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Abstract

State-of-the-art pedestrian detectors have performed

promisingly on non-occluded pedestrians, yet they are still

confronted by heavy occlusions. Although many previous

works have attempted to alleviate the pedestrian occlusion

issue, most of them rest on still images. In this paper, we ex-

ploit the local temporal context of pedestrians in videos and

propose a tube feature aggregation network (TFAN) aim-

ing at enhancing pedestrian detectors against severe occlu-

sions. Specifically, for an occluded pedestrian in the current

frame, we iteratively search for its relevant counterparts

along temporal axis to form a tube. Then, features from

the tube are aggregated according to an adaptive weight to

enhance the feature representations of the occluded pedes-

trian. Furthermore, we devise a temporally discrimina-

tive embedding module (TDEM) and a part-based relation

module (PRM), respectively, which adapts our approach to

better handle tube drifting and heavy occlusions. Exten-

sive experiments are conducted on three datasets, Caltech,

NightOwls and KAIST, showing that our proposed method is

significantly effective for heavily occluded pedestrian detec-

tion. Moreover, we achieve the state-of-the-art performance

on the Caltech and NightOwls datasets.

1. Introduction

Detecting heavily occluded pedestrians is crucial for

real-world applications, e.g., autonomous driving systems,

and remains the Gordian Knot to most state-of-the-art

pedestrian detectors [27, 28, 10, 26, 24, 23, 19, 17, 54, 47,

46, 15, 16]. This challenge boils down to two aspects: (i)

Heavily occluded pedestrians are hard to be distinguished

from background due to missing/incomplete observations;

(ii) Detectors seldom have a clue about how to focus on the

visible parts of partially occluded pedestrians. Many great

efforts have been made to address the occlusion issue, e.g.,

attention mechanisms [29, 9], feature transformation [11]

and part-based detection [22, 19, 13]. While these occlusion

handling approaches alleviate partially occluded pedestrian

detection in still images, they may not bring extra informa-
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Figure 1. Top row: A heavily occluded pedestrian often leads to

miss detection for a single frame detector due to incomplete and

weak observations. Bottom row: In our approach, we exploit local

temporal context of a heavily occluded pedestrian, i.e., similar less

occluded pedestrians in nearby frames, to enhance its feature rep-

resentations. After linking temporally these pedestrian samples

to a tube, we aggregate their features using an adaptive weight

scheme by matching between visible parts, which substantially

help to distinguish the heavily occluded one from the background.

tion beyond a single image for detectors to reliably infer

an occluded pedestrian in essence. In this paper, we argue

that the temporal context can essentially enhance the dis-

criminability of the features of heavily occluded pedestrians

which has not been studied thoroughly in previous works.

Our key idea is to search for non/less-occluded pedes-

trian examples (which we call them reliable pedestrians)

with discriminative features along temporal axis, and if they

are present, to exploit them to compensate the missing in-

formation of the heavily occluded ones in the current frame,

as shown in Fig. 1. Specifically, our approach is carried out

with two main steps. (i) Tube linking: starting from a pedes-

trian proposal in the current frame, we iteratively search for

its relevant counterparts (not necessarily the same person)

in adjacent frames to form a tube; (ii) Feature aggregation:

the proposal features from the formed tube are aggregated,

weighted by their semantic similarities with the current pro-

posal candidate, enhancing the feature representations of

the pedestrian in the current frame. Using the augmented

features, the classifier tends to more confidently distinguish

heavily occluded pedestrians from background. We imple-
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ment this by a tube feature aggregation network (TFAN).

It is not straightforward to link heavily occluded pedes-

trians with non/less occluded ones, since their appearances

are substantially different, otherwise most pedestrian detec-

tors would deal well with occlusions. We resort to local

spatial-temporal context to match pedestrians with differ-

ent extents of occlusions using a new temporally discrim-

inative embedding module (TDEM) and a part-based rela-

tion module (PRM). The TDEM module supervised by a

discriminative loss learns an embedding for each proposal

across frames, where pedestrian and background examples

become readily separable in the embedding feature space.

We therefore utilize these embedding features of propos-

als to search for their counterparts in consecutive frames

and measure their semantic similarities as the weights to ag-

gregate their features. When aggregating features from the

tube, if the pedestrian proposal is heavily occluded, we fa-

vor the matched reliable pedestrians and assign them larger

weights, rather than the backgrounds. However, the heavily

occluded pedestrian may differ from the reliable ones due

to missing observations. Accordingly, the PRM module is

designed to focus more on the visible area of the current

pedestrian candidate and assign the counterparts of similar

visible parts with larger weights, so as to address the above

discordance problem during feature aggregation.

The proposed TFAN strives to utilize local temporal con-

text to enhance the feature representations of heavily oc-

cluded pedestrians by similar pedestrian samples in neigh-

boring frames. Temporal clue has been widely exploited in

video object detection. For instance, optical flow has been

utilized to achieve feature calibration [30, 31, 38], while

flow estimation may be noisy when an object is heavily

occluded. Alternatively, detection boxes [33, 34, 37, 32]

are associated to rerank classification scores as a post-

processing step, yet these methods are not optimized end-

to-end or require track-id annotations for training a tracker.

By contrast, our approach integrates feature enhancement

and pedestrian box association into a unified framework in

an end-to-end fashion without the need of track-id annota-

tions. Moreover, our approach is particularly designed for

handling heavily occluded pedestrian detection.

In summary, our main contributions are three-fold: (i)

We propose a tube feature aggregation network (TFAN),

which essentially utilizes local temporal context to enhance

the representations of heavily occluded pedestrians; (ii)

We devise a temporally discriminative embedding module

(TDEM) that links the tube reliably and assigns a robust and

adaptive weight in aggregating tube features; (iii) We design

a part-based relation module (PRM) which focuses on the

visible pedestrian regions when aggregating features. Ex-

periments on 3 benchmarks: Caltech [20], NightOwls [59]

and KAIST [60] validate our approach is significantly ef-

fective for heavily occluded pedestrian detection.

2. Related Work
Pedestrian Detection. With the renaissance of convolu-

tional neural networks, many deep learning based methods

on pedestrian detection [27, 28, 10, 26, 24, 23, 19, 17, 25,

18, 48, 36] significantly outperform the hand-crafted feature

based methods [55, 61, 21, 14]. Regardless of the promis-

ing performance on non-occluded pedestrians, most detec-

tors yield limited accuracies on heavily occluded pedestri-

ans. To alleviate the occlusion issue, recent methods are

designed by exploiting attention mechanism [29, 9], feature

transformation [11] and part-based detection [22, 19, 13].

Nevertheless, these works seldom take into account the tem-

poral context, which may essentially help to compensate the

missing information of heavily occluded pedestrians. To the

best of our knowledge, TLL [23] is the only one recent work

which also utilizes temporal cues for pedestrian detection.

TLL simply applies an off-the-shelf LSTM [52] to the de-

tection model. In contrast, our approach thoroughly inves-

tigates how to utilize local temporal context to enhance the

representations of heavily occluded pedestrians.

Video Object Detection. Object detection in videos has

been actively studied recently [50, 51, 38, 39, 40, 41, 42,

43, 30, 31, 38], exploring different ways to take advantage

of temporal cues. Several works focus on utilizing optical

flow to achieve feature calibration [30, 31, 38]. However,

flow estimation may be inaccurate in the circumstance of

fast motion. To tackle this problem, [44, 45, 49] propose to

aggregate features at instance-level, which can better cap-

ture the objects with fast motion. Another direction is to

associate proposal or detection boxes for tube classifica-

tion and detection rescoring [34, 35, 33, 37, 32]. Never-

theless, these methods are not optimized end-to-end or re-

quire track-id annotations. In contrast, we present an end-

to-end approach, integrating both proposal box association

and feature augmentation into a unified framework without

the need of track-id annotations. Since there may be mis-

matches in the linked tube, our approach performs a tem-

porally discriminative embedding for each proposal across

frames. When aggregating the tube features, only features

from relevant counterparts are selected, so as to filter out

irrelevant mismatches. Furthermore, our approach is dedi-

cated to handling heavy occlusions in pedestrian detection,

which has not been thoroughly investigated in the previous

approaches.

3. Method

In this section, we first describe the baseline detector in

§ 3.1. Then, our proposed approach is presented in § 3.2.

Finally, we introduce the implementation details in § 3.3.

3.1. Baseline Detector

For the baseline detector, we employ an off-the-shelf

single-frame detector to process each frame individually in
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Figure 2. Visible ratio statistics of pedestrian examples on the Cal-

tech dataset. For each pedestrian Pt in the current frame, we use

the ground truth boxes to link a tube from t−τ to t+τ frames. The

x-axis denotes the visible ratio of Pt. For each Pt, it has a V max

which is computed by the maximum visible ratio of those pedes-

trians in its corresponding tube. The y-axis denotes the average of

the V max for those Pt whose visible ratios are V t. Pedestrians

with visible ratios lower than 0.2 are not considered.

an input video. Specifically, we adopt vanilla Faster R-

CNN [56] that is commonly used in pedestrian detection

and ResNet-101 [57] of feature stride 16 as the base net-

work.

3.2. Tube Feature Aggregation Network

In real-world scenarios, most pedestrians are actively

moving and the heavily occluded ones are not always be

occluded by other objects. To validate this, we conduct

a quantitative analysis on the Caltech dataset as shown in

Fig. 2. From the figure, we observe that most of pedestrians

which are heavily occluded in the current frame become less

occluded in nearby frames. Motivated by this observation,

we aim to exploit local temporal context from neighboring

frames to compensate the missing information of heavily

occluded pedestrians.

3.2.1 Preliminary Model

Given a sequence of video frames {Ii ∈ R
W×H×3}t+τ

i=t−τ

where It is the current frame, we first apply the base net-

work Nfeat to each frame to produce feature maps fi =
Nfeat(Ii), where fi ∈ R

W
16

× H
16

×256. Let us denote by

Bi = {bki

i ∈ R
4}Mki=1 the proposal boxes in frame Ii gener-

ated by the region proposal network [56] and Xi = {xki

i ∈
R

7×7×256}Mki=1 the corresponding proposal features, where

M (= 300 by default) is the total number of proposals per

frame. xki

i is obtained by x
ki

i = φ(fi,b
ki

i ), where φ is the

RoI align operation [58]. In this paper, our goal is to en-

hance the proposal features Xt in the current frame, which

is achieved by two steps: 1) Tube linking: starting from a

pedestrian proposal bkt

t , we iteratively search for its rel-

evant counterparts in adjacent frames to form a proposal

tube where we aim to include the reliable pedestrians in this

tube; 2) Feature aggregation: the proposal features from

the obtained tube are aggregated weighted by their seman-

tic similarities with the current proposal candidate. Next,

we introduce these two steps in detail.

Tube Linking. For simplicity, we only formulate the tube

linking procedure from t to t− τ , and the tube linking from

t to t + τ is achieved in a similar way. Formally, let bki

i

denote the ki-th proposal in frame Ii. Starting from b
kt

t , we

first look for its relevant counterparts in an adjacent spatial

area in frame It−1, and b
kt

t is linked to the best matching

counterpart b
kt−1

t−1 based on their semantic and spatial simi-

larities. After b
kt−1

t−1 is found in frame It−1, we then use it

as the reference to search for the best matching counterpart

b
kt−2

t−2 in frame It−2. The linking procedure is iteratively

performed until frame It−τ . Specifically, given the ki-th

proposal in frame Ii, the best matching ki−1-th proposal in

frame Ii−1 is found by:

ki−1 = argmax
k̂∈Qki−1

s(xki

i ,xk̂
i−1) + l(bki

i ,bk̂
i−1), (1)

where Qki−1
= {k̂ | IoU(bki

i ,bk̂
i−1) > ε} is the set of

indices of the proposals in frame Ii−1 which are located

in the adjacent spatial area of b
ki

i , and ε is a small con-

stant that is set to 0.1 in experiments. s(·) and l(·) are the

functions for measuring the semantic and spatial similarities

between two proposals, respectively. Given two proposals

b
1,b2 and their corresponding proposal features x1,x2, the

semantic similarity is measured by the cosine similarity be-

tween their proposal features:

s(x1,x2) =
1

|R|

∑

p∈R

x
1(p) · x2(p)

|x1(p)||x2(p)|
, (2)

where R = {(x, y) | 1 6 x 6 7, 1 6 y 6 7} is the set of

spatial coordinates in the proposal features. The semantic

similarity reflects the likelihood that two proposals belong

to the same category. For the spatial similarity, we take into

account both the scale and relative location information:

l(b1,b2) = scale(b1,b2) + location(b1,b2),

scale(b1,b2) = min(
w1

w2
,
w2

w1
)×min(

h1

h2
,
h2

h1
),

location(b1,b2) = exp(−

∥

∥(d1x, d
1
y)− (d2x, d

2
y)
∥

∥

2

σ2
),

(3)

where w and h are the width and height of a proposal, re-

spectively. dx and dy are predicted by the bounding box

regression branch of Faster R-CNN, denoting the offset of

the center of a proposal to its regression target. The term

scale(·) is used to penalize a large scale change between

two proposals in two consecutive frames, while the term

location(·) is used to penalize a large mis-alignment be-

tween two proposals.
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Figure 3. Visualization examples of the proposal tubes, adaptive weights and final detection results, where w in the figures denotes the

adaptive weight. Three representative cases are provided, in which the current proposals are a heavily occluded pedestrian, a background

region and a reliable pedestrian, respectively. For clear visualization, only one tube is shown in each row.

Finally, for the kt-th proposal in the current frame, we

obtain a proposal tube T
kt

b,τ = {b
kt−τ

t−τ , ...,bkt

t , ...,b
kt+τ

t+τ }

and its corresponding tube features Tkt
x,τ =

{x
kt−τ

t−τ , ...,xkt

t , ...,x
kt+τ

t+τ }. Note that if b
kt

t is a heav-

ily occluded pedestrian and b
kt−τ

t−τ is a non-occluded

pedestrian, there is very likely a less occluded pedestrian in

frame It−τ<i<t due to temporal coherence. Therefore, in

such a linking procedure, the less occluded pedestrian can

serve as an intermediate step for building up the connection

between b
kt

t and b
kt−τ

t−τ , even if the direct semantic and

spatial similarities between b
kt

t and b
kt−τ

t−τ may be not high.

Feature Aggregation. According to the analysis in Fig. 2,

most heavily occluded pedestrians in the current frame may

be related to some reliable (i.e., non/less-occluded) coun-

terparts in neighboring frames. By applying the iterative

tube linking, we are able to connect the heavily occluded

pedestrian in the current frame to the reliable ones in nearby

frames. In view of these, we aggregate the proposal features

from Tkt
x,τ by a weighted summation, aiming at enhancing

the current proposal features xkt

t . Specifically, for proposal

features xkt

t , the enhanced features xkt′
t are computed by:

x
kt′
t =

t+τ
∑

i=t−τ

wki

i x
ki

i , (4)

where wki

i is the adaptive weight and calculated as:

wki

i =
exp(λ× s(xkt

t ,xki

i ))
∑t+τ

l=t−τ exp(λ× s(xkt

t ,xkl

l ))
, (5)

where λ is a scaling factor. Because the output value of s(·)
is limited by cosine similarity which ranges from −1 to 1,

λ is set to greater than 1 for enlarging the gap among ex-

amples. Considering there may be mismatches in the linked

tube, we adopt the semantic similarity between x
ki

i and x
kt

t

to determine the adaptive weight wki

i , such that it can au-

tomatically select features from relevant counterparts and

ignore some irrelevant or noisy ones once the tube drifts

(see Fig. 3). Furthermore, we emphasize that the feature ag-

gregation can augment not only the features of pedestrians

but also those of backgrounds. If bkt

t is a background pro-

posal, by tube linking, we are able to see more references

around the nearby spatio-temporal areas, therefore facili-

tating the classifier to make a better decision and suppress

false alarms.

3.2.2 Temporally Discriminative Embedding Module

In our preliminary model (§ 3.2.1), the tube linking and

feature aggregation are mainly determined by the seman-

tic similarity among proposal features. One issue is that

pedestrian and background examples across frames may

not be discriminative enough in the proposal feature space,

as no explicit supervision is provided to enforce the pro-

posal features of pedestrian and background examples to be

separable. To address this, we learn a discriminative em-

bedding e
ki

i = φ(NTDEM(fi),b
ki

i ) for each proposal bki

i ,

where eki

i ∈ R
7×7×256 and NTDEM is the proposed tempo-

rally discriminative embedding module (TDEM) as shown

in Fig. 4 (b). The NTDEM is explicitly supervised by a dis-

criminative loss LTDEM , which enforces the pedestrian

and background examples across frames to be more separa-

ble in the embedding feature space. Given the current frame

It and a nearby frame Ii, let us denote by O = {e
k⋆
t

t }Uk⋆
t =1

the embedding features of the ground truth boxes in frame

It, where U is the number of ground truth boxes. For a

ground truth box b
k⋆
t

t in the current frame, we denote b
k⋆
i

i

as its corresponding ground truth box in frame Ii, which is

obtained by a greed scheme (as introduced in § 3.3). The

LTDEM is defined as:

LTDEM =
1

|O|

∑

e
k⋆
t

t ∈O

1

|Y| × |Z|

∑

en∈Y,ep∈Z

lt(e
n, ep, e

k⋆
t

t ),

(6)

where Z and Y are the sets of the embedding features of

pedestrian and background proposals sampled around b
k⋆
i

i ,
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Figure 4. (a) Overall framework of the TFAN. Firstly, given an input video sequence, proposal tubes are formed based on the semantic

and spatial similarities among proposals. Secondly, the proposal features from the obtained tube are aggregated according to the adaptive

weights generated from the PRM module, enhancing the feature representations of the pedestrians in the current frame. Finally, the

augmented proposal features are fed into two fully connected network layers for a better classification. (b) The proposed TDEM module,

where the NTDEM is learned by both detection loss and discriminative loss.
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Figure 5. Qualitative examples of the TDEM module, where w in the figures denotes the adaptive weight. By applying a temporally

discriminative embedding for each proposal, not only the drifting problem can be alleviated in linking tubes but also irrelevant mismatches

are more effectively filtered out by the adaptive weights.

respectively, and lt(·) is achieved by a triplet loss:

lt(e
n, ep, e

k⋆
t

t ) = max(0, s(en, e
k⋆
t

t )−s(ep, e
k⋆
t

t )+α), (7)

where the margin term α is set to 0.5 in experiments.

The discriminative embedding features learned from

NTDEM are then used for measuring the semantic similarity

when linking tubes, which makes the TFAN be more likely

to alleviate the drifting problem (as evidenced in Table 3).

Moreover, such discriminative embedding features are fur-

ther applied to each proposal in the formed tube for calculat-

ing the adaptive weights, so that it can more effectively ab-

sorb favorable features from relevant counterparts and filter

out irrelevant mismatches (see Fig. 5). The adaptive weights

can be also implicitly learned from NTDEM. With the dis-

criminative embedding features, we rewrite Eq. 1 and Eq. 5

into:
ki−1 = argmax

k̂∈Qki−1

s(eki

i , ek̂i−1) + l(bki

i ,bk̂
i−1), (8)

wki

i =
exp(λ× s(ekt

t , eki

i ))
∑t+τ

l=t−τ exp(λ× s(ekt

t , ekl

l ))
. (9)

3.2.3 Part-based Relation Module

Although a heavily occluded pedestrian b
kt

t can be con-

nected to a reliable pedestrian b
kt+τ

t+τ , the similarity

s(ekt

t , e
kt+τ

t+τ ) may be small because the embedding fea-

tures of the heavily occluded pedestrian are contaminated

by background clutters. Accordingly, x
kt+τ

t+τ will be over-

whelmed by the proposal features of other examples when

aggregating features. To better leverage those reliable
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Figure 6. (a) Illustration of the motivation of the PRM module. (b)

The proposed PRM module.

pedestrians, we design a part-based relation module (PRM)

as shown in Fig. 6 (b). For a current pedestrian candi-

date, the PRM module will favor its counterparts with sim-

ilar visible parts and assign them large adaptive weights in

aggregating features. For the example in Fig. 6 (a), we

want to use the embedding features of upper-body to mea-

sure the semantic similarity between b
kt

t and b
kt+τ

t+τ , since

both their upper parts are visible. To this end, given a

pair of b
kt

t and b
ki

i , the PRM module first applies a seg-

mentation subnetwork Nseg to x
kt

t to predict the visible

mask v
kt = Nseg(x

kt

t ) for the current pedestrian candidate,

where v
kt ∈ [0, 1]7×7×1. Next, the adaptive weight wki

i is

computed using an improved semantic similarity function

sPRM (·), which is defined in terms of vkt :

sPRM (ekt

t , eki

i ) =
1

|V|

∑

p∈V

e
kt

t (p) · eki

i (p)

|ekt

t (p)||eki

i (p)|
, (10)

where V = {p | vkt(p) > min{0.5, γ}} and γ is a thresh-

old which adaptively determined by v
kt . For background,

the values in v
kt tend to be zero. In order to retain enough

pixels for computing the semantic similarity for background

proposals, γ is set to a value such that at least 20% pixels

in embedding features are retained. The percentile 20% is

chosen according to the definition of heavy occlusion in ex-

isting pedestrian dataset: a pedestrian is considered to be

heavily occluded if only 20%− 65% of its body is visible.

3.2.4 Discussion

The overall architecture of the TFAN is shown in Fig. 4 (a).

The TFAN is designed to exploit the local spatial-temporal

context of heavily occluded pedestrians to enhance their

representations in the current frame. Different from person

tracking, the TFAN does not necessarily require the propos-

als in the linked tube Tkt

b,τ with the same pedestrian identity,

and instances from different persons may also contribute

to augment the x
kt

t as long as they have distinguishable

feature representations. Moreover, our model also enjoys

the enhanced discriminability of background features. For

pedestrian detection especially in night time, some ambigu-

ous negative examples, e.g., trees and poles, are often mis-

classified with a high confidence score by the single frame

detector. In our approach, we are able to utilize more sam-

ples around nearby spatio-temporal areas, so that these hard

negative examples are confidently suppressed by the classi-

fier (as shown in Supplementary Material).

3.3. Implementation

Training. The proposed TFAN is fully differentiable and

can be trained end-to-end. Similar to [30], we select 3
frames Ibef , It, Iaft for training due to limited memory,

where Ibef and Iaft are randomly sampled from {Ii}
t−1
i=t−τ

and {Ii}
t+τ
i=t+1, respectively. The overall loss function of the

TFAN is defined as:

L = Ldet + Lseg + LTDEM , (11)

where Ldet is the detection loss for Faster R-CNN as in [56],

Lseg is the segmentation loss for Nseg and LTDEM is the

discriminative loss for NTDEM. Cross-entropy loss is used

for Lseg . Since pixel-level annotations for visible pedes-

trian areas are not available in existing pedestrian detection

datasets, we use the visible bounding boxes as a weak su-

pervision for Nseg as in [29]. For LTDEM , we need to find

those ground truth boxes in frames Ibef and Iaft which cor-

respond to the ground truth box b
k⋆
t

t in frame It. Since the

track-id annotations are unavailable in some pedestrian de-

tection datasets, we adopt a greedy scheme to obtain them.

Specifically, starting from b
k⋆
t

t , we iteratively find the cor-

responding one in next frame using IoU as a matching score

until Ibef or Iaft are reached.

Inference. Given the input video frames {Ii}
t+τ
i=t−τ (τ = 6

by default), our approach outputs the detection boxes in

frame It. In our implementation, we decouple the branches

of classification and bounding box regression. For classi-

fication, we use the enhanced features x
kt′
t . For bounding

box regression, the original xkt

t are used.

4. Experiments

4.1. Datasets and Experiment Settings

Dataset. In order to exploit temporal cue in our ap-

proach, we conduct experiments on three large-scale pedes-

trian detection datasets: Caltech [20], NightOwls [59] and

KAIST [60], where the video sequences are publicly avail-

able. On the Caltech dataset, the results are reported on

three subsets: Reasonable (R), Heavy Occlusion (HO) and

Reasonable+Heavy Occlusion (R+HO), where the visible

ratios of pedestrians are in the range of [0.65, 1], [0.2, 0.65]
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Method R+HO HO R

Baseline 16.5 43.1 8.6

Baseline+FGFA[30] 15.7 38.9 8.2

SELSA[44] 14.9 39.6 7.5

TFAN-preliminary 14.2 37.6 7.2

TFAN+TDEM (w/o LTDEM ) 14.1 37.5 7.0

TFAN+TDEM (w/o spa) 13.0 33.5 6.9

TFAN+TDEM+PRM (w/o spa) 13.0 33.2 6.8

TFAN+TDEM 12.9 32.7 6.8

TFAN+TDEM+PRM 12.4 30.9 6.7

Table 1. Ablation study of each proposed module on the Caltech

dataset. w/o spa denotes that the TFAN achieves the tube linking

without considering the spatial similarity.

NightOwls

Subset Baseline Ours ∆

Occluded 46.5 42.1 +4.4

Reasonable+Occluded 20.8 18.5 +2.3

Reasonable 16.3 14.3 +2.0

KAIST

Subset Baseline Ours ∆

Heavy Occlusion 76.6 71.3 +5.3

Partial Occlusion 55.4 49.0 +6.4

Reasonable 35.9 34.6 +1.3

Table 2. Performance comparison with the baseline detector on the

NightOwls validation set and the KAIST testing set, respectively.

Ours indicates the TFAN+TDEM.

and [0.2, 1], respectively. NightOwls is a newly released

dataset, in which all the images are captured in night time.

As the NightOwls dataset only provides a binary occlusion

flag in annotations, we report the results on the Reason-

able, Occluded and Reasonable+Occluded subsets. KAIST

mainly focuses on multispectral pedestrian detection, in

which half of the images are also collected in night time.

Following the common protocols, we experiment on three

subsets: Reasonable, Partial Occlusion and Heavy Occlu-

sion whose pedestrian examples have visible ratios in the

range of [0.5, 1], [0.5, 1) and [0, 0.5], respectively. On the

KAIST dataset, the stat-of-the-art methods mainly work on

the fusion of thermal images and RGB images, which is not

our focus in this paper. Therefore, we only use RGB im-

ages and compare our approach with the baseline detector

on the KAIST dataset. The original annotations of these

three datasets are used for experiments.

Experiment Settings. We adopt the standard evaluation

metric in pedestrian detection: MR−2 (lower is better). The

TFAN is trained with 3 epochs using SGD optimizer, and

the initial learning rate is set to 0.0005 and decreased by a

factor of 10 after 2 epochs. σ and λ are respectively set to

0.5 and 5 by default.

4.2. Ablation Studies

Comparison with Baselines. As shown in Table 1, we

compare three variants of our approach: TFAN-preliminary

KNN K= 1 K= 3 K= 5 K= 7

proposal feature space 68.3 70.2 69.8 66.6

embedding feature space 72.8 77.0 80.5 79.8

Table 3. Classification accuracy of pedestrian proposals by KNN

using the proposal features and embedding features, respectively.

(§ 3.2.1), TFAN+TDEM (§ 3.2.2) and TFAN+TDEM+PRM

(§ 3.2.3) as well as the baseline detector. To better com-

pare with video object detection methods, we also list the

results of FGFA [30] and SELSA [44]. Compared with

the baseline detector, our proposed approach boosts the de-

tection performance on HO subset by a remarkably large

margin of 12.2 points. Besides, we observe that our ap-

proach also improves the detection performance on the re-

liable pedestrians. On the NightOwls and KAIST datasets,

we use the TFAN+TDEM for experiments due to the lack

of visible region annotations. Table 2 shows that our ap-

proach is effective for heavily occluded pedestrians even in

the night scenario, showing very well generalization abil-

ity of the proposed method. Qualitative detection perfor-

mance on the heavily occluded pedestrians can be found in

Supplementary Material. In the following ablation studies,

experiments are analyzed on the Caltech dataset.

Effectiveness of the TDEM Module. Table 1 shows that

the TDEM module (§ 3.2.2) mainly benefits from the dis-

criminative loss rather than the additional network lay-

ers. To further quantitatively analyze the proposed TDEM

module in depth, we utilize K-nearest neighbors algorithm

(KNN) to classify the pedestrian examples in both the pro-

posal feature space and embedding feature space. Specifi-

cally, given an input image with 300 proposals, a proposal

is classified by a plurality vote of its neighbors in the fea-

ture space. Euclidean distance is used for measuring the

distance between two proposals in the feature space. In Ta-

ble 3, we report the classification accuracy with different K

on the Caltech testing set, where the accuracy is the per-

centage of correctly classified pedestrian proposals over the

total pedestrian proposals. It is clear to see that pedestri-

ans and backgrounds are more separable in the proposed

embedding feature space, which can benefit both the tube

linking and feature aggregation (see Fig. 5).

Effectiveness of the PRM Module. To study the effect of

the PRM module (§ 3.2.3), we visualize the predicted vis-

ible masks and cosine similarity maps which are used to

measure the semantic similarity. As shown in Fig. 7, when

using the embedding features of full-body to measure the

semantic similarity (Eq. 2), the heavily occluded pedestri-

ans are relatively less similar to the reliable ones. By fo-

cusing on the visible parts of current pedestrian candidates

(Eq. 10), the PRM module is more likely to recall those reli-

able pedestrians for supporting the heavily occluded ones in

the current frame. Besides, we can see from Table 1 that the
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Subset Ours Baseline SDS-RCNN [7] RPN+BF[2] A-FRCCN[6] FRCCN[53] Checkerboards[21]

Reasonable 16.5 19.7 17.8 23.3 18.8 20.0 39.7

Table 4. Performance comparison with the state-of-the-art methods on the NightOwls testing subset. Ours indicates the TFAN+TDEM.

τ 3 4 5 6 7 8 9 10

R+HO 13.0 12.8 12.5 12.4 12.4 12.4 12.4 12.4

HO 32.9 32.2 31.5 30.9 31.1 31.2 31.5 31.6

R 7.1 6.9 6.9 6.7 6.7 6.6 6.5 6.6

Table 5. Ablation study of the TFAN with different tube lengths.
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Figure 7. Qualitative examples of the PRM module.

PRM module is more effective when taking into considera-

tion the spatial similarity in linking tubes. The main reason

is that the similarity measurement is conducted using the

visible parts of current pedestrian candidates. Therefore, a

spatially aligned tube shall be more beneficial for this kind

of measurement.

Adaptive Weights. To assess the effectiveness of the adap-

tive weights, we experiment our detector with the average

weights, i.e., wki

i = 1
τ

. The TFAN with average weights

achieves 14.9/35.0/8.4 MR−2 on the R+HO, HO and R

subsets, respectively, where the TFAN with the adaptive

weights obtains 12.4/30.9/6.7 MR−2. The performance

degradation is that the average weights may not adaptively

filter out irrelevant features during feature aggregation.

Tube Length. We experiment our approach with different

tube lengths from τ = 3 to 10. As shown in Table 5, per-

formance tends to be stable when τ > 5, indicating that

our method does not require a long tube and 11 frames are

enough to support the detection in the current frame.

Hyper-parameters. There are several hyper-parameters in

the proposed method, e.g., σ, λ, γ. The results of our ap-

proach with different hyper-parameters can be found in Sup-

plementary Material, which shows our approach is not sen-

sitive to these hyper-parameters.

4.3. Comparison with State­of­the­Art

Caltech Dataset. We list the state-of-art methods which

use no extra data in Table 6. Our approach achieves notable

performance improvements on the R+HO and HO subsets,

respectively, outperforming the second best results by 1.5
and 6.4 points. It shows our detector is specialized to detect

Method Occ R+HO HO R

CompACT-Deep [1] 24.6 65.8 11.7

RPN+BF [2] 24.0 74.4 9.6

DeepParts [3] X 22.8 60.4 11.9

SAF-RCNN [4] 21.9 64.4 9.7

MS-CNN [5] 21.5 59.9 10.0

A-FRCNN [6] 20.0 57.6 9.2

SDS-RCNN [7] 19.7 58.5 7.4

F-DNN [8] 19.3 55.1 8.6

ATT-part [9] X 18.2 45.2 10.3

AR-Ped [10] 16.1 48.8 6.5

Bi-Box [12] X 16.1 44.4 7.6

DSSD+Grid [19] X - 42.42 10.9

GDFL [17] X 15.6 43.2 7.8

FRCN+A+DT [11] X 15.2 37.9 8.0

MGAN [29] X 13.9 38.3 6.8

TFAN+TDEM+PRM X 12.4 31.5 6.5

Table 6. Performance comparison with the state-of-the-art meth-

ods on the Caltech dataset. The Occ column indicates whether an

approach is devised for handling occlusions. The top two scores

are highlighted in red and blue, respectively.

heavily occluded pedestrians.

NightOwls Dataset. We compare the state-of-the-art meth-

ods on the NightOwls testing subset, where only evaluation

on the Reasonable subset is publicly available. As shown

in Table 4, the proposed method outperforms the second

best result by 1.3 points on the Reasonable subset, validat-

ing that our approach can be well generalized to night time

scenario.

5. Conclusion

This work presents a novel model, the TFAN, aiming at

exploiting local spatial and temporal context of a heavily

occluded pedestrian to enhance its feature representations.

The TFAN is carried out with two main steps: tube link-

ing and feature aggregation, which are designed to search

for relevant counterparts temporally in the video and ex-

ploit them to enhance the feature representations of cur-

rent pedestrian candidates. Furthermore, the TFAN to-

gether with the TDEM and PRM modules is capable of han-

dling drifting and severe occlusion problems. Extensive ex-

periments validate the effectiveness and superiority of our

method.
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