrinsic as d.

3.2. Problem Definition

A rotation averaging problem instance consists of a graph

G = (V,E) with measurements R̃ = {R̃ij |(i, j) ∈ E} of

relative orientation on each edge. Writing n = |V |, our goal

is to choose an absolute orientation R ∈ SO(3)n for each

vertex in a way that best respects those measurements:

min
R∈SO(3)n

φp(R) =
∑

(i,j)∈E

d( R̃ij , RiR
⊤
j )

p. (3)

We will refer to φp as the lp cost function for this problem.

Our results in Section 5 will apply for the p > 1 cases.

3.3. Local Minima

The lp problems in Equation (3) are non-convex,

manifold-valued optimization problems. Analogous prob-

lems in Euclidean space are convex; the nonconvexity of

our problem arises entirely from the manifold geometry. It-

erative solvers of the type we consider start from an initial

guess, then iterate toward a stationary point (which we hope

is a local minimum). This local minimum need not be a

global minimizer for the problem, and Section 4 shows that

in some situations the problem may have many bad local

minima. The guiding concern of the analysis in this paper

is improving our understanding of this failure mode. Note

that the multiplicity and spatial distribution of local minima

are properties of a problem instance itself, not of a solver.

In principle, this difficulty can be largely mitigated with a

sufficiently high quality guess. Thus, it would be helpful to

have some theoretical guidance as to what quality of guess

is required.

3.4. Some Simple Observations

Edge Directions. If R̃ij is a measurement of RiR
⊤
j —the

relative rotation on edge (i, j)—then R̃
⊤
ij is a measurement

of RjR
⊤
i . We will treat G as an undirected graph, and supply

either R̃ij or R̃⊤ij as appropriate in context.

Minimally Constrained Problems. We assume through-

out that G is connected. When G is a tree there always exists

a solution with zero cost. Any additional edges overconstrain

the problem, but this redundancy improves accuracy in the

face of measurement noise.

Gauge Ambiguity. Any rotation averaging cost function

of the form above is right-invariant to a multiplication of

the form R → RS which maps rotations Ri 7→ RiS, i ∈ V .

Given any point R ∈ SO(3)n, the cost function is constant

on the entire gauge-equivalent set {RS, S ∈ SO(3)}. The

3n-dimensional problem domain can be considered to be par-

titioned into 3-dimensional gauge orbits, and solutions are

only unique up to the choice of orbit representative. An extra

gauge-fixing constraint can be used to pick the orbit repre-

sentative uniquely. The simplest method of gauge-fixing is

to pick one vertex arbitrarily (say, vertex k), and set Rk = I3.

Later in the paper, we will consider an alternate approach

that factors out the symmetry. Interestingly, Briales and

Gonzalez-Jimenez [7] have observed faster solver perfor-

mance when moving from simple vertex fixing to a scheme

similar to ours.

4. Some Empirical Observations

In this section, we demonstrate a way to visualize the

spatial distribution of local minima in rotation averaging

problems. It shows us that structural factors (such as edge

density and connectivity) can greatly affect the distribution.

We will describe how this relates to problem tractability.

Motivation for Empirical Mapping. A key failure

mode of iterative solvers is finding a local minimum of

poor quality. This problem can be largely avoided through

good initial guesses (perhaps via a relaxation of the prob-

lem). Even then, it is helpful to have some guidance as to

what quality of guess is necessary. Indeed, for some opti-

mization problems, sufficiently good initial guesses are rare.

In this section we study the problem experimentally, and

then in Section 5 we attempt to explain our observations

theoretically.

We begin by fixing a problem instance. Then we collect

many local minima: we choose Nlm initial guesses sampled

uniformly at random in SO(3)n and then run a Levenberg-

Marquardt solver [2] to efficiently iteratively minimize an lp
cost. This gives us Nlm (possibly not distinct) local minima.

Now that we have a large, randomly sampled collection

of local minima, we visualize their distribution. Because

the local minima live in the search space SO(3)n, a 3n-

dimensional manifold, we are unable to plot them directly.
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Instead, we first compute (gauge-aligned) pairwise distances

between each of the Nlm minima. This effectively gives us a

graph with labeled edge lengths. We use a spectral projection

to embed this graph in a 2D plane. These 2D embeddings

are show in Figure 1 and described in greater detail below.

Embedding Experimental Details. Each row in Fig-

ure 1 is a series of experiments on the same graph; see

Table 1 for details. To create each problem instance, we se-

lect a ground truth solution for the given graph by choosing

elements of SO(3) uniformly at random. We then gener-

ate noisy edge measurements by synthetically adding noise

(zero-mean and variance σ2
n Gaussian in the tangent space)

to each edge’s ground truth relative rotation. The columns

of Figure 1 are increasing noise levels. Within a row, only

σn varies. The graph and ground truth solution are fixed.

We use Nlm = 200 random starts for each experiment.

For the spectral graph embedding, we use the diffusion

kernel d 7→ e−d2/σd to transform distances to similarities,

where d is the distance between two local minima. We used

σd = π
4 for all of our experiments. The synthetic noise σn

is labeled on each experiment in Figure 1.

row graph parameters connectivity αmax [11]

Watts-Strogatz small world graphs

(1) n = 40, k = 16, p = 0.0 λ2(G) = 4.6 14.7°

(2) n = 40, k = 16, p = 0.2 λ2(G) = 7.7 19.0°

(3) n = 40, k = 16, p = 0.5 λ2(G) = 8.2 19.2°

(4*) n = 40, k = 16, p = 1.0 λ2(G) = 9.5 20.2°

Gnm random graphs

(5) n = 40, m = 200 λ2(G) = 4.2 13.6 °

(4*) n = 40, m = 240 λ2(G) = 9.5 20.2 °

(6) n = 40, m = 400 λ2(G) = 12.0 12.0 °

Table 1. Descriptions of the graphs in Figure 1. The algebraic con-

nectivity λ2(G) features in the results in Section 5. The quantity

αmax is from [11]: their solution is certifiably optimal if all residu-

als are less than αmax. (*) Note that graph (4) is an instance of

both Watts-Strogatz and Gnm random graphs when p = 1.

How to Interpret the Embeddings. Each small colored

circle in the plots is a local minimum. Within each plot,

absolute distances are not meaningful, but relative distances

within each plot correspond (imperfectly) to distances be-

tween minima. Gauge is quotiented out when computing

distances, as described in Section 5. The colors and radii of

the points are both proportionate to the objective function of

the minima (cool colors are lower cost and warm colors are

higher).

Jittered points are also plotted behind in light grey to

reveal multiplicity. For example, the jitter reveals that of

the four unique minima in the plot at row 3, column 1, the

minimum with lowest cost is strongly dominant. The dom-

inance of the largest minimum (%max) is labeled on each

experiment. This is the percent of the Nlm runs that reached

the highest multiplicity minimum.

The qualitative results in Figure 1 are stable under re-

peated trials. Different random graphs and random synthetic

noise always result in different 2D embeddings, but all of

the trends discussed below are still present.

Observations and Trends. Rows (1) through (4) are

Watts-Strogatz small world random graphs [19]. This family

of graphs has a rewiring parameter p that smoothly inter-

polates between a k-connected cycle graph and Gnm, the

random graph model that randomly samples from all graphs

with exactly n vertices and m edges.

These graphs are interesting to us because Gnm graphs

(and the closely related Gnp Erdős Rényi graphs) are not that

representative of real rotation averaging problems. For their

size, they have small radius and high algebraic connectivity.

By varying the Watts-Strogatz rewiring parameter p we keep

the size of the graph fixed but vary the connectivity. Further-

more, the Watts-Strogatz model comes closer to capturing a

qualitative property of image graphs: cameras which have

similar pose are more likely to overlap, yet dissimilar cam-

eras do occasionally see the same thing (perhaps on a tall or

prominent structure).

Row (1) is the least-connected extreme of the Watts-

Strogatz family, with the lowest algebraic connectivity (Ta-

ble 1). Row (4) is the opposite: with 100% rewiring, this is

just a Gnm random graph with 240 edges.

Some problem instances look very easy to solve. For

instance, in row (3) column 1, 97.5% of the random initial-

izations were sufficient to find the dominant minimum. It

certainly seems plausible that this minimum is in fact the

global optimum. If such a high percentage of random initial

guesses suffice, then a non-random guess (such as from a

relaxed solver) seems very likely to succeed.

In contrast, consider row (1) column 5. This is a much

noisier problem. Now there are many distinct local minima,

many of which are very close to each other. An iterative

solver may have difficulty finding a true global optimum.

Finally, consider the trends in these graphs:

• At low noise levels there are very few distinct local

minima. One of these is usually dominant and appears

to be the global optimum.

• As noise levels increase, more distinct local minima

appear, and they get closer to the dominant minimum.

• At fixed noise levels, the more connected graphs look

easier. They have fewer distinct minima and these are

better separated.

• Going from rows (1) to (2) to (3), the connectivity goes

up and the problems appear to get easier. However,

rows (3) and (4) look very similar. The extra connec-

tivity does not appear to have much affect. Is there a

critical level of connectivity?

Rows (4) - (6) vary a different graph parameter. Recall

that the fully rewired Watts-Strogatz graph in (4) is also a
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(1)

(2)

(3)

(4)

(5)

(6)

Figure 1. 2D embeddings of the local minima of rotation averaging problems. Each row is a fixed underlying graph, and the columns are

increasing noise levels (σn). Both color and circle radius encode the objective function (cool colors and small radii are low cost). To reveal

multiplicity, a small jittered + is plotted in grey behind each point. Additionally, %max gives the multiplicity of the most common minimum.

Notice that some problem/noise level combinations have essentially one unique dominant local minimum, while others have many. Table 1

describes the graphs for each row.
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Gnm random graph with 240 edges. Row (5) is a Gnm graph

with a few fewer edges, and (6) with a few more. Notice

how sharply these changes affect the plots of minima! Row

(5), which has fewer edges, appears with only 2◦ of noise

to look as messy as row (4) does with 25◦. Row (6) is still

well-behaved with a remarkable 25◦ of noise.

Practical Takeaways. These visualizations indicate that

some instances of the lp rotation averaging problem are

easy—in the sense that a single minimum dominates the cost

surface. This is presumably the global optimum, and almost

any initialization is adequate to find it.

On the other hand, some problems are qualitatively dif-

ferent. They have many local minima, and these minima

are close together. Furthermore, there may even be min-

ima that are very similar in cost but not close to each other.

This raises important questions about whether the problem

is well-enough posed for solutions (even the global solution,

were it available) to be useful.

In these experiments, for the same number of nodes and

edges, more connected graphs were better. Unsurprisingly,

for all else equal, lower noise was also better. See the sup-

plemental for a discussion of outlier edges.

Looking at the last column of Table 1, we see that the

Eriksson et al.’s certification [11] is sufficient, but not neces-

sary. The bound behaves as expected on the Watts-Strogatz

graphs, but not on the Gnm problems. This may be due to

fragile dependence on the maximum degree of the graph.

5. Improved Local Convexity Bounds

Now we turn to seeking a theoretical description of the

effects shown in Section 4. We proceed by studying the

extent of local convexity in a rotation averaging problem

instance. We generally follow the calculations in [24], but

we add two pieces: (1) the calculations are generalized from

l2 to lp costs, and (2) we describe the gauge ambiguity in a

geometrically natural way, leading to a large improvement

in the bounds.

Convex problems enjoy a prominent place in optimization

because they provide a guarantee: all local minima are global

minima. For rotation averaging, this helpful property does

not hold. However, we can proceed with an analysis using

local convexity, a far weaker, but closely related property.

Definition 1 A rotation averaging problem (G, R̃) is locally

convex at a solution R if there exists an open ball around R
on which the problem is convex.

Practically speaking, for functions that are at least twice

differentiable, local convexity is a statement that the Hessian

matrix of the problem is positive semi-definite.1

1This will serve for most of our analysis, but when 1 ≤ p < 2 and at a

point where a residual is zero we lack differentiability. Instead, we look at

the cost function along geodesics parameterized at constant speed within a

Figure 2. A picture of a 2D manifold M̄ partitioned into 1D orbits.

The tangent space TXM̄ at any point X ∈ M̄ can be decom-

posed as the product of two orthogonal vector spaces: a vertical

space (which follows the orbits) and a horizontal space (which is

orthogonal to the orbits).

In the context of rotations averaging, local convexity lim-

its local minima, because if we have local convexity on a

convex region, there cannot be distinct local minima there.

In [24], it was shown that the l2 geodesic variant of the ro-

tations averaging cost function frequently exhibits local con-

vexity, and that the extent of that local convexity is bounded

by properties of the problem instance. The crux of that argu-

ment was an appreciation of the gauge ambiguity—the local

convexity in the problem was only visible after the gauge

had been treated. In this section, we revisit that treatment

with a more natural description of the gauge.

5.1. A more natural perspective on gauge

By gauge ambiguity, we mean that our cost function is in-

variant to right-multiplication by any element of SO(3). This

is a free group action of SO(3) on SO(3)n, leading us to con-

sider our optimization problem over the quotient manifold

SO(3)n/ (R ∼ RS). (The natural metric on this manifold is

dquot(R1,R2) = minS∈SO(3) d(R1,R2S).) This quotient

no longer has a gauge ambiguity; we have exactly removed

the symmetry in question. We would like to analyze the local

convexity of this new problem, which raises the question,

“How do derivatives of a function on a manifold relate to

derivatives of that function on a quotient manifold?”

Quotients of Riemannian manifolds have a particularly

nice structure [1, Ch. 3]. Points in the quotient space corre-

spond to gauge-equivalent orbits. A tangent space TXM on

the quotient manifold is related to the tangent space TXM̄
on M̄ = SO(3)n as shown in Figure 2. In particular, note

small ball. We only need consider geodesics which pass exactly through

the point. Finally, we note that along such a geodesic the cost function is a

scaled version of f(θ) = |θ|p, which is known to be convex for p ≥ 1.
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that the original tangent space TXM̄ is a direct product of

two orthogonal vector spaces. The vertical space is the sub-

space consisting of motions that remain in the same gauge

orbit, and the horizontal space is the space of motions or-

thogonal to that. Notably, the horizontal space is identified

with the quotient manifold’s tangent space: HX = TXM.

Furthermore, through this identification, derivatives of func-

tions on quotient manifolds are simply the projections onto

H of derivatives in the original manifold.

We can explicitly state what these spaces are for our

problem. A perturbation in a tangent space to SO(3)n can

be expressed as an n-tuple (x1, . . . ,xn), where the xi’s

are all in R
3. (Properly speaking, then the tangent space

elements are the skew symmetric matrices [xi]×.) Each such

tangent space element is mapped through the exp map to a

new element of SO(3)n:

expR(x1, . . . ,xn) =




R1 exp[x1]×
...

Rn exp[xn]×


 .

If this motion is gauge-preserving we must have

exp[x1]× = . . . = exp[xn]× = S

for some S ∈ SO(3). The inverse of the exp map is log,

which maps from the manifold into the tangent space. For

small x, log[x]× is one-to-one, so x1 = x2 = . . . = xn.

In other words, in Kronecker product notation, the vertical

space is this subspace of R3n:

V = Span








1
0
0


⊗ 1n,




0
1
0


⊗ 1n,




0
0
1


⊗ 1n.




(4)

It follows that the horizontal space is H = V⊥. Interestingly,

V and H depend only of n. The tangent spaces at every point

R on the manifold share the same description of the vertical

and horizontal spaces.

Returning to the original question, we wish to analyze

the local convexity of the quotient-manifold version of the

lp rotation averaging problem. Recall that (given sufficient

differentiability) local convexity holds when all eigenvalues

of the Hessian matrix are non-negative. This will hold ex-

actly when the projection of the Hessian matrix onto V⊥ is

positive semi-definite:

Theorem 1 A rotation averaging problem is locally convex

with respect to the lp geodesic cost function when

min
x∈V⊥,‖x‖=1

x
⊤
Hx > 0, (5)

where H is the Hessian of the lp cost function (on SO(3)n;

see below).

5.2. Some Lower­Bound Approximations

Now that we have a better way to factor the gauge am-

biguity out of our local convexity analysis, we begin with

the Hessian matrix computed in [24] and follow it through

two approximations. The smallest eigenvalue of the (gauge-

projected) Hessian matrix describes how the graph structure

of the problem interacts with the magnitude and directions

of residuals, determining local convexity. Unfortunately, this

description is complicated. In this section we aim to get

insight through sacrificing some accuracy for interpretability.

In each case, our new gauge approach yields superior bounds

over analogous prior results [24].

The Structure of the Hessian. We begin by giving the

exact Hessian for the unquotiented lp cost function, as de-

rived by following the chain rule calculations in [24] for

p > 1. Recall that the cost function (Equation (3)) is a sum

of terms on each edge in the graph. Likewise, the Hessian is

a sum of terms for each edge in the cost function:

H =
∑

(i,j)∈E

Hij . (6)

where the terms are 3n-by-3n matrices composed of 3-by-3

blocks. For each term, exactly four 3-by-3 blocks (corre-

sponding to the ith and jth block rows and columns) are

non-zero. These blocks are expressed in terms of the residu-

als R⊤i R̃ijRj on each edge. We write these residuals in their

tangent spaces as [θijŵij ]× = log
(
R
⊤
i R̃ijRj

)
. So, where

θij is the magnitude of the residual rotation on edge (i, j),
and wij is its axis of rotation.

Hij =





















i j

...
...

i . . . Sij . . . −Sij +A
⊤

ij . . .

...
...

j . . . −Sij +Aij . . . Sij . . .

...
...





















,

(7)

where the 3-by-3 blocks making up each Hij are

Sij = p(p− 1)θp−2
ij wijw

⊤
ij +

p

2
θp−1
ij (I3 −wijw

⊤
ij),

Aij =
p

2
θp−1
ij [wij ]×.

Notice that the symmetric Sij terms of the Hessian are ar-

ranged in a graph-Laplacian like structure, but the antisym-

metric Aij terms are not.

An Isotropic Bound. A first approach to taming this

Hessian is to find a bound that depends only on residual

magnitudes. The best isotropic (direction independent) lower

bound for the Sij terms is

Sij ≻ min
(p
2
θp−1
ij , p(p− 1)θp−2

ij − p

2
θp−1
ij

)
I3. (8)
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Let’s call those values αij , so that we have Sij ≻ αijI3.

Notice that αij is purely a convenience function of θij . Now,

the indefinite skew contribution Sij can be isotropically

bounded above as a block:

[
0 A

⊤
ij

Aij 0

]
≺ p

2
θp−1
ij

[
I3 0

0 I3

]
. (9)

Continuing as in [24], we see that for a single Hessian term,

Hij ≻




[
αij −αij

−αij αij

]

︸ ︷︷ ︸
PSD Laplacian term

− p

2
θp−1
ij

[
I3 0

0 I3

]

︸ ︷︷ ︸
non-PSD curvature term


⊗ I3.

(10)

Considering all the residual terms together, we will write

this as H ≻ (L(αij)−D(θij))⊗ I3. L is a standard graph

Laplacian matrix [22] with edge weights αij , and D is a

diagonal degree matrix with elements:

Dii =
∑

j|(i,j)∈E

p

2
θp−1
ij . (11)

Multiplying by D
− 1

2 on both sides, we see that this is suffi-

cient for H ≻ 0:

Lnorm =
(
D(θij)

− 1

2L(αij)D(θij)
− 1

2

)
≻ In. (12)

The smallest eigenvalue of a graph Laplacian is 0, so this

condition appears to be unsatisfiable. We must use what we

know about gauge to proceed. Recall that considering the

problem from a quotient manifold perspective effectively

meant projecting the tangent space off of the vertical space

and onto the horizontal space. This means that (allowing for

the Kronecker product), we require:

min
x⊥1n,‖x‖=1

x
⊤
Lnormx > 1. (13)

That is, Lnorm is an particular weighted, normalized graph

Laplacian. It represents the interaction of graph topology

and residual noisiness (but not residual directions, which we

approximated away), it bounds local convexity. Projecting

this matrix off of the gauge vector 1n represents considering

the problem as being solved on a quotient manifold.

An Even Simpler Bound. If we are a bit more destruc-

tive, we can reach a bound that cleanly separates structure

and noise terms. Let’s begin back with this sufficient condi-

tion for local convexity:

L(αij) ≻ D(θij). (14)

This next condition is still sufficient, but much weaker:

λmin(L(αij)) > λmax(D(θij)). (15)

Now, the eigenvector corresponding to the zero eigenvalue

of a graph Laplacian is 1n, the vector of all ones. This means

that (allowing for the Kronecker product) the gauge subspace

corresponds perfectly with the 0-eigenvector of the graph

Laplacian. Note that the largest value of a diagonal matrix is

its largest entry, so we have a bound:

λ2(L(αij)) > max
i∈V

∑

j|(i,j)∈E

p

2
θp−1
ij . (16)

Note that in the p = 2 case, the right hand side is simply

the maximum weighted degree of the residual graph. If we

wish to bound even more aggressively, we can bound by the

smallest α, giving:

λ2(L)︸ ︷︷ ︸
structure

>
maxi∈V

∑
(i,j)∈E

p
2θ

p−1
ij

minij αij︸ ︷︷ ︸
residuals

. (17)

This gives a perfect separation of the condition for local

convexity into a graph structure term (the so-called algebraic

connectivity) a term that depends on residual noise levels.

Notice that this bound differs from the one given in [24] in

that a factor of n has disappeared from the denominator

of the structure term in Equation (17). This is solely a

consequence of the improved gauge treatment substantially

increases the practical utility of the bound.

6. Application and Conclusion

In this paper we studied the cost surface of the geodesic

lp rotation averaging problem. We gave empirical evidence

that changes in problem structure and noise can cause sharp

transitions between easy and challenging distributions of

local minima. We then derived a bound on this behavior:

connectivity must balance noise to get a single dominant

minimum. These bounds are an n-fold improvement over

prior work, achieved through treating the problem’s gauge

ambiguity in a geometrically natural way.

We see this analysis being useful for the development of

new intrinsic-metric rotation averaging solvers. Our theoret-

ical work shows how to remain in the easy regime. We hope

that this analysis can provide guidance in pipeline design for

forming rotation averaging problem instances.

There is a particular application to hierarchical / merging-

based solver schemes. In these approaches (which are

a current area of active study) small subproblems are se-

lected, solved, and merged into a larger solution. Our re-

sults are especially applicable here because unlike in single-

shot schemes where the problem is provided as-is, merging

solvers have free choice of their subproblems. Schemes that

can maintain elevated connectivity may do better at avoiding

local minima traps.
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