
Multi-view Neural Human Rendering

Minye Wu1,3,4 Yuehao Wang1 Qiang Hu1 Jingyi Yu1,2

1ShanghaiTech University 2DGene Inc. 3University of Chinese Academy of Sciences
4Shanghai Institute of Microsystem and Information Technology

{wumy, wangyh3, huqiang, yujingyi}@shanghaitech.edu.cn

Abstract

We present an end-to-end Neural Human Renderer

(NHR) for dynamic human captures under the multi-view

setting. NHR adopts PointNet++ for feature extraction (FE)

to enable robust 3D correspondence matching on low qual-

ity, dynamic 3D reconstructions. To render new views, we

map 3D features onto the target camera as a 2D feature

map and employ an anti-aliased CNN to handle holes and

noises. Newly synthesized views from NHR can be further

used to construct visual hulls to handle textureless and/or

dark regions such as black clothing. Comprehensive ex-

periments show NHR significantly outperforms the state-of-

the-art neural and image-based rendering techniques, espe-

cially on hands, hair, nose, foot, etc.

1. Introduction

There have been tremendous demand for generating high

quality 3D models of human in motion. Applications are

numerous, ranging from producing ultra-realistic avatars in

virtual and augmented reality [18, 40], to enabling holo-

graphic and immersive telecommunications [15] supported

by latest data transmission networks. By far, most existing

approaches have relied on conventional modeling and ren-

dering pipelines: the 3D geometry of a performer is first

captured using either active (e.g., depth cameras such as

Microsoft Kinect) [31, 40] or passive (e.g., a multi-camera

dome) [22, 28] systems and stored in the form of a 3D point

cloud; the point cloud is then triangulated, texture mapped,

compressed, streamed, and rendered at the viewing device.

To achieve high fidelity reconstruction, dome-based sys-

tems require a large number of densely sampled cameras

to handle occlusions [42], textureless regions [29], and de-

tailed geometry (e.g., hands). Depth-camera based solu-

tions such as Holoportation [33] are still restricted by the

limited resolution. Often, a lot of manual work is needed to

produce commercial quality results.

Image-based modeling and rendering (IBMR) [11, 32]

attempts to interpolate new views (rays) from the sampled

Figure 1. Our neural human renderer (NHR) produces photo-

realistic free-view-video (FVV) from multi-view dynamic human

captures.

ones, guided by low quality reconstruction. Earlier tech-

niques such as lumigraph [17] use coarse geometry proxy

such as planes or visual hulls to select and then blend the

sampled rays (images). The quality, however, relies heavily

on the accuracy of the proxy. Image-based visual hull [29]

bypasses 3D proxy generation using image-space ray or-

dering. In reality, previous IBMR methods are vulnerable

to occlusions and cannot preserve fine details. To improve

proxy geometry, it is also possible to fit an adjustable 3D

model [5, 19]. The seminal work of Skinned Multi-Person

Linear (SMPL) model [27] pre-scans 1786 human shapes

and then learn a human model from them. It then estimates

the shape parameters of the recovered point cloud. SMPL,

however, assumes the “bare skin” model and cannot directly

handle clothing or strong shape variations under complex

poses. Shape deformation [31, 40] can partially mitigate the

problem but are sensitive to reconstruction noise and holes.

In this paper, we resort to neural rendering (NR) to im-

prove IBMR. Previous NR explores deep networks to “fix”

the visual artifacts. [30, 3] exploits semantic information

embedded in the captured imagery data to improve render-

ing. However, existing methods require using a large vol-

ume of training data, i.e., densely sampled input views. It is

also possible to apply NR at the geometry stage of the clas-

sical graphics rendering pipeline, e.g., by directly refining

the input 3D and texture data. [37] proposed a Neural Tex-

ture technique to handle noisy 3D geometry. Yet, it cannot

handle severe defects such as holes caused by occlusions.

1682



In addition, nearly all existing NR techniques aim to handle

static rather than dynamic models. Brute-force approaches

that separately train at individual time instances are neither

efficient nor practical.

We present an end-to-end Neural Human Renderer

(NHR) that produces high quality rendering from low fi-

delity 3D point cloud of dynamic human models. NHR

trains on multi-view videos and is composed of three mod-

ules: feature extraction (FE), projection and rasterization

(PR), and rendering (RE). FE adopts PointNet++ [34] to

extract features from the reconstructed models over time

even under strong topology/reconstruction inconsistencies

based on structure and semantics. More importantly, The

extracted features eliminate the dense view sample require-

ment by exploiting temporal coherence. The PR module

maps 3D features onto the target camera to form a 2D fea-

ture map where back-propagation of the gradient on the 2D

map can be directly conducted on the 3D point cloud. Fi-

nally, RE renders the final image from the feature map at the

new viewpoint. Specifically, RE aims to handle incomplete

and noisy geometry by employing an anti-aliased CNN [41]

with a gated convolution layer [39] to enhance translation

equivalence.

Newly synthesized views from NHR can further improve

3D reconstruction. Specifically, we modify our pipeline

to output an additional foreground human mask. Render-

ing a dense set of new views enables high fidelity visual

hull reconstruction. In particular, the constructed visual

hull from NHR supplements the MVS point cloud and effi-

ciently tackles texture-less and/or dark regions such as black

clothing. Comprehensive experiments show NHR signifi-

cantly outperforms the state-of-the-art IBR techniques and

can reliably handle hands, hair, nose, foot, etc that are tra-

ditionally difficult to reconstruct even under dense capture

setups.

2. Related Work

Rapid advances in 3D scanning and reconstruction tech-

niques over the past decade have laid the foundation for 3D

modeling and most recently, rendering, of real humans.

Reconstruction. Passive human reconstruction schemes

follow traditional reconstruction pipelines by using a large

number of cameras facing towards the character. Structure-

from-motion can be used to first estimate camera param-

eters and sparse point cloud. Multi-view stereo (MVS)

can then be applied to extract a point cloud of the human

subject. It is worth noting that the density and quality of

the point cloud depend heavily on the availability of tex-

tures: rich textures often lead to much denser reconstruc-

tion whereas textureless or dark regions can lead to sparse

and unreliable reconstruction. There are a few recent ap-

proaches that use a dome formed by stereo pairs so that each

Figure 2. Our NHR pipeline employs neural rendering on spatio-

temporal, low-quality 3D point clouds for multi-view rendering.

§ 4 introduces the rendering part. Our rendering results can then

be used to further improve multi-view reconstruction by patching

holes and textures. More details about refinement part are shown

in § 5.

pair can obtain more reliable estimation via stereo matching

to partially tackle the textureless problem. The point cloud

is then triangulated to form a mesh, e.g., via Poisson Surface

completion, to enable efficient texture mapping. In reality,

human body imposes additional challenges besides texture-

lessness: human body exhibits complex topology and hence

occlusions. Consequently, the reconstruction contains holes

where brute-force surface completion produces adhesive ar-

tifacts, e.g., arms are stitched to torso, fingers are “glued” as

blobs, etc. By far, even commercial solutions (e.g., 8i [1],

DGene [2]) fail to produce high quality 3D reconstruction

even with hundreds of cameras.

Parametric modeling. Alternative modeling schemes at-

tempt to fit a parametric model to the acquired image or

point cloud. A number of such models [5, 19, 27] exploit

priors in shape, pose and appearance to estimate the optimal

human geometry. A strong assumption there is the “bare-

skin” model: since human clothing has strong variations

that cannot be easily reduced to simple parametric models,

these models unanimously require the subject to wear tight

clothing. For example, the notable work of SMPL [4]. The

results are reasonable, even using a video or a single image.

However, the clothing restriction significantly limits the ap-

plicability of the parametric models: often it is desirable

that the subject wears fancy clothing.

1683



Rendering. One can potentially bypass the 3D reconstruc-

tion process if the goal is to render the subject as real as

possible at new viewpoints, e.g., via image-based modeling

and rendering (IBMR). Methods in these categories exploit

coarse geometry obtained either through multi-view stereo

or by even simpler methods such as shape-from-silhouette

for interpolating new views from the sampled views. Ge-

ometry proxy can be as simple as a plane or as complex

as parametric human shapes [12, 29, 6, 20, 7, 43, 45] and

view interpolation can be efficiently implemented via view-

dependent texture mapping or by an unstructured lumigraph

shader [6]. In earlier days where the resolution of the dis-

play was relative low, the rendering artifacts can be “hid-

den” through blurs or ghosting. More recent rendering tech-

niques based optical flow [8, 13] can partially enhance the

rendering quality but still produce noticeable visual artifacts

near occlusion boundaries.

Our method exploits neural rendering [3, 30] that has

shown promising results on image synthesis. Different from

IBMR, NR attempts to learn from sampled images to mit-

igate visual artifacts. Methods based on GAN [16] learn

the distribution of images and produce impressive results

on several image generation tasks such as denoising, deblur-

ring [24, 35], super-resolution, etc. We set out to use NR to

bridge the gap between low quality 3D reconstruction and

high quality image synthesis for dynamic 3D humans. For

static scenes, NR can also be used in conjunction with clas-

sical IBR to achieve view-dependent rendering [10, 38, 37],

image-based relighting [30], mesh denoising [37], and cor-

respondence matching at both the voxel level [36] and the

point level [3].

Closely to our approach is the recent Generative CNN

models that aim to synthesize body appearance [14, 26],

body articulation [9], or both [44, 25]. Their techniques can

fix artifacts in captured 3D performances [28] and enhance

low quality 3D face reconstruction [23]. A major difference

of our technique is that we tackle dynamic models by ex-

ploiting temporal shape variations to compensate for spar-

sity in viewpoint sampling: rich body shape and appearance

variations over time compensates for the lack of sufficient

viewpoints using shared weights training. We also demon-

strate how to use the rendered results to further improve re-

construction.

3. Approach Overview

Before proceeding, we explain our notations. We as-

sume the multi-view stereo (MVS) input, although active

3D sensing can also fit naturally into the pipeline by by-

passing the reconstruction process. The inputs to our NHR

pipeline consists of a synchronized, multi-view video se-

quence It = {Ict }
nc,nt

c=1,t=1 towards a performer, where c is

the camera index, nc is the total number of cameras, t is the

frame index, nt is the total number of frames. We assume

the intrinsics and extrinsics at each camera c are known as

{Kc}nc

c=1 and {T c}nc

c=1. We also extract the human fore-

ground mask Mt = {M c
t }

nc,nt

c=1,t=1 at all frames to facilitate

training. Under the MVS setting, we can construct a point

cloud at each frame P = {Pt}. We also assume each point

in the point cloud has color, computed through reprojection

on the input views’ image as Y = {Yt}.

The first task in NHR is to synthesize high quality new

views through the rendering process (§ 4). In addition to

RGB color rendering, we also produce a foreground mask

that later facilitates model refinement (§ 5). Specifically,

the initial point cloud sequence P is not only noisy but also

contains many holes due to occlusions. The model refine-

ment process can effectively fill in these holes in the synthe-

sized new views that can be used to further improve render-

ing. Fig. 2 introduces the complete pipeline of our iterative

render-model technique, with both rendering and geometry

refinement modules where the former is illustrated in details

in Fig. 3 and the latter in § 5.

4. NHR Rendering

4.1. The Rendering Process

The NHR rendering process consists of three modules:

Feature Extraction (FE), projection and rasterization (PR),

and Rendering (RE).

Feature Extraction. Previous neural rendering on point

cloud requires learning a feature descriptor at each 3D point

beyond its original RGB color. Different from a static 3D

model, we observe under our dynamic human capture set-

ting, the recovered point cloud at each time instance is dif-

ferent in point number and density, as the reconstruction is

determined by the MVS technique. As a result, such incon-

sistency introduces additional challenges: learning a feature

descriptor at each point at each time instance is computa-

tionally expensive and requires a significant amount of stor-

age. In addition, the number of view cameras is relatively

small and therefore there are limited samples for learning

the descriptor. We instead set out to use all images at all

time instances. In particular, we exploit semantic features

in human shape and their coherence over time. These fea-

tures are learned from end-to-end supervision.

Specifically, PointNet++ can effectively serve as a fea-

ture extractor. We observe that under the multi-view setting,

the appearance at different viewpoints can exhibit variations

due to lighting directions, cloth materials, skin reflectance,

etc. Therefore, we also consider view direction in the FE

process to mitigate the view dependency effects. At the

same time, we impose the recovered color of the 3D points

as prior. Eqn 1 shows the FE process:

Dt = ψfe(ϕnorm(Pt), {Yt, V }) (1)

where ψfe corresponds to PointNet++. In our implementa-

1684



Figure 3. Our NHR consists of three modules: Feature Extraction (FE) based on PointNet++ to process spatio-temporal point cloud

sequences, Projection and Rasterization (PR) for feature projection, and U-Net based renderer for feature decoding. All together they form

a differentiable renderer.

tion, we remove the classifier branch in the original network

to keep only the segmentation branch as the FE branch. It

takes the point cloud and its features at each moment as

input to obtain a feature descriptor Dt. V = {vi} rep-

resents the (normalized) view direction towards a point as

vi =
pi

t
−o

‖pi

t
−o‖2

, where o is the center of projection (CoP) of

the target view camera. {·} represents concatenation that

concatenates the color and the normalized view direction of

the point as the initial point attributes (or features) feeding

into ψfe. Point coordinates are standard normalized by us-

ing ϕnorm(·).

Projection and Rasterization. Once we obtain the feature

descriptor D of the point cloud, we set out to synthesize

new views. Given a target camera with intrinsic and extrin-

sic K̂ and T̂ , we project the point cloud onto the camera

and splat points into pixel coordinates on image plane lin-

early. This step rasterizes points into pixel squares. We use

the Z-buffer to maintain correct depth ordering and hence

occlusions. This produces a projected 2D feature map S:

Sx,y = dit, where dit is feature descriptor of the i′s point

pit in Pt, preserved after z-buffer depth ordering onto pixel

(x, y). We assign a learnable default feature vector θd for

each background pixel. The complete PR process ψpr for

producing the 2D feature map S can be described as:

S,E = ψpr(Pt, Dt, K̂, T̂ , θd) (2)

where E is the depth map in current view.

Rendering. The feature map S produced above provides an

encoding of the target new view. In the final rendering stage

(RE), we use convolutional neural networks (CNN) to de-

code S into its corresponding RGB image and a foreground

mask.

We benefit from the recent U-Net architecture which has

shown great success in image denoising, deblurring, and

style transfer applications. In our application, we use U-

Net to decode S. Notice that the point cloud from MVS

is sparse and the projected feature maps contain holes and

even exhibits see-throughs where the foreground points are

missing. We treat these artifacts as semantic noise. When

using NR, our goal is to remove these incorrect pixels and

therefore we adopt the gated convolution [39] in place of

the convolutional layer in U-Net. Specifically, our goal is

to have the network identifies the location of these semantic

noises through training and then exploit the attention mask

mechanism to correct the feature maps at the convolution

layer.

Recall that the depth map E generated from PR con-

tains rich geometric information of the scene. In particu-

lar, abrupt changes in depth values is a strong indicator of

semantic noise, especially for low depth values. Therefore,

we use both S and standard normalizated depth map Ê as

input to the RE network, to reduce semantic noises.

It is critical to note that our NHR aims to render the

human subject from any view direction, i.e., the human

subject can appear at any location within an image. This

implies that the neural render should maintain translation

equivalence for the feature map S. In our implementation,

we use MaxBlurPool and ConvBlurPool [41] to replace the

downsampling operations in the original U-Net (including

the pooling layer and the convolutional layer with stride),

to mitigate incoherence caused by translation of the target

camera.

ψrender represents our revised U-Net. The final layer

of ψrender outputs an image with four channels, the first

three produces an RGB image I∗ and last produces the fore-

ground human mask M∗ under Sigmoid.

I∗,M∗ = ψrender(S, Ê) (3)

4.2. Network Training

To acquire training data, we use a multi-camera dome

system composed of up to 80 synchronized industrial high

resolution cameras. We call these cameras sample cameras

the same as traditional image-based rendering. The dome

uses a green screen to facilitate easy foreground segmenta-

tion. All cameras face inwards towards the performer al-

though most captures can only capture a part rather than the

complete image of the performer, as discussed in § 6. All

1685



cameras are pre-calibrated.

For training, we set one of the sample cameras as the

target camera. This allows us to use the ground truth Ict
and M c

t to conduct supervised training. As described in

§ 4.1, our end-to-end networks updates the parameters by

back-propagating the gradients of the loss function from 2D

image to 3D point cloud. Recall our goal is to render the

target view as photo-realistic as possible, we therefore adopt

the perceptual loss [21] and L1 loss as the loss function as:

L(θpn, θrender,θd) =
nb∑

i=1

[λ · (‖I∗i − Ii‖1 + ‖M∗
i −Mi‖1)+

(1− λ) · (‖ψvgg(I
∗
i )− ψvgg(Ii)‖2+

‖ψvgg(M
∗
i )− ψvgg(Mi)‖2)]

(4)

where nb is the batch size; I∗i and M∗
i are the ith rendered

output image and mask in the mini-batch; ψvgg(·) extracts

feature maps from the 2th and 4th layer of the VGG-19 net-

work pretrained on the ImageNet dataset.

Since the dome system consists of rather limited sam-

ple cameras. To train the network for better adaptation at

arbitrary viewpoints, we further augment the training data

by 2D image transformations. Specifically, we adopt three

types of transforms, random translation, random scaling,

and random rotation, that can be easily achieved by mod-

ifying the camera intrinsic/extrinsic parameters and then re-

rendering the 3D point cloud.

Conceptually, one can adopt two training methods, in-

dividual training and shared training, based on the type of

input data. The former trains on each individual performer.

Such an approach is suitable when only a small number of

performers have been captured or when we need to fine-

tune the network for a specific performer. The latter trains

on a large number of performers there the training process

shares the same network weight of ψrender but produces

separate weights in FE. This allows the FE module to learn

the unique geometric and appearance characteristics of indi-

vidual performers while maintaining a unified feature em-

bedding space. The shared rendering module further de-

codes the feature descriptors onto target images.

In our implementation, we bootstrap our network using

shared training and then fine-tune the network for each per-

former using individual training. For a new performer, we

first fix ψrender, and train FE from scratch using shared

training. After 5 epochs, we conduct individual training.

This strategy significantly accelerates the training process.

5. Geometry Refinement

Even dense MVS setups produce patches of holes on tex-

tureless or occluded regions. Our NHR can virtually patch

these holes and produce satisfactory results at every time

Figure 4. Geometry refinement using NHR. (a) shows the visual

hull results (using Shape-from-Silhouette) from densely rendered

views using NHR. (b) shows the raw 3D reconstruction using SfM.

(c) illustrates high coherence on the visual hull result and SfM ge-

ometry. (d) patches holes in (b) using (a). Bottom row shows

closeup views of the NHR results with and without geometry re-

finement.

instance. However, we observe that when rendering a video

sequence, the results produce flickering artifacts at the syn-

thesized regions that originally correspond to holes, even

though every individual frame produces reasonable results.

Similar artifacts have been observed in previous NR tech-

niques [3]. We mitigate the problem by reducing the holes

via geometry refinement.

Recall that our NHR also produces an auxiliary human

mask at each new view, we therefore resort to the visual

hull approach. We observe, compared with RGB images

that contain rich details and thus noise, the masks generated

by our networks are much cleaning. To refine geometry, we

render a dense set of new views and use the resulting masks

as silhouettes and conduct visual hull reconstruction based

on space-carving or shape-from-silhouettes (SfS). We can

then use the approximated visual hull to patch the holes.

Mask and Shape Generation. To briefly reiterate, we use

the MVS point cloud to train the rendering module to output

a matte analogous to RGB images. We then render masks at

a uniformly sampled set of new viewpoints towards the per-

former, each with known camera parameters. Specifically,

we render the masks at a resolution of 800× 600. Next, we

conduct voxel-based SfS to reconstruct human mesh.

Points Sampling and Colorization. Notice that the SfS

results P̂t only contains geometry but not color. For each

1686



point p̂it in P̂t, we can further compute its color by using its

nearest point in the MVS point cloud Pt. We hence obtain

Ŷt corresponding to P̂t.

Holes Patching. Although we can directly use the SfS re-

sults as the refined geometry, it is well-known that volu-

metric reconstruction is restricted by its resolution and the

number of input views. Further the shape recovered from

silhouettes generally appear polygonal. Therefore, we only

patch the holes Ut in Pt from P̂t, i.e., Ut ⊂ P̂t. Specif-

ically, assume φ(·, ·) represents the Euclidean distance be-

tween two 3D points. Our holes patching scheme is based

on the observation that for each point uit ∈ Ut, φ(u
i
t, p

j
t ) to

its nearest point p
j
t in Pt is generally bigger than the points

in P̂t−Ut. We hence adopt a statistical approach to find Ut.

Let bit = min{φ(p̂it, p
j
t )}, we set a threshold τ1 as:

τ1 = λt ·max(b
i
t) + (1− λt) ·median(b

i
t) (5)

where λt is the weighting factor and is set to 0.2 in all our

experiments.

Next, we count the number of points in P̂t whose dis-

tance to p
j
t is below τ1 as sit, where sit = #{bit|b

i
t < τ1}.

Conceptually, sit is inversely proportional to the probability

of the point belonging to Ut.

Next, we compute the histogram of sit for all the points

in set P̂t using 15 bins, evenly separated by the maximal

distance value. We observe in all cases the first bin contains

significantly more points than the second and therefore can

directly help to identify the closest points. We thus use the

maximal distance in the first bin as a threshold τ2 for select-

ing Ut as:

Ut = {p̂t
j |sjt < τ2, p̂t

j ∈ P̂t} (6)

Fig. 4 shows that refined geometry using our SfS based

hole patching technique greatly reduces flickering when

changing viewpoints. It is worth noting that the final ge-

ometry may still exhibit artifacts as its quality depends on

the reliability of τ1 and τ2.

6. Experimental Results

All experiments are conducted on 3D dynamic human

data collected by a multi-camera dome system with up to

80 cameras arranged on a cylinder. All cameras are syn-

chronized and capture at a resolution of 2048 × 1536 at 25

frames per second. In this paper, we use 5 sets of datasets

where the performers are in different clothing and perform

different actions. All sequences have a length between 8 to

24 seconds. Specifically sport1, sport2, sport3 correspond

to dumbbell lifting with relatively tight clothing, dance con-

tains complex and highly deformable clothing, and basket-

ball involves interactions between a player and a ball. We

use chrome key based matting followed by manual fixing to

Figure 5. Our statistical hole patching techniques explores using

the visual hull results to patch holes in terms of their distance dis-

tribution as discussed in § 5.

extract the ground truth masks for all views. 3D reconstruc-

tion is not the main focus of the paper and we use one of the

best commercial SfM software Metashape to compute the

initial 3D point clouds for all frames.

In our network training and forward prediction steps, we

set the target rendering resolution to be 800× 600. The FE

module extracts features vectors of 24 dimensions.

Comparisons. We compare our NHR with a number of

conventional and NR approaches.

Ground Truth (GT). We resize captured image data to a

resolution of 800 × 600, which is same as the output reso-

lution of our network.

Point Cloud Rendering (PCR). We directly project the re-

covered color point clouds onto the target camera and then

use our PR module to render the projected pixels to form

the final RGB image sequences.

Textured Mesh (TM). We use Metashape to triangulate the

point clouds and construct the texture maps for all frames.

The results are rendered onto the image via standard raster-

ization.

PCR + U-net (PCR-U). We project RGB point cloud into

target view and feed it into the U-Net directly to refine the

rendering results.

NHR with Geometry Refinement (NHR w GR). We first

refine geometry as described in § 5 and then use the refined

point cloud to re-train the network with 3 epochs.

To verify the effectiveness of the proposed method, we

compare the rendering results from various algorithms to

1687










