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Abstract

Fully supervised object detection has achieved great suc-

cess in recent years. However, abundant bounding boxes

annotations are needed for training a detector for novel

classes. To reduce the human labeling effort, we propose a

novel webly supervised object detection (WebSOD) method

for novel classes which only requires the web images with-

out further annotations. Our proposed method combines

bottom-up and top-down cues for novel class detection.

Within our approach, we introduce a bottom-up mechanism

based on the well-trained fully supervised object detector

(i.e. Faster RCNN) as an object region estimator for web

images by recognizing the common objectiveness shared by

base and novel classes. With the estimated regions on the

web images, we then utilize the top-down attention cues

as the guidance for region classification. Furthermore, we

propose a residual feature refinement (RFR) block to tackle

the domain mismatch between web domain and the target

domain. We demonstrate our proposed method on PASCAL

VOC dataset with three different novel/base splits. With-

out any target-domain novel-class images and annotations,

our proposed webly supervised object detection model is

able to achieve promising performance for novel classes.

Moreover, we also conduct transfer learning experiments

on large scale ILSVRC 2013 detection dataset and achieve

state-of-the-art performance.

1. Introduction

With the development of convolution neural networks

(CNNs) [30, 29], object detection has achieved a great im-

provement in accuracy and speed. However, state-of-the-art

object detection methods [16, 8, 21] require a huge amount

of bounding box annotations. If we want to detect novel

categories which are not in the pre-defined training set, we

need to make a lot of labeling effort to annotate images of

the new categories. To ease the labeling process, weakly
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Figure 1. The proposed webly supervised object detection method

(WebSOD) aims to learn the detector for novel classes with the

base-class detector and the web images of the novel classes with-

out further human annotations.

supervised object detection (WSOD) methods that can be

trained with only image-level labels have been proposed.

However, labeling only image-level labels is still costly and

time-consuming especially in the large-scale multi-instance

object detection scenarios. This motivates us to develop an

object detection method that does not need any further hu-

man labeling while scaling out to new classes.

With similar motivation, a web-based weakly supervised

object detection method [23] has been proposed to alleviate

the need for human labor. The method requires the train-

ing images obtained from the Internet. One naive method

for novel class object detection is to simply use web images

and their image level “labels” (essentially the pre-defined

labels used as search phrases to obtain the images), train a

web object detector by using the weakly supervised detec-

tion method and directly apply the detector to the target im-

age domain. However, such naive web-based weakly super-

vised method produces poor performance. This is mainly

due to the poor bounding box localization by the weakly

supervised model. Moreover, the domain discrepancies be-

tween web domain and target domain also aggravate this

problem.

In order to solve the problem of inadequate localization

on the web images by the weakly supervised object de-

tection method, we build a novel webly supervised object

detection (WebSOD) method for the novel class detection.
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Figure 2. Overall pipeline of our proposed webly supervised object detection method (WebSOD). The target training set contains base-

class images with abundant bounding box annotations and the web training set contains both base and novel classes images without further

annotations. During the training (left side), we have three stages. In the first stage (blue), we use target domain images to train a base-class

object detector as a bottom-up object region estimator for the web images to estimate object regions which are like to contain objects. In

the second stage (orange), we train an end-to-end webly supervised object detector on the web images for both base and novel classes with

a top-down attentive classification module. In the last stage (yellow), we propose a Residual-Feature-Refinement (RFR) block to refine the

feature representations across two domains to obtain the final object detector. During the testing (right side), we directly apply the final

object detector to the target testing set.

Bird Bus Cow Motorbike Sofa

Figure 3. Visual results for the object regions estimated by the

well-trained base object detector on novel web images. The com-

mon objectness from bottom-up cues enables the base detector to

locate potential regions that may contain objects. However, the

obtained object regions may also contain background regions (e.g.

background region in the bird images) or the unrelated objects (e.g.

person in the cow images).

Figure 1 illustrates the problem setting. In our approach,

we combine the bottom-up and top-down cues for web im-

ages of novel classes in order to train the novel class de-

tector. Consider a typical two-stage object detector which

contains a region proposal generator for locating the salient

regions that are likely to contain the objects. As pointed

out in [15], in a fully supervised object detection method,

the detection model is able to learn some domain-invariant

and class-agnostics objectness knowledge. This objectness

knowledge is the bottom-up cues [1] that are shared among

different classes, even for novel classes which have not been

seen in the training. This motivates us to use the existing

well-trained detector as an object region estimator for novel

classes.

Given the estimated object regions from the existing de-

tector, we then need a region classifier to classify the re-

gions to the corresponding classes. Although we have the

intrinsic image level label for the web images, we observe

that the generated regions could be background regions, or

even objects that are inconsistent with the web image la-

bels. As shown in Figure 3, the regions can be background

patches containing no object or irrelevant objects. To deal

with this problem, we propose a top-down class-specific

attention model by focusing the learning on relevant re-

gions of desired classes and suppressing the irrelevant ones.

Specifically, we use the method in [38] to generate atten-

tion weights and introduce an attentive classification loss for

each estimated region. To this end, combining the object re-

gions from the bottom-up object region estimator with the

top-down attentive classification loss, we are able to train

an end-to-end webly supervised object detector on novel

classes.

In addition, as the novel-class detector is trained using

web images, we need to adapt the target data to the web

domain in order to use it for the target novel classes. Re-

garding the domain mismatch problem, a common practice

is to confuse the features for both source and target domain.

However, there is often a potential risk that the features are

confused in a non-class-specific manner and features be-

come indistinguishable for not only the domains but also

the classes. Therefore, we use a fixed detection classifier

and refine only the feature learner with the class-specific

task loss. While fine-tuning the feature learner, we propose

a residual block to stabilize the training and reduce the im-

pact on the novel classes that are only available in the well-

adapted source domain.

In our experiments, we follow [12] to split classes into

novel/base classes that are not overlapped. We evaluate our

proposed webly supervised object detection model on three

different novel/base splits on the PASCAL VOC dataset.

STC dataset is used as additional web data and the im-

ages can be freely obtained from the Internet without fur-
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ther human labor. By training with web data and VOC base

classes, our WebSOD method is able to outperform most of

the weakly supervised methods which require image level

labels of target-domain novel-class images. In addition, we

also conduct transfer learning experiments on a large scale

ILSVRC 2013 detection dataset, where that our proposed

method outperforms the state-of-the-art method [25].

Overall, the main contributions of our work can be sum-

marized as follows:

• We propose a novel webly supervised object detection

(WebSOD) method for novel classes without the need

of human labeling effort. The model achieves promis-

ing results on different novel/base splits on PASCAL

VOC dataset and outperforms most of state-of-the-

art weakly supervised object detection method which

requires image level label. Moreover, our proposed

method achieves state-of-the-art performance in the

transfer learning task on large scale ILSVRC 2013 de-

tection dataset.

• We introduce a bottom-up object region estimation

method based on well-trained base detectors and an at-

tentive classification loss based on the top-down cues

from the image-level class activation maps for better

classifying novel-class objects in web images.

• Regarding the domain mismatch between the target

domain and web domain, we propose a residual fea-

ture refinement (RFR) network to adapt features from

the target domain to the webly trained detection model.

2. Related Works

Our method is related to the research topics including

Learning from Web Data, Weakly Supervised Object De-

tection, Mining Discriminative Regions and Domain Adap-

tation.

2.1. Learning from Web Data

Web data are often used for data augmentation to im-

prove the diversity of the target training data. The work in

[6] uses web images on the classification task. They focus

on filtering noisy web images to construct clean web train-

ing data. With a similar effect, Shen et al. [17] and Tao

et al. [22] proposed to use web images as external data to

boost the performance of image semantic segmentation and

weakly supervised object detection, respectively. In con-

trast, we propose to use web images without further labeling

for training object detectors for novel classes.

2.2. Weakly Supervised Object Detection

Recently studies on weakly supervised detection aim to

reduce the human labeling effort by using the image level

label instead of bounding box annotations [3, 36, 2, 4, 11,

14, 19, 28, 5]. The multi-instance learning problem has

been defined for the weakly supervised object detection task

in which the model alternatively learns the categories of the

contained objects and finds the location of each object. The

work in [3] firstly proposed an end-to-end solution for the

weakly supervised object detection with two branches for

object classification and object localization, respectively.

Later, Tang et al. [19] proposed to use the image level label

to further refine the instance classification with an online

classifier refinement.

To utilize the abundant labeled data on the existing ob-

ject detection dataset, mixed supervised object detection

is introduced to improve the novel-class performance with

weakly labels. The work in [18] proposed to use a trained

ranking model on the base categories to the novel categories

to select the regions which are likely to be the objects. Hoff-

man et. al. [9] proposed a Large Scale Object Detection

through Adaptation (LSDA) method, which is to learn the

difference between the classifier and the detector. Then the

difference is used to transfer the classifier to the correspond-

ing object detector for the novel classes. Based on LSDA,

Tang et al. [20] proposed to improve LSDA by consider-

ing the semantics and visual similarities. Recently, Li et

al. [15] proposed to learn domain-invariant objectness in-

formation from the fully labeled data and then used the in-

formation to identify the object regions for novel classes.

DOCK[13] uses region-level similarity as well as common-

sense to guide the algorithm towards learning the correct

detection for the novel classes from the base classes with

the bounding boxes annotations, where all classes appear in

one domain. In contrast, our proposed method is to use

web domain images to train a detector for novel classes

in the target domain. Yang et al. [31] proposed a semi-

supervised large scale fine-grained detection method to de-

tect fine-grained classes from coarse-grained classes with

bounding boxes annotations, where fine-grained classes are

the sub-classes from the coarse-grained classes. In contrast,

our proposed method transfers knowledge between two do-

mains and among different classes. Our work aims to uti-

lize the objectness knowledge in existing well-train object

detector for novel classes without further human labeling.

2.3. Mining Discriminative Regions

Recently works on region-mining methods were pro-

posed to find the object regions from the image-level labels.

The work in [38] introduces a top-down neural saliency

method in the weakly supervised localization task. The

work in [34] uses the Excitation Backprop method in the

network hierarchy to find out the discriminative regions.

Zhou et al. [38] proposed a Class Activation Mapping

(CAM) method to identify the activated regions by apply-

ing convolutional layers and global average pooling in the

12938



RPN

Regression Loss

Attentive 

Cls Loss

RoIs

Attention Map

Feature Maps

(N x 7 x 7)

(N x 1 x 1)

RoI Pooling

RoI Pooling

Feature for each RoI

Attention score for each RoI

0.01 0.95 0.3

Conv

Layers

Bbox Reg

Bbox Cls

Image Cls
Global 

Pooling

CAM 

Conv

Image Cls Loss

Figure 4. Illustration of our proposed network with a CAM branch (in orange) to generate top-down class-specific attention score. With

the RoI pooling on the top-down attention map obtained from the CAM branch, we obtain the attentive score for each RoI. The Attentive

Classification Loss (ACL) is a weighted classification loss to focus on the training of novel classes relevant to the image labels (“cow” in

the image) and suppress the irrelevant ones (e.g. “person” in the image).

image classification task. Later Grad-CAM was proposed

to enhance CAM without the need of modifying the DCNN

structure. Among these methods, CAM is widely used for

generating the pseudo mask for the semantic segmentation

task [35]. For weakly supervised object detection, Wei et

al.[28] use CAM as the pseudo mask to train a weakly

supervised segmentation to help weakly supervised detec-

tion and Diba et al.[5] use CAM to generate some propos-

als. In contrast, in this paper, we utilize CAM to find the

corresponding regions for the web images with the image

level “labels” to help on learning a novel-class detector by

weighting the loss function.

2.4. Domain Adaptation

Our work is also related to the domain adaptation meth-

ods [26, 10, 39, 37, 32]. The work in [7] introduces an

adversarial training method for the domain adaptation by

adding a domain classifier to classify the feature from the

corresponding domain and a gradient reversal layer to make

the feature indistinguishable. With a similar idea, the work

in [24] introduces a domain classification loss and a do-

main confusion loss in the classification task to train their

model adversarially. In addition, Tao et al. [23] proposed

a proposal-level domain adaptation in the object detection

task to confuse the feature from the web domain and the

target domain. In this paper, we propose a residual feature

refinement block supervised by the task losses to adapt the

target domain feature to the webly trained detection model.

3. Problem Definition

In this work, we define a novel and practical setting for

the novel-category object detection, in which there are two

kinds of classes for training, i.e. the base classes and the

novel classes. For the base classes, we have abundant anno-

tated data in the target domain and web images with image

level “label” (the pre-defined labels used as search phrases

to obtain the images). For the novel classes, we only have

the images from the web domain with image level ”label”.

This setting is worth exploring as it is a very meaningful

practical scenario - one may want to explore an already

trained detector to novel categories with many web images

without further labeling.

More specifically, abundant labeled datasets (e.g. PAS-

CAL VOC, MS-COCO) are already available to produce

a well-trained object detector. However, there are always

novel categories which are not available in the existing

datasets but might be available in web images with image-

level “labels”. Thus, solving this problem of novel class de-

tection without further annotation is practical and desired.

4. Approach

We propose a Webly Supervised Object Detection (Web-

SOD) method for novel classes in the target domain which

only requires target domain base-class images with bound-

ing boxes annotations and web images for both base and

novel classes without any further annotations. Firstly, we

use target domain images to train a base class object de-

tector as a bottom-up object region estimator for the web

images to estimate object regions which are like to con-

tain the novel objects. With the top-down attentive clas-

sification loss, we then train an end-to-end webly super-

vised object detector on the web images for both base and

novel classes. Moreover, we propose a Residual-Feature-

Refinement (RFR) block to refine the feature representa-

tions across two domains. We show the overall pipeline in

Figure 2

4.1. Object Detector as Object Region Estimator

We utilize the two-stage detection framework Faster-

RCNN [16] and train a base detector with target-domain

base-class images and their bounding box annotations. Us-

ing this base-class detector, we are able to localize some un-
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seen objects from their common bottom-up visual charac-

teristics shared with the base class objects, though the con-

fidence is relatively lower. For example, a “dog” detector

is likely to detect an unseen “cat” as a “dog” with low con-

fidence. Therefore, given the fully supervised detector on

the base classes in the target domain with abundant ground

truth, we directly apply the trained detector to web images

and generate class-agnostic region boxes with higher objec-

tiveness than the background. As shown in Figure 3, we

are able to obtain high-quality region boxes with accurate

object localization for both base and novel classes on web

images. For example, even though the base detector is not

trained with any bird images, it is still able to catch the birds

in the image. Overall, the base detector catches almost all

objects of interest by its common knowledge of objective-

ness.

4.2. Attentive Classification Loss

To this end, we obtain some sparse object region boxes

with high objectiveness on the web images. Ideally, since

web images are usually simple single-object images, we can

propagate the web image label as the label for each box.

Then we are able to train a Faster RCNN for both base and

novel classes on the web images with the estimated boxes.

However, it is observed that the estimated boxes may in-

clude background patches and also objects from various

classes that are inconsistent with the image labels. During

the training, these irrelevant boxes may confuse the detec-

tor if they are all considered the same class as their image

labels. Thus, there is a need for a top-down mechanism

that can enable selective and attentive learning on those cor-

rect boxes. Therefore, we propose a class-specific attention

module with an attentive classification loss for the detec-

tor training to differentiate the boxes of interest and irrel-

evant ones and reduce the influence of the falsely labeled

instances.

In order to produce class-specific attention on an image,

we use the class activation map (CAM) by adding an image

classification branch. Specifically, as shown in Figure 4,

we add one convolution layer after the Conv Layers (CAM

Conv) and a global pooling layer on the feature maps to get

the feature representation of the whole image. We then use

a fully-connected layer as the image classifier with a cross-

entropy classification loss. Lastly, as proposed in [38], we

compute the weighted combination of the feature maps of

the convolution layer to obtain the class activation map.

We define Mc as the class activation map for class c as

below:

Mc(x, y) =
∑

k

wc
kfk(x, y). (1)

Here, fk(x, y) represents the kth feature map after the CAM

convolution layer at spatial location (x, y), and wc
k indicates

the weight in the linear layer corresponding to the class c
for feature map k. In addition, we apply a class specific

softmax on the class activation map. Then we apply the

1× 1 RoI pooling for each RoI on the class activation map

Mc(x, y) to get an attention score W i
RoI . Then, we apply a

normalization for each RoI as:

Ŵ i
RoI = W i

RoI/(max(WRoI) + δ), (2)

where max refers to the max value within all the W i
RoI and

δ is a very small positive value.

Finally, we multiply the normalized attention scores

Ŵ i
RoI on the classification loss Lcls for each RoI as the At-

tentive Classification Loss (ACL):

LACL =
1

NRoI

∑

i∈RoI

Ŵ i
RoI · Lcls(pi, p

∗

i ). (3)

The total loss function can be written as:

L = λ1LACL + λ2

1

NRoI

∑

i∈RoI

Lreg(ti, t
∗

i ) + λ3LIcls(c, c
∗).

(4)

Here, i is the index of an RoI in a mini-batch and pi is

the predicted probability of the RoI being the object with

ground-truth label p∗i being 1 if true, and being 0 if not. ti
is a vector representing the 4 parameterized coordinates of

the predicted bounding box, and t∗i is that of the ground-

truth box associated with the RoI . The classification loss

Lcls in (3) is a log loss. For the regression loss, we use

Lreg(ti, t
∗

i ) = R(ti − t∗i ) where R is a smooth L1 loss de-

fined in [8]. The outputs of the Cls and Reg layers in Figure
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Table 1. Detection performance (mAP) on 15 base categories

on the PASCAL VOC 2007 testing dataset with three different

novel/base class splits. The base detector is trained with 15 classes

on the PASCAL VOC 2007 and 2012 dataset.
Base Set 1 Base Set 2 Base Set 3

Our Base Model 73.93 74.12 73.22

Table 2. Object detection performance (mAP) for all three

novel/base class split on the PASCAL VOC 2007 dataset.
1st Split 2nd Split 3rd Split

Methods Novel Mean Base Mean Novel Mean Base Mean Novel Mean Base Mean

ZAOD [23] 32.4 23.0 25.7 25.3 29.2 21.4

WSDDN [3] 45.6 31.6 32.6 35.5 37.1 34.0

ZLDN [36] 58.9 43.8 51.9 46.1 50.2 46.7

WSOD2 [33] 67.8 52.1 60.6 54.5 57.7 55.5

Few Shot [12] 47.2 63.6 39.2 65.4 41.3 63.0

Base WebSOD 58.3 67.6 52.2 70.1 58.0 67.2

WebSOD + ACL 60.5 69.0 53.0 71.2 58.9 67.3

WebSOD + ACL + RFR 61.8 70.7 54.0 72.5 60.0 70.5

Fully Supervised 83.1 78.1 80.6 79.1 81.4 79.3

4 are {pi} and {ti}, respectively. The λ here are the trade-

off parameters of different terms.

For the CAM image classification loss LIcls, we use a

cross entropy loss. Note that we use the image level “label”

as ground truth and train this image classification branch

with the detection simultaneously.

With the proposed attentive loss for training web images

with noisy boxes, we are able to obtain a reliable web de-

tector that can detect both base and novel classes for web

images.

4.3. Residual Feature Refinement

Since our novel-class detector for web domain is only

trained with web images of unseen classes, it may not be

well-generalized to the unseen classes in the target domain

(like Pascal VOC images) due to the domain mismatch. To

more effectively transfer the web detector (novel + base

classes) for detecting novel objects in the target domain, we

refine the feature representation model by adapting target

features to fit the well-trained web detector. In particular,

we fix the final web detection layer (Bbox Cls & Reg layer)

and finetune the feature extraction layers with a joint train-

ing of web and target data. With such refinement, we want

to enforce the feature network to learn a universal feature

presentation across different domains.

However, we found that the feature finetuning by fixing

the web detection layers gives unstable results when we add

additional images from the target dataset (base classes). The

training on images from different domains may affect the

detection in the original source domain. Therefore, we pro-

pose to use a Residual Feature Refinement (RFR) block to

maintain a small variation in the well-trained web detec-

tor. In particular, we carefully design a light-weight Resid-

ual Feature Refinement block as shown in Figure 5, which

consists of three convolution layers and two ReLU layers.

Through the residual block, the target domain feature is

converted as:

Bird Bus Cow Motorbike Sofa

Images

CAM

Figure 6. Visual results for the top-down class-specific attention

map. The class-specific attention maps are able to attend to the

image regions that are consistent with the image level labels.

F̂ = (F ⊙ T )⊕ F, (5)

where ⊙ and ⊕ indicates element-wise multiplication and

element-wise sum for each pixel respectively, F is the orig-

inal feature and T is the generated residual feature.

For the RFR training, we first train the object detector in

the web domain with attentive classification loss (ACL) as

mentioned before. Secondly, we fix all the layers for the ob-

ject detector and add the RFR block after the RoI features.

Then we feed the images from the target domain and web

domain iteratively to train the residual model. We use the

ACL when feeding the web images and use the same losses

as Faster-RCNN when feeding in the target domain images.

Note that we only use the images which contain the base

categories in the target domain. Through the experiments,

we found that the feature refinement model is able to be

generalized to the novel classes in the target domain even

though they are not involved during the feature refinement

learning.

5. Experiments

5.1. Datasets

To evaluate the proposed method, we test our method on

the widely-used large scale multi-instance object detection

benchmarks, PASCAL VOC 2007 and 2012. We follow the

common practice of training on the VOC 07 and 12 training

and validation images and testing on the VOC 07 testing

images. We use the STC dataset [27] as our web image

dataset, whose images are freely obtained from the Internet

without human annotation. The STC dataset has 20 object

categories of images which are the same as VOC dataset.

We follow the practice in [12] to split the novel and base

classes.

We use the entire PASCAL VOC 2007 test image set

with a totally of 4952 images to evaluate our models, and

choose mAP as the evaluation metric with an IoU threshold

of 0.5.

5.2. Base Detector

The Faster RCNN detector implemented in the PyTorch

is used as our base detector and ResNet-101 is adopted as
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Table 3. Object detection performance (AP) for the 1st split of the novel and base categories on the PASCAL VOC 2007 dataset.
Novel Base

Methods bird bus cow mbike sofa mean aero bike boat bottle car cat chair table dog horse person plant sheep train tv mean

ZAOD [23] 17.8 42.9 20.3 43.8 37.3 32.4 40.6 30.1 15.9 6.4 40.5 31.5 11.4 27.4 15.7 24.1 8.9 12.2 17.7 32.1 31.0 23.0

WSDDN [3] 31.5 64.5 35.7 55.6 40.7 45.6 39.4 50.1 16.3 12.6 42.8 42.6 10.1 24.9 38.2 34.4 9.4 14.7 30.2 54.7 46.9 31.6

ZLDN [36] 50.1 62.7 57.8 68.2 56.1 58.9 55.4 68.5 16.8 20.8 66.8 56.5 2.1 47.5 40.1 69.7 21.6 27.2 53.4 52.5 58.2 43.8

WSOD2 [33] 61.5 73.4 71.9 71.4 60.9 67.8 68.2 70.7 42.3 28.0 69.3 52.3 32.7 42.8 57.9 73.8 25.5 29.2 61.6 56.5 70.7 52.1

Few Shot [12] 30.0 62.7 43.2 60.6 39.6 47.2 65.3 73.5 54.7 39.5 75.7 81.1 35.3 62.5 72.8 78.8 68.6 41.5 59.2 76.2 69.2 63.6

Base WebSOD 50.1 61.9 78.1 56.2 45.0 58.3 66.6 73.7 59.7 60.1 78.0 85.0 44.8 63.0 79.5 75.6 75.4 41.1 73.1 76.0 62.8 67.6

WebSOD + ACL 52.5 63.3 79.5 58.3 48.7 60.5 67.4 76.3 61.0 60.7 80.0 82.9 46.1 61.9 81.0 78.7 75.7 45.5 74.2 77.6 65.9 69.0

WebSOD + ACL + FT 56.6 60.9 73.9 54.8 44.8 58.2 78.9 83.7 67.6 67.0 83.9 86.0 54.2 70.9 81.8 84.1 77.6 48.7 78.7 81.0 74.9 74.6

WebSOD + ACL + RFR 56.8 66.2 80.3 57.3 48.2 61.8 69.9 76.2 61.0 60.6 82.9 84.6 48.7 64.4 82.5 80.8 76.5 46.0 76.6 80.8 68.8 70.7

Fully Supervised 79.1 86.1 85.8 84.8 79.8 83.1 79.4 85.7 72.0 68.4 87.7 88.4 63.0 71.0 87.8 86.9 82.3 52.1 82.1 87.1 76.9 78.1

our backbone. During the base detector training, we use

images which only contain base classes (15 classes) with

a batch size of 16, a learning rate of 0.004, a momentum

of 0.9 and the weight decay of 0.0005. We train the base

model for 14 epochs and Table 1 shows the mAP results for

the base detector on three different novel/base splits, where

we choose 5 classes as novel classes and the remaining 15

classes as base classes.

5.3. Ablation Study

The bottom part of Table 2 shows the mAP value of our

proposed webly supervised object detection (WebSOD) and

its variants under the three different novel/base class splits.

Tables 3 further shows the detailed AP results for each cat-

egory of the first novel/base class split.

Base WebSOD. This is the simplest baseline, where we

set the threshold of 0.8 for the base detector as the proposal

generator for the web images, as shown in Figure 3. Then,

we directly use all the proposals as the pseudo bounding box

annotation to train a web detector for both base and novel

classes. After that, we directly apply the trained web detec-

tor on the target-domain test images. Such a simple base-

line achieves pretty decent performance, as seen in Table 2,

which demonstrates there exists some commonness among

different object classes as well as between web images and

VOC images. Also, our work assumes that common object-

ness knowledge is shared among base and novel classes. It

is observed that the performance of a novel class would be

better if there is a similar base class.

Effect of Attentive Classification Loss. From the Ta-

ble 2, we can see that our model with ACL (denoted as

WebSOD+ACL) improves the detection performance on the

novel classes, up to 2.2% gain in mAP for novel classes at

first novel/base split. This suggests that ACL is capable of

removing irrelevant proposals for novel classes. Figure 6

gives a few examples of the class-specific attention maps,

which is able to attend to the image regions that are consis-

tent with image-level labels and thus facilitate the attentive

training of the bounding box classification for noisy web

image proposals.

Effect of Residual Feature Refinement. Compared

with WebSOD+ACL, the method with the additional RFR

block (denoted as WebSOD+ACL+RFR) performs better on

the target domain images of base classes. This indicates that

the RFR block is able to learn a universal feature represen-

tation and narrow the discrepancies between web and target

domains. Moreover, WebSOD+ACL+RFR also achieves an

improvement for the target-domain images of novel classes,

despite that it is trained without any images and annotations

of the novel classes in the target domain. This suggests that

the feature refinement is a common feature transformation

between different domains that can be extended to novel

classes.

Other Results. We also consider another baseline (Web-

SOD+ACL+FT), which fine-tunes all layers for feature

learning while fixing the web detector. From Table 3, we

can see that, compared with WebSOD+ACL, the results

of WebSOD+ACL+FT are largely improved for the base

classes, but drop a lot at the same time for the novel classes

since the feature is finetuned heavily towards the target do-

main base classes.

5.4. Comparisons with Other Methods

As there is no existing work with the same setting, we

compare our method with a few other methods under differ-

ent object detection settings. It shows our proposed method

and setting is able to outperform most of the settings with

limited human effort.

Fully Supervised Object Detection. We compare our

proposed method with the fully supervised object detection

method which serves as the upper bound of our method. As

shown in Tables 2, 3, although there is still a large perfor-

mance gap between our full model (WebSOD+ACL+RFR)

and the fully supervised method, the gap has been reduced

significantly, compared with others. Note that the fully su-

pervised method requires abundant bounding box annota-

tions for the novel classes while we only require web im-

ages of novel classes without further annotations.

Weakly Supervised Object Detection (WSD). Weakly

supervised object detection methods require the image-level

labels for the target domain images of the novel classes,

while we do not require the novel classes images. As we

are under different settings, we directly use the results re-

ported in their papers. We compare with three state-of-the-

art weakly supervised object method WSDDN [3], ZLDN

[36] and WSOD2 [33]. The results in Tables 2, 3 show that

our webly supervised full model is able to outperform most

of them, despite that we do not need any images and anno-
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Table 4. Comparison of our results (mAP) in large scale ImageNet

detection dataset (ILSVRC13) with existing methods at IoU > 0.5

and IoU > 0.7 .
Methods and Base Network mAP IoU >0.5 mAP IoU >0.7

LSDA (AlexNet) [9] 18.1 -

Tang et al. (AlexNet)[19] 20.0 -

Uijlings et al. (Inception-ResNet)[25] 36.9 27.2

Ours (ResNet) 37.1 27.8

tations of the novel classes in the target domain.

Zero-Annotation Object Detection (ZAOD). Zero-

Annotation Object Detection [23] is similar to us, which

aims at reducing human labeling efforts by using the web

images with the associated image-level labels as the only

annotated images together with unannotated target-domain

images to train a target-domain object detector. Similar to

them, we both need the web images for both base and novel

classes. In contrast, our method does exploit the annotated

target-domain images of base classes but without using any

target-domain images and labels of novel classes where they

require the images. Our model outperforms ZAOD signif-

icantly(improving mAP from 32.4% to 61.8% in the first

novel/base split as shown in Table 3), which indicates an-

notations of the base-classes can largely help unannotated

novel-classes detector.

Few Shot Object Detection. We also compare our pro-

posed method with the state-of-the-art few shot object de-

tection method [12], which requires not only the abundant

annotation for the base classes, but also a few annotations

for the novel classes. Despite our method does not need any

annotations and images for the novel classes in the target

domain, we are still able to significantly outperform the few

shot method (with 10 shots) for the novel classes, e.g. by

14.6% in mAP in the first novel/base split.

Lastly, we visualize some detection results and failure

results on the PASCAL VOC 2007 testing dataset for the

five novel classes in the 1st novel/base split in Figure 7 and

Figure 8, respectively.

5.5. Experiments on Large Scale Dataset

We also conduct experiments on a large scale ImageNet

detection dataset (ILSVRC13), following the practice in

[25] where 100 base classes (categories 1-100) have the

bounding-box annotations and 100 novel classes (categories

101-200) only have image-level labels. We firstly use base-

class images to train a base detector as the object region es-

timator for novel-class images. We then apply the estimator

to the single label novel-class images which are similar to

web images. Combining the estimated boxes for the novel-

class images with the groundtruth bounding boxes for the

base-class images, we train a faster-RCNN detector. Dur-

ing the training, as we directly use the groundtruth anno-

tations for the base-class images, we only apply ACL for

the novel-class images and do not apply Residual Feature

Refinement (RFR). Table 4 shows the mAP value for our

Figure 7. Detection results for our proposed Webly Supervised Ob-

ject Detection (WebSOD) method on the 1st novel/base split.

Figure 8. Some failure cases for our proposed WebSOD. The first

row shows the classification error and the second shows the local-

ization error.

proposed method and the other three transfer learning meth-

ods on the same dataset (val2 of ILSVRC13) with the same

base and novel training split. Despite the base network in

[25] (Faster RCNN with Inception-ResNet) is more pow-

erful than ours (Faster RCNN with ResNet), our proposed

method is able to outperform state-of-the-art transfer learn-

ing method by 0.2% on the test set for 100 novel classes.

6. Conclusion

In this paper, we have proposed a novel webly supervised

object detection (WebSOD) method to detect novel classes

without further human labeling effort. To achieve this, we

have proposed to use the pre-trained base-class object detec-

tor as a bottom-up region proposal generator together with a

top-down attentive classification loss to train a webly super-

vised detector for both base and novel classes. Furthermore,

to adapt the target domain features to the well-trained web

detector, we refined the feature representation by training

a residual feature refinement module with a fixed detector.

The proposed method has achieved promising detection per-

formance on target novel-class images.
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